1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
//===-- BuildEngineCommand.cpp --------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "llbuild/Commands/Commands.h"
#include "llbuild/Basic/ExecutionQueue.h"
#include "llbuild/Basic/LLVM.h"
#include "llbuild/Core/BuildEngine.h"
#include "llbuild/Evo/EvoEngine.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <mutex>
using namespace llbuild;
using namespace llbuild::commands;
#pragma mark - Ackermann Build Command
namespace {
#ifndef NDEBUG
static uint64_t ack(int m, int n) {
// Memoize using an array of growable vectors.
std::vector<std::vector<int>> memoTable(m+1);
std::function<int(int,int)> ack_internal;
ack_internal = [&] (int m, int n) {
assert(m >= 0 && n >= 0);
auto& memoRow = memoTable[m];
if (size_t(n) >= memoRow.size())
memoRow.resize(n + 1);
if (memoRow[n] != 0)
return memoRow[n];
int result;
if (m == 0) {
result = n + 1;
} else if (n == 0) {
result = ack_internal(m - 1, 1);
} else {
result = ack_internal(m - 1, ack_internal(m, n - 1));
};
memoRow[n] = result;
return result;
};
return ack_internal(m, n);
}
#endif
static int32_t intFromValue(const core::ValueType& value) {
assert(value.size() == 4);
return ((value[0] << 0) |
(value[1] << 8) |
(value[2] << 16) |
(value[3] << 24));
}
static core::ValueType intToValue(int32_t value) {
std::vector<uint8_t> result(4);
result[0] = (value >> 0) & 0xFF;
result[1] = (value >> 8) & 0xFF;
result[2] = (value >> 16) & 0xFF;
result[3] = (value >> 24) & 0xFF;
return result;
}
/// Key representation used in Ackermann build.
struct AckermannKey {
/// The Ackermann number this key represents.
int m, n;
/// Create a key representing the given Ackermann number.
AckermannKey(int m, int n) : m(m), n(n) {}
/// Create an Ackermann key from the encoded representation.
AckermannKey(const core::KeyType& key) {
auto keyString = StringRef(key.str());
assert(keyString.startswith("ack(") && keyString.endswith(")"));
auto arguments = keyString.split("(").second.split(")").first.split(",");
m = 0;
n = 0;
(void)arguments.first.getAsInteger(10, m);
(void)arguments.second.getAsInteger(10, n);
assert(m >= 0 && m < 4);
assert(n >= 0);
}
/// Convert an Ackermann key to its encoded representation.
operator core::KeyType() const {
char inputKey[32];
snprintf(inputKey, sizeof(inputKey), "ack(%d,%d)", m, n);
return inputKey;
}
};
/// Value representation used in Ackermann build.
struct AckermannValue {
int value;
/// Create a value for 0.
AckermannValue() : value(0) { }
/// Create a value from an integer.
AckermannValue(int value) : value(value) { }
/// Create a value from the encoded representation.
AckermannValue(const core::ValueType& value) : value(intFromValue(value)) { }
/// Convert a value to its encoded representation.
operator core::ValueType() const {
return intToValue(value);
}
/// Convert a wrapped value to its actual value.
operator int() const {
return value;
}
};
struct AckermannTask : core::Task {
int m, n;
AckermannValue recursiveResultA = {};
AckermannValue recursiveResultB = {};
AckermannTask(core::BuildEngine& engine, int m, int n) : m(m), n(n) {
}
/// Called when the task is started.
virtual void start(core::TaskInterface ti) override {
// Request the first recursive result, if necessary.
if (m == 0) {
;
} else if (n == 0) {
ti.request(AckermannKey(m-1, 1), 0);
} else {
ti.request(AckermannKey(m, n-1), 0);
}
}
/// Called when a task’s requested input is available.
virtual void provideValue(core::TaskInterface ti, uintptr_t inputID,
const core::ValueType& value) override {
if (inputID == 0) {
recursiveResultA = value;
// Request the second recursive result, if needed.
if (m != 0 && n != 0) {
ti.request(AckermannKey(m-1, recursiveResultA), 1);
}
} else {
assert(inputID == 1 && "invalid input ID");
recursiveResultB = value;
}
}
/// Called when all inputs are available.
virtual void inputsAvailable(core::TaskInterface ti) override {
if (m == 0) {
ti.complete(AckermannValue(n + 1));
return;
}
assert(recursiveResultA != 0);
if (n == 0) {
ti.complete(recursiveResultA);
return;
}
assert(recursiveResultB != 0);
ti.complete(recursiveResultB);
}
};
static int runAckermannBuild(int m, int n, int recomputeCount,
const std::string& traceFilename,
const std::string& dumpGraphPath) {
// Compute the value of ackermann(M, N) using the build system.
assert(m >= 0 && m < 4);
assert(n >= 0);
// Define the delegate which will dynamically construct rules of the form
// "ack(M,N)".
class AckermannDelegate : public core::BuildEngineDelegate, public basic::ExecutionQueueDelegate {
class AckermannRule : public core::Rule {
public:
AckermannRule(const core::KeyType& key) : core::Rule(key) { }
core::Task* createTask(core::BuildEngine& engine) override {
auto k = AckermannKey(key);
return new AckermannTask(engine, k.m, k.n);
}
bool isResultValid(core::BuildEngine&, const core::ValueType&) override {
return true;
}
};
public:
int numRules = 0;
/// Get the rule to use for the given Key.
virtual std::unique_ptr<core::Rule> lookupRule(const core::KeyType& keyData) override {
++numRules;
return std::unique_ptr<core::Rule>(new AckermannRule(keyData));
}
/// Called when a cycle is detected by the build engine and it cannot make
/// forward progress.
virtual void cycleDetected(const std::vector<core::Rule*>& items) override {
assert(0 && "unexpected cycle!");
}
/// Called when a fatal error is encountered by the build engine.
virtual void error(const Twine &message) override {
assert(0 && ("error:" + message.str()).c_str());
}
void processStarted(basic::ProcessContext*, basic::ProcessHandle, llbuild_pid_t) override { }
void processHadError(basic::ProcessContext*, basic::ProcessHandle, const Twine&) override { }
void processHadOutput(basic::ProcessContext*, basic::ProcessHandle, StringRef) override { }
void processFinished(basic::ProcessContext*, basic::ProcessHandle, const basic::ProcessResult&) override { }
void queueJobStarted(basic::JobDescriptor*) override { }
void queueJobFinished(basic::JobDescriptor*) override { }
std::unique_ptr<basic::ExecutionQueue> createExecutionQueue() override {
return createSerialQueue(*this, nullptr);
}
};
AckermannDelegate delegate;
core::BuildEngine engine(delegate);
// Enable tracing, if requested.
if (!traceFilename.empty()) {
std::string error;
if (!engine.enableTracing(traceFilename, &error)) {
fprintf(stderr, "error: %s: unable to enable tracing: %s\n",
getProgramName(), error.c_str());
return 1;
}
}
auto key = AckermannKey(m, n);
auto result = AckermannValue(engine.build(key));
llvm::outs() << "ack(" << m << ", " << n << ") = " << result << "\n";
if (n < 10) {
#ifndef NDEBUG
int expected = ack(m, n);
assert(result == expected);
#endif
}
llvm::outs() << "... computed using " << delegate.numRules << " rules\n";
if (!dumpGraphPath.empty()) {
engine.dumpGraphToFile(dumpGraphPath);
}
// Recompute the result as many times as requested.
for (int i = 0; i != recomputeCount; ++i) {
auto recomputedResult = AckermannValue(engine.build(key));
if (recomputedResult != result)
abort();
}
return 0;
}
static int runEvoAckermann(int m, int n, int recomputeCount,
const std::string& traceFilename,
const std::string& dumpGraphPath) {
// Compute the value of ackermann(M, N) using the evo build system.
assert(m >= 0 && m < 4);
assert(n >= 0);
// Define the delegate which will dynamically construct rules of the form
// "ack(M,N)".
class AckermannDelegate : public core::BuildEngineDelegate, public basic::ExecutionQueueDelegate {
class AckermannRule : public evo::EvoRule {
public:
AckermannRule(const core::KeyType& key) : EvoRule(key) { }
bool isResultValid(core::BuildEngine&, const core::ValueType&) override {
return true;
}
core::ValueType run(evo::EvoEngine& engine) override {
auto k = AckermannKey(key);
auto m = k.m;
auto n = k.n;
if (m == 0) {
return AckermannValue(n + 1);
}
if (n == 0) {
return engine.wait(engine.request(AckermannKey(m - 1, 1)));
}
AckermannValue v = engine.wait(engine.request(AckermannKey(m, n - 1)));
return engine.wait(engine.request(AckermannKey(m - 1, v)));
}
};
public:
int numRules = 0;
/// Get the rule to use for the given Key.
virtual std::unique_ptr<core::Rule> lookupRule(const core::KeyType& keyData) override {
++numRules;
return std::unique_ptr<core::Rule>(new AckermannRule(keyData));
}
/// Called when a cycle is detected by the build engine and it cannot make
/// forward progress.
virtual void cycleDetected(const std::vector<core::Rule*>& items) override {
assert(0 && "unexpected cycle!");
}
/// Called when a fatal error is encountered by the build engine.
virtual void error(const Twine &message) override {
assert(0 && ("error:" + message.str()).c_str());
}
void processStarted(basic::ProcessContext*, basic::ProcessHandle, llbuild_pid_t) override { }
void processHadError(basic::ProcessContext*, basic::ProcessHandle, const Twine&) override { }
void processHadOutput(basic::ProcessContext*, basic::ProcessHandle, StringRef) override { }
void processFinished(basic::ProcessContext*, basic::ProcessHandle, const basic::ProcessResult&) override { }
void queueJobStarted(basic::JobDescriptor*) override { }
void queueJobFinished(basic::JobDescriptor*) override { }
std::unique_ptr<basic::ExecutionQueue> createExecutionQueue() override {
return createSerialQueue(*this, nullptr);
}
};
AckermannDelegate delegate;
core::BuildEngine engine(delegate);
// Enable tracing, if requested.
if (!traceFilename.empty()) {
std::string error;
if (!engine.enableTracing(traceFilename, &error)) {
fprintf(stderr, "error: %s: unable to enable tracing: %s\n",
getProgramName(), error.c_str());
return 1;
}
}
auto key = AckermannKey(m, n);
auto result = AckermannValue(engine.build(key));
llvm::outs() << "ack(" << m << ", " << n << ") = " << result << "\n";
if (n < 10) {
#ifndef NDEBUG
int expected = ack(m, n);
assert(result == expected);
#endif
}
llvm::outs() << "... computed using " << delegate.numRules << " rules\n";
if (!dumpGraphPath.empty()) {
engine.dumpGraphToFile(dumpGraphPath);
}
// Recompute the result as many times as requested.
for (int i = 0; i != recomputeCount; ++i) {
auto recomputedResult = AckermannValue(engine.build(key));
if (recomputedResult != result)
abort();
}
return 0;
}
static void ackermannUsage(std::string cmd) {
int optionWidth = 20;
fprintf(stderr, "Usage: %s buildengine %s [options] <M> <N>\n",
getProgramName(), cmd.c_str());
fprintf(stderr, "\nOptions:\n");
fprintf(stderr, " %-*s %s\n", optionWidth, "--help",
"show this help message and exit");
fprintf(stderr, " %-*s %s\n", optionWidth, "--dump-graph <PATH>",
"dump build graph to PATH in Graphviz DOT format");
fprintf(stderr, " %-*s %s\n", optionWidth, "--recompute <N>",
"recompute the result N times, to stress dependency checking");
fprintf(stderr, " %-*s %s\n", optionWidth, "--trace <PATH>",
"trace build engine operation to PATH");
::exit(1);
}
static int executeAckermannCommand(std::string cmd, std::vector<std::string> args) {
int recomputeCount = 0;
std::string dumpGraphPath, traceFilename;
while (!args.empty() && args[0][0] == '-') {
const std::string option = args[0];
args.erase(args.begin());
if (option == "--")
break;
if (option == "--help") {
ackermannUsage(cmd);
} else if (option == "--recompute") {
if (args.empty()) {
fprintf(stderr, "error: %s: missing argument to '%s'\n\n",
getProgramName(), option.c_str());
ackermannUsage(cmd);
}
char *end;
recomputeCount = ::strtol(args[0].c_str(), &end, 10);
if (*end != '\0') {
fprintf(stderr, "error: %s: invalid argument to '%s'\n\n",
getProgramName(), option.c_str());
ackermannUsage(cmd);
}
args.erase(args.begin());
} else if (option == "--dump-graph") {
if (args.empty()) {
fprintf(stderr, "error: %s: missing argument to '%s'\n\n",
getProgramName(), option.c_str());
ackermannUsage(cmd);
}
dumpGraphPath = args[0];
args.erase(args.begin());
} else if (option == "--trace") {
if (args.empty()) {
fprintf(stderr, "error: %s: missing argument to '%s'\n\n",
getProgramName(), option.c_str());
ackermannUsage(cmd);
}
traceFilename = args[0];
args.erase(args.begin());
} else {
fprintf(stderr, "error: %s: invalid option: '%s'\n\n",
getProgramName(), option.c_str());
ackermannUsage(cmd);
}
}
if (args.size() != 2) {
fprintf(stderr, "error: %s: invalid number of arguments\n", getProgramName());
ackermannUsage(cmd);
}
const char *str = args[0].c_str();
int m = ::strtol(str, (char**)&str, 10);
if (*str != '\0') {
fprintf(stderr, "error: %s: invalid argument '%s' (expected integer)\n",
getProgramName(), args[0].c_str());
return 1;
}
str = args[1].c_str();
int n = ::strtol(str, (char**)&str, 10);
if (*str != '\0') {
fprintf(stderr, "error: %s: invalid argument '%s' (expected integer)\n",
getProgramName(), args[1].c_str());
return 1;
}
if (m >= 4) {
fprintf(stderr, "error: %s: invalid argument M = '%d' (too large)\n",
getProgramName(), m);
return 1;
}
if (n >= 1024) {
fprintf(stderr, "error: %s: invalid argument N = '%d' (too large)\n",
getProgramName(), n);
return 1;
}
if (cmd == "evo") {
return runEvoAckermann(m, n, recomputeCount, traceFilename, dumpGraphPath);
}
return runAckermannBuild(m, n, recomputeCount, traceFilename, dumpGraphPath);
}
}
#pragma mark - Build Engine Top-Level Command
static void usage() {
fprintf(stderr, "Usage: %s buildengine [--help] <command> [<args>]\n",
getProgramName());
fprintf(stderr, "\n");
fprintf(stderr, "Available commands:\n");
fprintf(stderr, " ack -- Compute Ackermann\n");
fprintf(stderr, " evo -- Compute Ackermann - Evo Engine\n");
fprintf(stderr, "\n");
exit(1);
}
int commands::executeBuildEngineCommand(const std::vector<std::string> &args) {
// Expect the first argument to be the name of another subtool to delegate to.
if (args.empty() || args[0] == "--help")
usage();
if (args[0] == "ack" || args[0] == "evo") {
return executeAckermannCommand(args[0], {args.begin()+1, args.end()});
} else {
fprintf(stderr, "error: %s: unknown command '%s'\n", getProgramName(),
args[0].c_str());
return 1;
}
}
|