1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
//===-- SerialQueue.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "llbuild/Basic/SerialQueue.h"
#include "llbuild/Basic/ExecutionQueue.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include <atomic>
#include <cassert>
#include <condition_variable>
#include <deque>
#include <mutex>
#include <random>
#include <thread>
#include <signal.h>
using namespace llbuild;
using namespace llbuild::basic;
namespace {
/// A basic serial queue.
///
/// This implementation has been optimized for simplicity over performance.
//
// FIXME: Optimize.
class SerialQueueImpl {
/// The thread executing the operations.
std::unique_ptr<std::thread> operationsThread;
/// The queue of operations.
std::deque<std::function<void(void)>> operations;
/// The mutex protecting access to the queue.
std::mutex operationsMutex;
/// Condition variable used to signal when operations are available.
std::condition_variable readyOperationsCondition;
/// Thread function to execute operations.
void run() {
while (true) {
// Get the next operation from the queue.
std::function<void(void)> fn;
{
std::unique_lock<std::mutex> lock(operationsMutex);
// While the queue is empty, wait for an item.
while (operations.empty()) {
readyOperationsCondition.wait(lock);
}
fn = operations.front();
operations.pop_front();
}
// If we got a nil function, the queue is shutting down.
if (!fn)
break;
// Execute the operation.
fn();
}
}
void addOperation(std::function<void(void)>&& fn) {
std::lock_guard<std::mutex> guard(operationsMutex);
operations.push_back(fn);
readyOperationsCondition.notify_one();
}
public:
SerialQueueImpl() {
// Ensure the queue is fully initialized before creating the worker thread.
operationsThread = llvm::make_unique<std::thread>(
&SerialQueueImpl::run, this);
}
~SerialQueueImpl() {
// Signal the worker to shut down.
addOperation({});
// Wait for the worker to complete.
operationsThread->join();
}
void sync(std::function<void(void)> fn) {
assert(fn);
// Add an operation which will execute the function and signal its
// completion.
std::condition_variable cv{};
std::mutex isCompleteMutex{};
bool isComplete = false;
addOperation([&]() {
fn();
{
std::unique_lock<std::mutex> lock(isCompleteMutex);
isComplete = true;
cv.notify_one();
}
});
// Wait for the operation to complete.
std::unique_lock<std::mutex> lock(isCompleteMutex);
while (!isComplete) {
cv.wait(lock);
}
}
void async(std::function<void(void)> fn) {
assert(fn);
// Add the operation.
addOperation(std::move(fn));
}
};
}
SerialQueue::SerialQueue()
: impl(new SerialQueueImpl())
{
}
SerialQueue::~SerialQueue() {
delete static_cast<SerialQueueImpl*>(impl);
}
void SerialQueue::sync(std::function<void(void)> fn) {
static_cast<SerialQueueImpl*>(impl)->sync(fn);
}
void SerialQueue::async(std::function<void(void)> fn) {
static_cast<SerialQueueImpl*>(impl)->async(fn);
}
/// An execution queue based on a serial operation queue.
class SerialExecutionQueue : public ExecutionQueue {
/// (Random) build identifier
uint32_t buildID;
/// Underlying queue implementation
SerialQueueImpl* queue;
/// The base environment.
const char* const* environment;
struct SerialContext: public basic::QueueJobContext {
uint64_t jobID;
QueueJob& job;
SerialContext(uint64_t jobID, QueueJob& job)
: jobID(jobID), job(job) { }
unsigned laneID() const override { return 0; }
};
uint64_t jobCount{0};
std::atomic<bool> cancelled { false };
ProcessGroup spawnedProcesses;
std::mutex killAfterTimeoutThreadMutex;
std::unique_ptr<std::thread> killAfterTimeoutThread = nullptr;
std::condition_variable queueCompleteCondition;
std::mutex queueCompleteMutex;
bool queueComplete { false };
void killAfterTimeout() {
std::unique_lock<std::mutex> lock(queueCompleteMutex);
if (!queueComplete) {
// Shorten timeout if in testing context
if (getenv("LLBUILD_TEST") != nullptr) {
queueCompleteCondition.wait_for(lock, std::chrono::milliseconds(1000));
} else {
queueCompleteCondition.wait_for(lock, std::chrono::seconds(10));
}
#if _WIN32
spawnedProcesses.signalAll(SIGTERM);
#else
spawnedProcesses.signalAll(SIGKILL);
#endif
}
}
public:
SerialExecutionQueue(ExecutionQueueDelegate& delegate,
const char* const* environment)
: ExecutionQueue(delegate), buildID(std::random_device()()), queue(new SerialQueueImpl), environment(environment)
{
}
virtual ~SerialExecutionQueue()
{
delete queue;
queue = nullptr;
std::lock_guard<std::mutex> guard(killAfterTimeoutThreadMutex);
if (killAfterTimeoutThread) {
{
std::unique_lock<std::mutex> lock(queueCompleteMutex);
queueComplete = true;
queueCompleteCondition.notify_all();
}
killAfterTimeoutThread->join();
}
}
virtual void addJob(QueueJob job, QueueJobPriority) override {
uint64_t jobID = ++jobCount;
queue->async([jobID, job]() mutable {
SerialContext ctx(jobID, job);
job.execute(&ctx);
});
}
virtual void cancelAllJobs() override {
{
std::lock_guard<std::mutex> guard(spawnedProcesses.mutex);
if (cancelled) return;
cancelled = true;
spawnedProcesses.close();
}
spawnedProcesses.signalAll(SIGINT);
{
std::lock_guard<std::mutex> guard(killAfterTimeoutThreadMutex);
killAfterTimeoutThread = llvm::make_unique<std::thread>(
&SerialExecutionQueue::killAfterTimeout, this);
}
}
virtual void executeProcess(
QueueJobContext* opaqueContext,
ArrayRef<StringRef> commandLine,
ArrayRef<std::pair<StringRef, StringRef>> environment,
ProcessAttributes attributes,
llvm::Optional<ProcessCompletionFn> completionFn,
ProcessDelegate* delegate
) override {
SerialContext& context = *reinterpret_cast<SerialContext*>(opaqueContext);
// Do not execute new processes anymore after cancellation.
if (cancelled) {
if (completionFn.hasValue())
completionFn.getValue()(ProcessResult::makeCancelled());
return;
}
// Form the complete environment.
//
// NOTE: We construct the environment in order of precedence, so
// overridden keys should be defined first.
POSIXEnvironment posixEnv;
// Export lane ID to subprocesses.
posixEnv.setIfMissing("LLBUILD_BUILD_ID", Twine(buildID).str());
posixEnv.setIfMissing("LLBUILD_LANE_ID", Twine(0).str());
// Add the requested environment.
for (const auto& entry: environment) {
posixEnv.setIfMissing(entry.first, entry.second);
}
// Inherit the base environment, if desired.
//
// FIXME: This involves a lot of redundant allocation, currently. We could
// cache this for the common case of a directly inherited environment.
if (attributes.inheritEnvironment) {
for (const char* const* p = this->environment; *p != nullptr; ++p) {
auto pair = StringRef(*p).split('=');
posixEnv.setIfMissing(pair.first, pair.second);
}
}
// Assign a process handle, which just needs to be unique for as long as we
// are communicating with the delegate.
ProcessHandle handle;
handle.id = context.jobID;
ProcessReleaseFn releaseFn = [](std::function<void()>&& processWait) {
// not allowed to release, call wait directly
processWait();
};
ProcessCompletionFn laneCompletionFn{
[completionFn](ProcessResult result) mutable {
if (completionFn.hasValue())
completionFn.getValue()(result);
}
};
spawnProcess(
delegate ? *delegate : getDelegate(),
reinterpret_cast<ProcessContext*>(context.job.getDescriptor()),
spawnedProcesses,
handle,
commandLine,
posixEnv,
attributes,
std::move(releaseFn),
std::move(laneCompletionFn)
);
}
};
#if !defined(_WIN32)
extern "C" {
extern char **environ;
}
#endif
std::unique_ptr<ExecutionQueue> llbuild::basic::createSerialQueue(
ExecutionQueueDelegate& delegate, const char* const* environment
) {
if (!environment) {
environment = const_cast<const char* const*>(environ);
}
return llvm::make_unique<SerialExecutionQueue>(delegate, environment);
}
|