1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
|
//===-- BuildEngine.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "llbuild/Core/BuildEngine.h"
#include "llbuild/Basic/Defer.h"
#include "llbuild/Basic/ExecutionQueue.h"
#include "llbuild/Basic/Tracing.h"
#include "llbuild/Core/BuildDB.h"
#include "llbuild/Core/KeyID.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "BuildEngineTrace.h"
#include <atomic>
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <condition_variable>
#include <deque>
#include <memory>
#include <mutex>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace llbuild;
using namespace llbuild::basic;
using namespace llbuild::core;
Task::~Task() {}
Rule::~Rule() {}
void Rule::updateStatus(BuildEngine&, StatusKind) {}
BuildEngineDelegate::~BuildEngineDelegate() {}
void BuildEngineDelegate::determinedRuleNeedsToRun(Rule* ruleNeedingToRun, Rule::RunReason, Rule* inputRule) {}
bool BuildEngineDelegate::shouldResolveCycle(const std::vector<Rule*>& items,
Rule* candidateRule,
Rule::CycleAction action) {
return false;
}
CancellationDelegate::~CancellationDelegate() = default;
#pragma mark - BuildEngine implementation
namespace {
class BuildEngineImpl : public BuildDBDelegate {
struct RuleInfo;
struct TaskInfo;
/// Reserved input ID. May be generated by application, but never vended
/// to the application if the engine generates it itself).
static constexpr uintptr_t kMustFollowInputID = ~(uintptr_t)0;
BuildEngine& buildEngine;
BuildEngineDelegate& delegate;
/// The key table, used when there is no database.
llvm::StringMap<KeyID> keyTable;
/// The mutex that protects the key table.
std::mutex keyTableMutex;
/// The build database, if attached.
std::unique_ptr<BuildDB> db;
/// The tracing implementation, if enabled.
std::unique_ptr<BuildEngineTrace> trace;
/// Path of the trace file to write to, if set.
std::string traceFile;
/// Mutex for access to execution queue.
std::mutex executionQueueMutex;
/// The execution queue reference; this is only valid while a build is
/// actually in progress.
std::unique_ptr<ExecutionQueue> executionQueue;
/// The current build iteration, used to sequentially timestamp build results.
Epoch currentEpoch = 0;
/// Whether the build should be cancelled.
std::atomic<bool> buildCancelled{ false };
/// Whether a build is currently running.
std::atomic<bool> buildRunning{ false };
std::mutex buildEngineMutex;
llvm::DenseSet<core::CancellationDelegate *> cancellationDelegates;
/// The queue of input requests to process.
struct TaskInputRequest {
/// The task making the request.
TaskInfo* taskInfo;
/// The task provided input ID, for its own use in identifying the input.
uintptr_t inputID;
/// The rule for the input which was requested.
RuleInfo* inputRuleInfo;
/// Whether this rule is to be executed as order-only.
bool orderOnly = false;
///Â Force the use of a prior value
bool forcePriorValue = false;
/// Whether this rule should be removed as a dependency after execution
bool singleUse = false;
};
std::deque<TaskInputRequest> inputRequests;
std::vector<TaskInputRequest> finishedInputRequests;
/// The mutex that protects access to inputRequests
std::mutex inputRequestsMutex;
/// The queue of rules being scanned.
struct RuleScanRequest {
/// The rule making the request.
RuleInfo* ruleInfo;
/// The input index being considered.
unsigned inputIndex;
/// The input being considered, if already looked up.
///
/// This is used when a scan request is deferred waiting on its input to be
/// scanned, to avoid a redundant hash lookup.
RuleInfo* inputRuleInfo;
/// Whether the rule is executed in order-only way.
bool orderOnly;
/// Whether the rule is cleaned from dependencies after execution.
bool singleUse = false;
};
std::vector<RuleScanRequest> ruleInfosToScan;
struct RuleScanRecord {
/// The vector of paused input requests, waiting for the dependency scan on
/// this rule to complete.
std::vector<TaskInputRequest> pausedInputRequests;
/// The vector of deferred scan requests, for rules which are waiting on
/// this one to be scanned.
std::vector<RuleScanRequest> deferredScanRequests;
};
/// Wrapper for information specific to a single rule.
struct RuleInfo {
enum class StateKind {
/// The initial rule state.
Incomplete = 0,
/// The rule is being scanned to determine if it needs to run.
IsScanning,
/// The rule needs to run, but has not yet been started.
NeedsToRun,
/// The rule does not need to run, but has not yet been marked as
/// complete.
DoesNotNeedToRun,
/// The rule is in progress, but is waiting on additional inputs.
InProgressWaiting,
/// The rule is in progress, and is computing its result.
InProgressComputing,
/// The rule is complete, with an available result.
///
/// Note that as an optimization, when the build timestamp is incremented
/// we do not immediately reset the state, rather we do it lazily as part
/// of \see demandRule() in conjunction with the Result::builtAt field.
Complete
};
RuleInfo(KeyID keyID, std::unique_ptr<Rule>&& rule) : keyID(keyID), rule(std::move(rule)) {}
/// The ID for the rule key.
KeyID keyID;
/// The rule this information describes.
std::unique_ptr<Rule> rule;
/// The state dependent record for in-progress information.
union {
RuleScanRecord* pendingScanRecord;
TaskInfo* pendingTaskInfo;
} inProgressInfo = { nullptr };
/// The most recent rule result.
Result result = {};
/// The current state of the rule.
StateKind state = StateKind::Incomplete;
bool wasForced = false;
public:
bool isScanning() const {
return state == StateKind::IsScanning;
}
bool isScanned(const BuildEngineImpl* engine) const {
// If the rule is marked as complete, just check that state.
if (state == StateKind::Complete)
return isComplete(engine);
// Otherwise, the rule is scanned if it has passed the scanning state.
return int(state) > int(StateKind::IsScanning);
}
bool isInProgressWaiting() const {
return state == StateKind::InProgressWaiting;
}
bool isInProgressComputing() const {
return state == StateKind::InProgressComputing;
}
bool isInProgress() const {
return isInProgressWaiting() || isInProgressComputing();
}
bool isComplete(const BuildEngineImpl* engine) const {
return state == StateKind::Complete &&
result.builtAt == engine->getCurrentEpoch();
}
void setComputing(const BuildEngineImpl* engine) {
assert(isInProgressWaiting());
state = StateKind::InProgressComputing;
result.start = basic::Clock::now();
}
void setComplete(const BuildEngineImpl* engine) {
state = StateKind::Complete;
// Note we do not push this change to the database. This is essentially a
// mark we maintain to allow a lazy transition to Incomplete when the
// timestamp is incremented.
//
// FIXME: This is a bit dubious, and wouldn't work anymore if we moved the
// Result to being totally managed by the database. However, it is just a
// matter of keeping an extra timestamp outside the Result to fix.
result.builtAt = engine->getCurrentEpoch();
result.end = basic::Clock::now();
}
void setCancelled() {
// If we have to cancel a task, it becomes incomplete. We do not need to
// sync this to the database, the database won't see an updated record and
// can continue to maintain the previous view of state -- however, we must
// mark the internal representation as incomplete because the result is no
// longer valid.
state = StateKind::Incomplete;
}
RuleScanRecord* getPendingScanRecord() {
assert(isScanning());
return inProgressInfo.pendingScanRecord;
}
const RuleScanRecord* getPendingScanRecord() const {
assert(isScanning());
return inProgressInfo.pendingScanRecord;
}
void setPendingScanRecord(RuleScanRecord* value) {
inProgressInfo.pendingScanRecord = value;
}
TaskInfo* getPendingTaskInfo() {
assert(isInProgress());
return inProgressInfo.pendingTaskInfo;
}
const TaskInfo* getPendingTaskInfo() const {
assert(isInProgress());
return inProgressInfo.pendingTaskInfo;
}
void setPendingTaskInfo(TaskInfo* value) {
assert(isInProgress());
inProgressInfo.pendingTaskInfo = value;
}
};
// The map of registered rules.
//
// NOTE: We currently rely on the unordered_map behavior that ensures that
// references to elements are not invalidated by insertion. We will need to
// move to an alternate allocation strategy if we switch to DenseMap style
// table. This is probably a good idea in any case, because we would benefit
// from pool allocating RuleInfo instances.
std::unordered_map<KeyID, RuleInfo> ruleInfos;
/// Information tracked for executing tasks.
//
// FIXME: Keeping this in a side table is very inefficient, we always have to
// look it up. It might make much more sense to require the Task to have a
// private field available for our use to store this.
struct TaskInfo {
TaskInfo(Task* task) : task(task) {}
std::unique_ptr<Task> task;
/// The list of input requests that are waiting on this task, which will be
/// fulfilled once the task is complete.
//
// FIXME: Note that this structure is redundant here, as
// (TaskInputRequest::InputTaskInfo == this) for all items, but we reuse the
// existing structure for simplicity.
std::vector<TaskInputRequest> requestedBy;
/// The vector of deferred scan requests, for rules which are waiting on
/// this one to be scanned.
//
// FIXME: As above, this structure has redundancy in it.
std::vector<RuleScanRequest> deferredScanRequests;
/// The rule that this task is computing.
RuleInfo* forRuleInfo = nullptr;
/// The number of outstanding inputs that this task is waiting on to be
/// provided.
unsigned waitCount = 0;
/// The list of discovered dependencies found during execution of the task.
DependencyKeyIDs discoveredDependencies;
#ifndef NDEBUG
void dump() const {
fprintf(stderr,
"<TaskInfo:%p: task:%p, for-rule:\"%s\", wait-count:%d>\n",
this, task.get(),
forRuleInfo ? forRuleInfo->rule->key.c_str() : "(null)",
waitCount);
for (const auto& request: requestedBy) {
fprintf(stderr, " requested by: %s\n",
request.taskInfo->forRuleInfo->rule->key.c_str());
}
}
#endif
};
/// The tracked information for executing tasks.
///
/// Access to this must be protected via \see taskInfosMutex.
std::unordered_map<Task*, TaskInfo> taskInfos;
/// The mutex that protects the task info map.
std::mutex taskInfosMutex;
/// The queue of tasks ready to be finalized.
std::deque<TaskInfo*> readyTaskInfos;
/// The number of tasks which have been readied but not yet finished.
unsigned numOutstandingUnfinishedTasks = 0;
/// The queue of tasks which are complete, accesses to this member variable
/// must be protected via \see finishedTaskInfosMutex.
std::vector<TaskInfo*> finishedTaskInfos;
/// The mutex that protects finished task infos.
std::mutex finishedTaskInfosMutex;
/// This variable is used to signal when additional work is added to the
/// FinishedTaskInfos queue, which the engine may need to wait on.
std::condition_variable finishedTaskInfosCondition;
private:
/// @name RuleScanRecord Allocation
///
/// The execution of a single build may use a substantial amount of
/// additional memory in recording the bookkeeping information used to do
/// dependency scanning. While we could keep this information adjacent to
/// every \see RuleInfo, that adds up to a substantial chunk of memory which
/// is wasted except during dependency scanning.
///
/// Instead, we allocate \see RuleScanRecord objects for each rule only as it
/// is being scanned, and use a custom allocator for the objects to try and
/// make this efficient. Currently we use a bounded free-list backed by a slab
/// allocator.
///
/// Note that this still has a fairly large impact on dependency scanning
/// performance, in the worst case a deep linear graph takes ~50% longer to
/// scan, but it also provides an overall 15-20% memory savings on resident
/// engine size.
///
/// @{
// FIXME: This should be abstracted into a helper class.
/// A free-list of RuleScanRecord objects.
std::vector<RuleScanRecord*> freeRuleScanRecords;
/// The maximum number of free-list items to keep.
const size_t maximumFreeRuleScanRecords = 8096;
/// The list of blocks (of size \see NumScanRecordsPerBlock) we have
/// allocated.
std::vector<RuleScanRecord*> ruleScanRecordBlocks;
/// The number of records to allocate per block.
const size_t numScanRecordsPerBlock = 4096;
/// The buffer positions of the current block.
RuleScanRecord* currentBlockPos = nullptr, * currentBlockEnd = nullptr;
RuleScanRecord* newRuleScanRecord() {
// If we have an item on the free list, return it.
if (!freeRuleScanRecords.empty()) {
auto result = freeRuleScanRecords.back();
freeRuleScanRecords.pop_back();
return result;
}
// If we are at the end of a block, allocate a new one.
if (currentBlockPos == currentBlockEnd) {
currentBlockPos = new RuleScanRecord[numScanRecordsPerBlock];
ruleScanRecordBlocks.push_back(currentBlockPos);
currentBlockEnd = currentBlockPos + numScanRecordsPerBlock;
}
return currentBlockPos++;
}
void freeRuleScanRecord(RuleScanRecord* scanRecord) {
if (freeRuleScanRecords.size() < maximumFreeRuleScanRecords) {
scanRecord->pausedInputRequests.clear();
scanRecord->deferredScanRequests.clear();
freeRuleScanRecords.push_back(scanRecord);
}
}
/// @}
/// @name Build Execution
/// @{
/// Request the scanning of the given rule to determine if it needs to run in
/// the current environment.
///
/// \returns True if the rule is already scanned, otherwise the rule will be
/// enqueued for processing.
bool scanRule(RuleInfo& ruleInfo) {
// If the rule is already scanned, we are done.
if (ruleInfo.isScanned(this))
return true;
// If the rule is being scanned, we don't need to do anything.
if (ruleInfo.isScanning())
return false;
/// Cleans up single use dependencies that should not be considered for incremental builds.
ruleInfo.result.dependencies.cleanSingleUseDependencies();
// Otherwise, start scanning the rule.
if (trace)
trace->checkingRuleNeedsToRun(ruleInfo.rule.get());
// Report the status change.
ruleInfo.rule->updateStatus(buildEngine, Rule::StatusKind::IsScanning);
ruleInfo.wasForced = false;
// If the rule has never been run, it needs to run.
if (ruleInfo.result.builtAt == 0) {
if (trace)
trace->ruleNeedsToRunBecauseNeverBuilt(ruleInfo.rule.get());
ruleInfo.state = RuleInfo::StateKind::NeedsToRun;
delegate.determinedRuleNeedsToRun(ruleInfo.rule.get(), Rule::RunReason::NeverBuilt, nullptr);
return true;
}
if (ruleInfo.rule->signature != ruleInfo.result.signature) {
if (trace)
trace->ruleNeedsToRunBecauseSignatureChanged(ruleInfo.rule.get());
ruleInfo.state = RuleInfo::StateKind::NeedsToRun;
delegate.determinedRuleNeedsToRun(ruleInfo.rule.get(), Rule::RunReason::SignatureChanged, nullptr);
return true;
}
// If the rule indicates its computed value is out of date, it needs to run.
//
// FIXME: We should probably try and move this so that it can be done by
// clients in the background, either by us backgrounding it, or by using a
// completion model as we do for inputs.
if (!ruleInfo.rule->isResultValid(buildEngine, ruleInfo.result.value)) {
if (trace)
trace->ruleNeedsToRunBecauseInvalidValue(ruleInfo.rule.get());
ruleInfo.state = RuleInfo::StateKind::NeedsToRun;
delegate.determinedRuleNeedsToRun(ruleInfo.rule.get(), Rule::RunReason::InvalidValue, nullptr);
return true;
}
// If the rule has no dependencies, then it is ready to run.
if (ruleInfo.result.dependencies.empty()) {
if (trace)
trace->ruleDoesNotNeedToRun(ruleInfo.rule.get());
ruleInfo.state = RuleInfo::StateKind::DoesNotNeedToRun;
return true;
}
// Otherwise, we need to do a recursive scan of the inputs so enqueue this
// rule for scanning.
//
// We could also take an approach where we enqueue each of the individual
// inputs, but in my experiments with that approach it has always performed
// significantly worse.
if (trace)
trace->ruleScheduledForScanning(ruleInfo.rule.get());
ruleInfo.state = RuleInfo::StateKind::IsScanning;
ruleInfo.setPendingScanRecord(newRuleScanRecord());
ruleInfosToScan.push_back({ &ruleInfo, /*InputIndex=*/0, nullptr, false });
return false;
}
/// Request the construction of the key specified by the given rule.
///
/// \returns True if the rule is already available, otherwise the rule will be
/// enqueued for processing.
bool demandRule(RuleInfo& ruleInfo) {
// The rule must have already been scanned.
assert(ruleInfo.isScanned(this));
// If the rule is complete, we are done.
if (ruleInfo.isComplete(this))
return true;
// If the rule is in progress, we don't need to do anything.
if (ruleInfo.isInProgress())
return false;
// If the rule isn't marked complete, but doesn't need to actually run, then
// just update it.
if (ruleInfo.state == RuleInfo::StateKind::DoesNotNeedToRun) {
ruleInfo.setComplete(this);
// Report the status change.
ruleInfo.rule->updateStatus(buildEngine, Rule::StatusKind::IsUpToDate);
return true;
}
// Otherwise, we actually need to initiate the processing of this rule.
assert(ruleInfo.state == RuleInfo::StateKind::NeedsToRun);
// Create the task for this rule.
Task* task = ruleInfo.rule->createTask(buildEngine);
assert(task && "rule action returned null task");
// register the task
taskInfosMutex.lock();
auto result = taskInfos.emplace(task, TaskInfo(task));
assert(result.second && "task already registered");
auto taskInfo = &(result.first)->second;
taskInfosMutex.unlock();
taskInfo->forRuleInfo = &ruleInfo;
if (trace)
trace->createdTaskForRule(taskInfo->task.get(), ruleInfo.rule.get());
// Transition the rule state.
ruleInfo.state = RuleInfo::StateKind::InProgressWaiting;
ruleInfo.setPendingTaskInfo(taskInfo);
// Reset the Rule Dependencies, which we just append to during processing,
// but we reset the others to ensure no one ever inadvertently uses them
// during an invalid state.
ruleInfo.result.dependencies.clear();
// Inform the task it should start.
{
TracingEngineTaskCallback i(EngineTaskCallbackKind::Start, ruleInfo.keyID);
TaskInterface iface{this, task};
task->start(iface);
}
// Provide the task the prior result, if present.
//
// FIXME: This should perhaps just be lumped in with the start call? Or
// alternately, maybe there should just be an API call to fetch this, and
// the clients that want it can ask? It's cheap to provide here, so
// ultimately this is mostly a matter of cleanliness.
if (ruleInfo.result.builtAt != 0 &&
ruleInfo.rule->signature == ruleInfo.result.signature) {
TracingEngineTaskCallback i(EngineTaskCallbackKind::ProvidePriorValue, ruleInfo.keyID);
TaskInterface iface{this, task};
task->providePriorValue(iface, ruleInfo.result.value);
}
// If this task has no waiters, schedule it immediately for finalization.
if (!taskInfo->waitCount) {
readyTaskInfos.push_back(taskInfo);
}
return false;
}
/// Process an individual scan request.
///
/// This will process all of the inputs required by the requesting rule, in
/// order, unless the scan needs to be deferred waiting for an input.
void processRuleScanRequest(RuleScanRequest request) {
auto& ruleInfo = *request.ruleInfo;
// With forced builds in cycle breaking, we may end up being asked to scan
// something that has already been 'scanned'
assert(ruleInfo.isScanning() || ruleInfo.wasForced);
if (!ruleInfo.isScanning())
return;
// Process each of the remaining inputs.
do {
// Look up the input rule info, if not yet cached.
if (!request.inputRuleInfo) {
const auto& keyAndFlag = ruleInfo.result.dependencies[request.inputIndex];
request.inputRuleInfo = &getRuleInfoForKey(keyAndFlag.keyID);
request.orderOnly = keyAndFlag.orderOnly;
request.singleUse = keyAndFlag.singleUse;
}
auto& inputRuleInfo = *request.inputRuleInfo;
// Scan the input.
bool isScanned = scanRule(inputRuleInfo);
// If the input isn't scanned yet, enqueue this input scan request.
if (!isScanned) {
assert(inputRuleInfo.isScanning());
if (trace)
trace->ruleScanningDeferredOnInput(ruleInfo.rule.get(),
inputRuleInfo.rule.get());
inputRuleInfo.getPendingScanRecord()
->deferredScanRequests.push_back(request);
return;
}
if (trace)
trace->ruleScanningNextInput(ruleInfo.rule.get(), inputRuleInfo.rule.get());
// Demand the input.
bool isAvailable = demandRule(inputRuleInfo);
// If the input isn't already available, enqueue this scan request on the
// input.
//
// FIXME: We need to continue scanning the rest of the inputs to ensure we
// are not delaying necessary work. See <rdar://problem/20248283>.
if (!isAvailable) {
if (trace)
trace->ruleScanningDeferredOnTask(
ruleInfo.rule.get(), inputRuleInfo.getPendingTaskInfo()->task.get());
assert(inputRuleInfo.isInProgress());
inputRuleInfo.getPendingTaskInfo()->
deferredScanRequests.push_back(request);
return;
}
if (request.orderOnly) {
// If the input is an order-only input it is just enough that it
// is available. No need to run anew.
} else {
// If the input has been computed since the last time this rule was
// built, it needs to run.
if (ruleInfo.result.builtAt < inputRuleInfo.result.computedAt) {
if (trace)
trace->ruleNeedsToRunBecauseInputRebuilt(
ruleInfo.rule.get(), inputRuleInfo.rule.get());
finishScanRequest(ruleInfo, RuleInfo::StateKind::NeedsToRun);
delegate.determinedRuleNeedsToRun(ruleInfo.rule.get(), Rule::RunReason::InputRebuilt, inputRuleInfo.rule.get());
return;
}
}
// Otherwise, increment the scan index.
++request.inputIndex;
request.inputRuleInfo = nullptr;
request.orderOnly = false;
request.singleUse = false;
} while (request.inputIndex != ruleInfo.result.dependencies.size());
// If we reached the end of the inputs, the rule does not need to run.
if (trace)
trace->ruleDoesNotNeedToRun(ruleInfo.rule.get());
finishScanRequest(ruleInfo, RuleInfo::StateKind::DoesNotNeedToRun);
}
void finishScanRequest(RuleInfo& inputRuleInfo,
RuleInfo::StateKind newState) {
assert(inputRuleInfo.isScanning());
auto scanRecord = inputRuleInfo.getPendingScanRecord();
// Wake up all of the pending scan requests.
for (const auto& request: scanRecord->deferredScanRequests) {
ruleInfosToScan.push_back(request);
}
// Wake up all of the input requests on this rule.
{
std::lock_guard<std::mutex> guard(inputRequestsMutex);
for (const auto& request: scanRecord->pausedInputRequests) {
inputRequests.push_back(request);
}
}
// Update the rule state.
freeRuleScanRecord(scanRecord);
inputRuleInfo.setPendingScanRecord(nullptr);
inputRuleInfo.state = newState;
}
/// Decrement the task's wait count, and move it to the ready queue if
/// necessary.
void decrementTaskWaitCount(TaskInfo* taskInfo) {
--taskInfo->waitCount;
if (trace)
trace->updatedTaskWaitCount(taskInfo->task.get(), taskInfo->waitCount);
if (taskInfo->waitCount == 0) {
if (trace)
trace->unblockedTask(taskInfo->task.get());
readyTaskInfos.push_back(taskInfo);
}
}
/// Execute all of the work pending in the engine queues until they are empty.
///
/// \param buildKey The key to build.
/// \returns True on success, false if the build could not be completed; the
/// latter only occurs when the build contains a cycle currently.
bool executeTasks(const KeyType& buildKey) {
// Clear any previous build state
finishedInputRequests.clear();
// Push a dummy input request for the rule to build.
inputRequests.push_back({ nullptr, 0, &getRuleInfoForKey(buildKey), false, false, false });
// Process requests as long as we have work to do.
while (true) {
bool didWork = false;
// Cancel the build, if requested.
if (buildCancelled) {
// Force completion of all outstanding tasks.
cancelRemainingTasks();
return false;
}
// Process all of the pending rule scan requests.
//
// FIXME: We don't want to process all of these requests, this amounts to
// doing all of the dependency scanning up-front.
while (!ruleInfosToScan.empty()) {
TracingEngineQueueItemEvent i(EngineQueueItemKind::RuleToScan, buildKey.c_str());
didWork = true;
auto request = ruleInfosToScan.back();
ruleInfosToScan.pop_back();
processRuleScanRequest(request);
}
// Process all of the pending input requests.
while (true) {
TracingEngineQueueItemEvent i(EngineQueueItemKind::InputRequest, buildKey.c_str());
TaskInputRequest request;
bool found = false;
{
std::lock_guard<std::mutex> guard(inputRequestsMutex);
if (!inputRequests.empty()) {
// IMPORTANT: Dependency recording below relies on the assumption
// that we will process input requests in FIFO order. DO NOT CHANGE
// this without adjusting for this expectation.
request = inputRequests.front();
inputRequests.pop_front();
found = true;
}
}
if (!found)
break;
didWork = true;
if (trace) {
if (request.taskInfo) {
trace->handlingTaskInputRequest(request.taskInfo->task.get(),
request.inputRuleInfo->rule.get());
} else {
trace->handlingBuildInputRequest(request.inputRuleInfo->rule.get());
}
}
// Request the input rule be scanned.
bool isScanned = scanRule(*request.inputRuleInfo);
// If the rule is not yet scanned, suspend this input request.
if (!isScanned) {
assert(request.inputRuleInfo->isScanning());
if (trace)
trace->pausedInputRequestForRuleScan(
request.inputRuleInfo->rule.get());
request.inputRuleInfo->getPendingScanRecord()
->pausedInputRequests.push_back(request);
continue;
}
// Request the input rule be computed.
bool isAvailable = demandRule(*request.inputRuleInfo);
// If this is a dummy input request, we are done.
if (!request.taskInfo)
continue;
// Update the recorded dependencies of this task.
//
// FIXME: This is very performance critical and should be highly
// optimized. By itself, this addition added about 25% user time to the
// "ack 3 16" experiment.
//
// There are multiple options for when to record these dependencies:
// 1. Record at the time it is requested.
// 2. Record at the time it is popped off the input request queue.
// 3. Record at the time the input is supplied.
//
// Here we have chosen option 2 for two reasons. First, we want to avoid
// the need to synchronize concurrent access to the rule info data
// structure, therefore we want to perform this work on the engine
// thread (and as such rules out option 1).
//
// Second, we explicitly wish to record dependencies in the order in
// which they have been requested by the task/client. This ensures that
// dependencies will be recorded in a deterministic order that is under
// client control. This can be important for performance in subsequent
// incremental builds, where scanning order is important for discovering
// work.
//
// NOTE: In order to achieve the latter, we rely processing input
// requests in FIFO order.
//
request.taskInfo->forRuleInfo->result.dependencies.push_back(
request.inputRuleInfo->keyID, request.orderOnly, request.singleUse);
// If the rule is already available, enqueue the finalize request.
if (isAvailable) {
if (trace)
trace->readyingTaskInputRequest(request.taskInfo->task.get(),
request.inputRuleInfo->rule.get());
finishedInputRequests.push_back(request);
} else {
// Otherwise, record the pending input request.
assert(request.inputRuleInfo->getPendingTaskInfo());
if (trace)
trace->addedRulePendingTask(request.inputRuleInfo->rule.get(),
request.taskInfo->task.get());
request.inputRuleInfo->getPendingTaskInfo()->requestedBy.push_back(
request);
}
}
// Process all of the finished inputs.
while (!finishedInputRequests.empty()) {
TracingEngineQueueItemEvent i(EngineQueueItemKind::FinishedInputRequest, buildKey.c_str());
didWork = true;
auto request = finishedInputRequests.back();
finishedInputRequests.pop_back();
if (trace)
trace->completedTaskInputRequest(request.taskInfo->task.get(),
request.inputRuleInfo->rule.get());
// Otherwise, we are processing a regular input dependency.
// Provide the requesting task with the input.
//
// FIXME: Should we provide the input key here? We have it available
// cheaply.
assert(request.inputRuleInfo->isComplete(this) || request.forcePriorValue || request.orderOnly);
if (request.orderOnly) {
assert(request.inputID == kMustFollowInputID);
} else {
TracingEngineTaskCallback i(EngineTaskCallbackKind::ProvideValue, request.inputRuleInfo->keyID);
TaskInterface iface{this, request.taskInfo->task.get()};
request.taskInfo->task->provideValue(
iface, request.inputID, request.inputRuleInfo->result.value);
}
// Decrement the wait count, and move to finish queue if necessary.
decrementTaskWaitCount(request.taskInfo);
}
// Process all of the ready to run tasks.
while (!readyTaskInfos.empty()) {
TracingEngineQueueItemEvent i(EngineQueueItemKind::ReadyTask, buildKey.c_str());
didWork = true;
// Process ready tasks FIFO to preserve the relative ordering they were
// requested by tasks above.
TaskInfo* taskInfo = readyTaskInfos.front();
readyTaskInfos.pop_front();
RuleInfo* ruleInfo = taskInfo->forRuleInfo;
assert(taskInfo == ruleInfo->getPendingTaskInfo());
if (trace)
trace->readiedTask(taskInfo->task.get(), ruleInfo->rule.get());
// Transition the rule state.
ruleInfo->setComputing(this);
// Inform the task its inputs are ready and it should finish.
//
// FIXME: We need to track this state, and generate an error if this
// task ever requests additional inputs.
{
TracingEngineTaskCallback i(EngineTaskCallbackKind::InputsAvailable, ruleInfo->keyID);
TaskInterface iface{this, taskInfo->task.get()};
taskInfo->task->inputsAvailable(iface);
}
// Increment our count of outstanding tasks.
++numOutstandingUnfinishedTasks;
}
// Process all of the finished tasks.
while (true) {
TracingEngineQueueItemEvent i(EngineQueueItemKind::FinishedTask, buildKey.c_str());
// Try to take a task from the finished queue.
TaskInfo* taskInfo = nullptr;
{
std::lock_guard<std::mutex> guard(finishedTaskInfosMutex);
if (!finishedTaskInfos.empty()) {
taskInfo = finishedTaskInfos.back();
finishedTaskInfos.pop_back();
}
}
if (!taskInfo)
break;
didWork = true;
RuleInfo* ruleInfo = taskInfo->forRuleInfo;
assert(taskInfo == ruleInfo->getPendingTaskInfo());
// The task was changed if was computed in the current iteration.
if (trace) {
bool wasChanged = ruleInfo->result.computedAt == currentEpoch;
trace->finishedTask(taskInfo->task.get(), ruleInfo->rule.get(),
wasChanged);
}
// Transition the rule state by completing the rule (the value itself is
// stored in the taskIsFinished call).
assert(ruleInfo->state == RuleInfo::StateKind::InProgressComputing);
ruleInfo->setPendingTaskInfo(nullptr);
ruleInfo->setComplete(this);
// Report the status change.
ruleInfo->rule->updateStatus(buildEngine, Rule::StatusKind::IsComplete);
// Add all of the task's discovered dependencies.
//
// FIXME: We could audit these dependencies at this point to verify that
// they are not keys for rules which have not been run, which would
// indicate an underspecified build (e.g., a generated header).
ruleInfo->result.dependencies.append(taskInfo->discoveredDependencies);
// Push back dummy input requests for any discovered dependencies, which
// must be at least built in order to be brought up-to-date.
//
// FIXME: The need to do this makes it questionable that we use this
// approach for discovered dependencies instead of just providing
// support for request() even after the task has started computing and
// from parallel contexts.
{
std::lock_guard<std::mutex> guard(inputRequestsMutex);
for (auto dependency: taskInfo->discoveredDependencies) {
inputRequests.push_back({ nullptr, 0, &getRuleInfoForKey(dependency.keyID), dependency.orderOnly, false , dependency.singleUse});
}
}
// Update the database record, if attached.
if (db) {
std::string error;
bool result = db->setRuleResult(
ruleInfo->keyID, *ruleInfo->rule, ruleInfo->result, &error);
if (!result) {
delegate.error(error);
// Decrement our count of outstanding tasks. This must be done prior
// the subsequent synchronous cancellation, since it will otherwise
// deadlock waiting for the task we have already popped off the
// queue. rdar://problem/50203529
--numOutstandingUnfinishedTasks;
cancelRemainingTasks();
return false;
}
}
// Wake up all of the pending scan requests.
for (const auto& request: taskInfo->deferredScanRequests) {
ruleInfosToScan.push_back(request);
}
// Push all pending input requests onto the work queue.
if (trace) {
for (auto& request: taskInfo->requestedBy) {
trace->readyingTaskInputRequest(request.taskInfo->task.get(),
request.inputRuleInfo->rule.get());
}
}
finishedInputRequests.insert(finishedInputRequests.end(),
taskInfo->requestedBy.begin(),
taskInfo->requestedBy.end());
// Decrement our count of outstanding tasks.
--numOutstandingUnfinishedTasks;
// Delete the pending task.
{
std::lock_guard<std::mutex> guard(taskInfosMutex);
auto it = taskInfos.find(taskInfo->task.get());
assert(it != taskInfos.end());
taskInfos.erase(it);
}
}
// If we haven't done any other work at this point but we have pending
// tasks, we need to wait for a task to complete.
//
// NOTE: Cancellation also implements this process, if you modify this
// code please also validate that \see cancelRemainingTasks() is still
// correct.
if (!didWork && numOutstandingUnfinishedTasks != 0) {
TracingEngineQueueItemEvent i(EngineQueueItemKind::Waiting, buildKey.c_str());
// Wait for our condition variable.
std::unique_lock<std::mutex> lock(finishedTaskInfosMutex);
// Ensure we still don't have enqueued operations under the protection
// of the mutex, if one has been added then we may have already missed
// the condition notification and cannot safely wait.
if (finishedTaskInfos.empty()) {
finishedTaskInfosCondition.wait(lock);
}
didWork = true;
}
if (!didWork) {
// If there was no work to do, but we still have running tasks, then
// we have found a cycle. Try to resolve it and continue.
if (!taskInfos.empty()) {
if (resolveCycle(buildKey)) {
continue;
} else {
cancelRemainingTasks();
return false;
}
}
// We didn't do any work, and we have nothing more we can/need to do.
break;
}
}
return true;
}
/// Attempt to resolve a cycle which has called the engine to be unable to make forward
/// progress.
///
/// \param buildKey The key which was requested to build (the reported cycle
/// with start with this node).
/// \returns True if the engine should try to proceed, false if the build the could not
/// be broken.
bool resolveCycle(const KeyType& buildKey) {
// Take all available locks, to ensure we dump a consistent state.
std::lock_guard<std::mutex> guard1(taskInfosMutex);
std::lock_guard<std::mutex> guard2(finishedTaskInfosMutex);
std::vector<Rule*> cycleList = findCycle(buildKey);
assert(!cycleList.empty());
if (breakCycle(cycleList))
return true;
delegate.cycleDetected(cycleList);
return false;
}
std::vector<Rule*> findCycle(const KeyType& buildKey) {
TracingEngineQueueItemEvent i(EngineQueueItemKind::FindingCycle, buildKey.c_str());
// Gather all of the successor relationships.
std::unordered_map<Rule*, std::vector<Rule*>> successorGraph;
std::vector<const RuleScanRecord *> activeRuleScanRecords;
for (const auto& it: taskInfos) {
const TaskInfo& taskInfo = it.second;
assert(taskInfo.forRuleInfo);
std::vector<Rule*> successors;
for (const auto& request: taskInfo.requestedBy) {
assert(request.taskInfo->forRuleInfo);
successors.push_back(request.taskInfo->forRuleInfo->rule.get());
}
for (const auto& request: taskInfo.deferredScanRequests) {
// Add the sucessor for the deferred relationship itself.
successors.push_back(request.ruleInfo->rule.get());
}
successorGraph.insert({ taskInfo.forRuleInfo->rule.get(), successors });
}
// Add the pending scan records for every rule.
//
// NOTE: There is a very subtle condition around this versus adding the ones
// accessible via the tasks, see https://bugs.swift.org/browse/SR-1948.
// Unfortunately, we do not have a test case for this!
for (const auto& it: ruleInfos) {
const RuleInfo& ruleInfo = it.second;
if (ruleInfo.isScanning()) {
const auto* scanRecord = ruleInfo.getPendingScanRecord();
activeRuleScanRecords.push_back(scanRecord);
}
}
// Gather dependencies from all of the active scan records.
std::unordered_set<const RuleScanRecord*> visitedRuleScanRecords;
while (!activeRuleScanRecords.empty()) {
const auto* record = activeRuleScanRecords.back();
activeRuleScanRecords.pop_back();
// Mark the record and ignore it if not scanned.
if (!visitedRuleScanRecords.insert(record).second)
continue;
// For each paused request, add the dependency.
for (const auto& request: record->pausedInputRequests) {
if (request.taskInfo) {
successorGraph[request.inputRuleInfo->rule.get()].push_back(request.taskInfo->forRuleInfo->rule.get());
}
}
// Process the deferred scan requests.
for (const auto& request: record->deferredScanRequests) {
// Add the sucessor for the deferred relationship itself.
successorGraph[request.inputRuleInfo->rule.get()].push_back(request.ruleInfo->rule.get());
// Add the active rule scan record which needs to be traversed.
assert(request.ruleInfo->isScanning() || request.ruleInfo->wasForced);
if (request.ruleInfo->isScanning()) {
activeRuleScanRecords.push_back(
request.ruleInfo->getPendingScanRecord());
}
}
}
// Invert the graph, so we can search from the root.
std::unordered_map<Rule*, std::vector<Rule*>> predecessorGraph;
for (auto& entry: successorGraph) {
Rule* node = entry.first;
for (auto& succ: entry.second) {
predecessorGraph[succ].push_back(node);
}
}
// Normalize predecessor order, to ensure a deterministic result (at least,
// if the graph reaches the same cycle).
for (auto& entry: predecessorGraph) {
std::sort(entry.second.begin(), entry.second.end(), [](Rule* a, Rule* b) {
return a->key < b->key;
});
}
// Find the cycle by searching from the entry node.
struct WorkItem {
WorkItem(Rule * node) { this->node = node; }
Rule* node;
unsigned predecessorIndex = 0;
};
std::vector<Rule*> cycleList;
std::unordered_set<Rule*> cycleItems;
std::vector<WorkItem> stack{
WorkItem{ getRuleInfoForKey(buildKey).rule.get() } };
while (!stack.empty()) {
// Take the top item.
auto& entry = stack.back();
const auto& predecessors = predecessorGraph[entry.node];
// If the index is 0, we just started visiting the node.
if (entry.predecessorIndex == 0) {
// Push the node on the stack.
cycleList.push_back(entry.node);
auto it = cycleItems.insert(entry.node);
// If the node is already in the stack, we found a cycle.
if (!it.second)
break;
}
// Visit the next predecessor, if possible.
if (entry.predecessorIndex != predecessors.size()) {
auto* child = predecessors[entry.predecessorIndex];
entry.predecessorIndex += 1;
stack.emplace_back(WorkItem{ child });
continue;
}
// Otherwise, we are done visiting this node.
cycleItems.erase(entry.node);
cycleList.pop_back();
stack.pop_back();
}
return cycleList;
}
bool breakCycle(const std::vector<Rule*>& cycleList) {
// BreakingCycle doesn't need a key since it will not be called in parallel
TracingEngineQueueItemEvent _(EngineQueueItemKind::BreakingCycle, "0");
// Search the cycle for potential means for breaking the cycle. Right now
// we use two principle approaches, force a rule to be built (skipping
// scanning its dependencies) and supply a previously built result.
for (auto ruleIt = cycleList.rbegin(); ruleIt != cycleList.rend(); ruleIt++) {
auto& ruleInfo = getRuleInfoForKey((*ruleIt)->key);
// If this rule is scanning, try to force a rebuild to break the cycle
if (ruleInfo.isScanning()) {
// Ask the delegate if we should try to resolve this cycle by forcing
// a rule to be built?
if (!delegate.shouldResolveCycle(cycleList, ruleInfo.rule.get(), Rule::CycleAction::ForceBuild))
return false;
if (trace) {
trace->cycleForceRuleNeedsToRun(ruleInfo.rule.get());
}
// Find the rule scan request, if not already deferred, for this rule
// and remove it. If the rule scan request was already deferred, we use
// the wasForced condition to ignore it later.
auto it = findRuleScanRequestForRule(ruleInfosToScan, &ruleInfo);
if (it != ruleInfosToScan.end()) {
ruleInfosToScan.erase(it);
}
// mark this rule as needs to run (forced)
finishScanRequest(ruleInfo, RuleInfo::StateKind::NeedsToRun);
delegate.determinedRuleNeedsToRun(ruleInfo.rule.get(), Rule::RunReason::Forced, nullptr);
ruleInfo.wasForced = true;
return true;
}
// Check if this rule has a (potentially) valid previous result and if so
// try to provide it to the node requesting it to break the cycle.
if (ruleInfo.isInProgressWaiting() && ruleInfo.result.builtAt != 0) {
auto* taskInfo = ruleInfo.getPendingTaskInfo();
// find downstream node in the cycle that wants this input
auto& nextRuleInfo = getRuleInfoForKey((*std::next(ruleIt))->key);
// find the corresponding request on this task
auto it = findTaskInputRequestForRule(taskInfo->requestedBy, &nextRuleInfo);
if (it == taskInfo->requestedBy.end()) {
// this rule has not generated an input request yet, so we cannot
// provide a value to it
continue;
}
// Ask the delegate if we should try to resolve this cycle by supplying
// a prior value?
if (!delegate.shouldResolveCycle(cycleList, ruleInfo.rule.get(), Rule::CycleAction::SupplyPriorValue))
return false;
// supply the prior value to the node
if (trace) {
trace->cycleSupplyPriorValue(ruleInfo.rule.get(), it->taskInfo->task.get());
}
it->forcePriorValue = true;
finishedInputRequests.insert(finishedInputRequests.end(), *it);
// remove this request from the task info
taskInfo->requestedBy.erase(it);
return true;
}
}
return false;
}
// Helper function for breakCycle, finds a rule in a RuleScanRequest vector
std::vector<RuleScanRequest>::iterator findRuleScanRequestForRule(
std::vector<RuleScanRequest>& requests, RuleInfo* ruleInfo) {
for (auto it = requests.begin(); it != requests.end(); it++) {
if (it->ruleInfo == ruleInfo) {
return it;
}
}
return requests.end();
}
// Helper function for breakCycle, finds a rule in a TaskInputRequest vector
std::vector<TaskInputRequest>::iterator findTaskInputRequestForRule(
std::vector<TaskInputRequest>& requests, RuleInfo* ruleInfo) {
for (auto it = requests.begin(); it != requests.end(); it++) {
if (it->taskInfo->forRuleInfo == ruleInfo) {
return it;
}
}
return requests.end();
}
// Cancel all of the remaining tasks.
void cancelRemainingTasks() {
// We need to wait for any currently running tasks to be reported as
// complete. Not doing this would mean we could get asynchronous calls
// attempting to modify the task state concurrently with the cancellation
// process, which isn't something we want to need to synchronize on.
//
// We don't process the requests at all, we simply drain them. In practice,
// we expect clients to implement cancellation in conjection with causing
// long-running tasks to also cancel and fail, so preserving those results
// is not valuable.
while (numOutstandingUnfinishedTasks != 0) {
std::unique_lock<std::mutex> lock(finishedTaskInfosMutex);
if (finishedTaskInfos.empty()) {
finishedTaskInfosCondition.wait(lock);
} else {
assert(finishedTaskInfos.size() <= numOutstandingUnfinishedTasks);
numOutstandingUnfinishedTasks -= finishedTaskInfos.size();
finishedTaskInfos.clear();
}
}
std::lock_guard<std::mutex> guard(taskInfosMutex);
for (auto& it: taskInfos) {
// Cancel the task, marking it incomplete.
//
// This will force it to rerun in a later build, but since it was already
// running in this build that was almost certainly going to be
// required. Technically, there are rare situations where it wouldn't have
// to rerun (e.g., if resultIsValid becomes true after being false in this
// run), and if we were willing to restore the tasks state--either by
// keeping the old one or by restoring from the database--we could ensure
// that doesn't happen.
//
// NOTE: Actually, we currently don't sync this write to the database, so
// in some cases we do actually preserve this information (if the client
// ends up cancelling, then reloading froom the database).
TaskInfo* taskInfo = &it.second;
RuleInfo* ruleInfo = taskInfo->forRuleInfo;
assert(taskInfo == ruleInfo->getPendingTaskInfo());
ruleInfo->setPendingTaskInfo(nullptr);
ruleInfo->setCancelled();
}
// FIXME: This is currently an O(n) operation that could be relatively
// expensive on larger projects. We should be able to do something more
// targeted. rdar://problem/39386591
for (auto& it: ruleInfos) {
// Cancel outstanding activity on rules
if (it.second.isScanning()) {
it.second.setCancelled();
}
}
// Delete all of the tasks.
ruleInfosToScan.clear();
inputRequests.clear();
finishedInputRequests.clear();
readyTaskInfos.clear();
finishedTaskInfos.clear();
taskInfos.clear();
}
public:
BuildEngineImpl(class BuildEngine& buildEngine,
BuildEngineDelegate& delegate)
: buildEngine(buildEngine), delegate(delegate) {}
~BuildEngineImpl() {
// Make sure that there aren't any currently running builds before
// tearing down.
std::lock_guard<std::mutex> lock(buildEngineMutex);
}
BuildEngineDelegate* getDelegate() {
return &delegate;
}
ExecutionQueue& getExecutionQueue() {
return *executionQueue;
}
Epoch getCurrentEpoch() {
return currentEpoch;
}
// When changing the implementation of those, do also copy
// the changes to CAPIBuildDB.
virtual const KeyID getKeyID(const KeyType& key) override {
std::lock_guard<std::mutex> guard(keyTableMutex);
// The RHS of the mapping is actually ignored, we use the StringMap's ptr
// identity because it allows us to efficiently map back to the key string
// in `getRuleInfoForKey`.
auto it = keyTable.insert(std::make_pair(key.str(), KeyID::novalue())).first;
return KeyID(it->getKey().data());
}
virtual KeyType getKeyForID(const KeyID key) override {
// Note that we don't need to lock `keyTable` here because the key entries
// themselves don't change once created.
return llvm::StringMapEntry<KeyID>::GetStringMapEntryFromKeyData(
(const char*)(uintptr_t)key).getKey();
}
RuleInfo& getRuleInfoForKey(const KeyType& key) {
auto keyID = getKeyID(key);
// Check if we have already found the rule.
auto it = ruleInfos.find(keyID);
if (it != ruleInfos.end())
return it->second;
// Otherwise, request it from the delegate and add it.
return addRule(keyID, delegate.lookupRule(key));
}
RuleInfo& getRuleInfoForKey(KeyID keyID) {
// Check if we have already found the rule.
auto it = ruleInfos.find(keyID);
if (it != ruleInfos.end())
return it->second;
// Otherwise, we need to resolve the full key so we can request it from the
// delegate.
return addRule(keyID, delegate.lookupRule(getKeyForID(keyID)));
}
TaskInfo* getTaskInfo(Task* task) {
std::lock_guard<std::mutex> guard(taskInfosMutex);
auto it = taskInfos.find(task);
return it == taskInfos.end() ? nullptr : &it->second;
}
/// @name Rule Definition
/// @{
RuleInfo& addRule(std::unique_ptr<Rule>&& rule) {
return addRule(getKeyID(rule->key), std::move(rule));
}
RuleInfo& addRule(KeyID keyID, std::unique_ptr<Rule>&& rule) {
auto result = ruleInfos.emplace(keyID, RuleInfo(keyID, std::move(rule)));
if (!result.second) {
RuleInfo& ruleInfo = result.first->second;
delegate.error("attempt to register duplicate rule \"" + ruleInfo.rule->key.str() + "\"\n");
// Set cancelled, but return something 'valid' for use until it is
// processed.
buildCancelled = true;
return ruleInfo;
}
// If we have a database attached, retrieve any stored result.
//
// FIXME: Investigate retrieving this result lazily. If the DB is
// particularly efficient, it may be best to retrieve this only when we need
// it and never duplicate it.
RuleInfo& ruleInfo = result.first->second;
if (db) {
std::string error;
db->lookupRuleResult(ruleInfo.keyID, *ruleInfo.rule, &ruleInfo.result, &error);
if (!error.empty()) {
// FIXME: Investigate changing the database error handling model to
// allow builds to proceed without the database.
delegate.error(error);
buildCancelled = true;
}
}
return ruleInfo;
}
/// @}
/// @name Client API
/// @{
const ValueType& build(const KeyType& key) {
// Soft protect the engine against invalid concurrent use.
if (buildRunning.exchange(true)) {
delegate.error("build engine busy");
static ValueType emptyValue{};
return emptyValue;
}
llbuild_defer {
buildRunning = false;
};
// Hard protection against concurrent use and tear down
std::lock_guard<std::mutex> lock(buildEngineMutex);
if (db) {
std::string error;
bool result = db->buildStarted(&error);
if (!result) {
delegate.error(error);
static ValueType emptyValue{};
return emptyValue;
}
}
llbuild_defer {
if (db)
db->buildComplete();
};
// Aquire lock and create execution queue.
{
std::lock_guard<std::mutex> guard(executionQueueMutex);
if (buildCancelled) {
static ValueType emptyValue{};
return emptyValue;
}
executionQueue = delegate.createExecutionQueue();
}
llbuild_defer {
// Release the execution queue, impicitly waiting for it to complete. The
// asynchronous nature of the engine callbacks means it is possible for
// the queue to have notified the engine of the last task completion, but
// still have other work to perform (e.g., informing the client of command
// completion).
//
// This must hold the lock to prevent data racing on the executionQueue
// pointer (as can happen with cancellation) - rdar://problem/50993380
std::lock_guard<std::mutex> guard(executionQueueMutex);
executionQueue.reset();
};
// Increment our running iteration count.
//
// At this point, we should conceptually mark each complete rule as
// incomplete. However, instead of doing all that work immediately, we
// perform it lazily by reusing the Result::builtAt field for each rule as
// an additional mark. When a rule is demanded, if its builtAt index isn't
// up-to-date then we lazily reset it to be Incomplete, \see demandRule()
// and \see RuleInfo::isComplete().
++currentEpoch;
if (!traceFile.empty()) {
auto trace = llvm::make_unique<BuildEngineTrace>();
std::string error;
if (!trace->open(traceFile, &error))
delegate.error(error);
this->trace = std::move(trace);
}
llbuild_defer {
std::string error;
if (trace && trace->isOpen() && !trace->close(&error)) {
delegate.error(error);
}
trace = nullptr;
};
if (trace)
trace->buildStarted();
llbuild_defer {
// Clear the rule scan free-lists.
//
// FIXME: Introduce a per-build context object to hold this.
for (auto block: ruleScanRecordBlocks)
delete[] block;
currentBlockPos = currentBlockEnd = nullptr;
freeRuleScanRecords.clear();
ruleScanRecordBlocks.clear();
};
// Run the build engine, to process any necessary tasks.
bool success = executeTasks(key);
// Update the build database, if attached.
//
// FIXME: Is it correct to do this here, or earlier?
if (db) {
std::string error;
bool result = db->setCurrentIteration(currentEpoch, &error);
if (!result) {
delegate.error(error);
static ValueType emptyValue{};
return emptyValue;
}
}
if (trace)
trace->buildEnded();
// If the build failed, return the empty result.
if (!success) {
static ValueType emptyValue{};
return emptyValue;
}
// The task queue should be empty and the rule complete.
auto& ruleInfo = getRuleInfoForKey(key);
assert(taskInfos.empty() && ruleInfo.isComplete(this));
return ruleInfo.result.value;
}
void resetForBuild() {
std::lock_guard<std::mutex> guard(executionQueueMutex);
buildCancelled = false;
}
void cancelBuild() {
std::lock_guard<std::mutex> guard(executionQueueMutex);
if (!buildCancelled) {
for (const auto &del : cancellationDelegates) {
del->buildCancelled();
}
}
// Set the build cancelled marker.
//
// We do not need to handle waking the engine up, if it is waiting, because
// our current cancellation model requires us to wait for all outstanding
// tasks in any case.
buildCancelled = true;
// Cancel jobs if we actually have a queue.
if (executionQueue.get() != nullptr) {
// Ask the execution queue to cancel currently running jobs.
executionQueue->cancelAllJobs();
}
}
bool isCancelled() {
return buildCancelled;
}
void addCancellationDelegate(CancellationDelegate* del) {
std::lock_guard<std::mutex> guard(executionQueueMutex);
if (buildCancelled) {
del->buildCancelled();
return;
}
cancellationDelegates.insert(del);
}
void removeCancellationDelegate(CancellationDelegate* del) {
std::lock_guard<std::mutex> guard(executionQueueMutex);
cancellationDelegates.erase(del);
}
bool attachDB(std::unique_ptr<BuildDB> database, std::string* error_out) {
assert(!db && "invalid attachDB() call");
assert(currentEpoch == 0 && "invalid attachDB() call");
assert(ruleInfos.empty() && "invalid attachDB() call");
db = std::move(database);
db->attachDelegate(this);
// Load our initial state from the database.
bool success;
currentEpoch = db->getCurrentEpoch(&success, error_out);
return success;
}
bool enableTracing(const std::string& filename, std::string* error_out) {
traceFile = filename;
return true;
}
/// Dump the build state to a file in Graphviz DOT format.
void dumpGraphToFile(const std::string& path) {
FILE* fp = ::fopen(path.c_str(), "w");
if (!fp) {
delegate.error("unable to open graph output path \"" + path + "\"");
return;
}
// Write the graph header.
fprintf(fp, "digraph llbuild {\n");
fprintf(fp, "rankdir=\"LR\"\n");
fprintf(fp, "node [fontsize=10, shape=box, height=0.25]\n");
fprintf(fp, "edge [fontsize=10]\n");
fprintf(fp, "\n");
// Create a canonical node ordering.
std::vector<const RuleInfo*> orderedRuleInfos;
for (const auto& entry: ruleInfos)
orderedRuleInfos.push_back(&entry.second);
std::sort(orderedRuleInfos.begin(), orderedRuleInfos.end(),
[] (const RuleInfo* a, const RuleInfo* b) {
return a->rule->key < b->rule->key;
});
// Write out all of the rules.
for (const auto& ruleInfo: orderedRuleInfos) {
fprintf(fp, "\"%s\"\n", ruleInfo->rule->key.c_str());
for (auto keyIDAndFlag: ruleInfo->result.dependencies) {
const auto& dependency = getRuleInfoForKey(keyIDAndFlag.keyID);
fprintf(fp, "\"%s\" -> \"%s\"\n", ruleInfo->rule->key.c_str(),
dependency.rule->key.c_str());
}
fprintf(fp, "\n");
}
// Write the footer and close.
fprintf(fp, "}\n");
fclose(fp);
}
void addTaskInputRequest(Task* task, const KeyType& key, uintptr_t inputID, bool orderOnly, bool singleUse) {
auto taskInfo = getTaskInfo(task);
// Validate that the task is in a valid state to request inputs.
if (!taskInfo->forRuleInfo->isInProgressWaiting()) {
// FIXME: Error handling.
abort();
}
// Lookup the rule for this task.
RuleInfo* ruleInfo = &getRuleInfoForKey(key);
std::lock_guard<std::mutex> guard(inputRequestsMutex);
inputRequests.push_back({ taskInfo, inputID, ruleInfo, orderOnly, false, singleUse });
taskInfo->waitCount++;
}
/// @}
/// @name Task Management Client APIs
/// @{
void taskNeedsInput(Task* task, const KeyType& key, uintptr_t inputID) {
// Validate the InputID.
if (inputID > BuildEngine::kMaximumInputID) {
delegate.error("attempt to use reserved input ID");
buildCancelled = true;
return;
}
addTaskInputRequest(task, key, inputID, false, false);
}
void taskNeedsSingleUseInput(Task* task, const KeyType& key, uintptr_t inputID) {
// Validate the InputID.
if (inputID > BuildEngine::kMaximumInputID) {
delegate.error("attempt to use reserved input ID");
buildCancelled = true;
return;
}
addTaskInputRequest(task, key, inputID, false, true);
}
void taskMustFollow(Task* task, const KeyType& key) {
// The inputID is not used when taskMustFollow is used.
// (The user-supplied provideValue() is not called).
addTaskInputRequest(task, key, kMustFollowInputID, true, false);
}
void taskDiscoveredDependency(Task* task, const KeyType& key) {
// Find the task info.
auto taskInfo = getTaskInfo(task);
assert(taskInfo && "cannot request inputs for an unknown task");
if (!taskInfo->forRuleInfo->isInProgressComputing()) {
delegate.error("invalid state for adding discovered dependency");
buildCancelled = true;
return;
}
auto dependencyID = getKeyID(key);
taskInfo->discoveredDependencies.push_back(dependencyID, false, false);
}
void taskIsComplete(Task* task, ValueType&& value, bool forceChange) {
// FIXME: We should flag the task to ensure this is only called once, and
// that no other API calls are made once complete.
auto taskInfo = getTaskInfo(task);
assert(taskInfo && "cannot request inputs for an unknown task");
if (!taskInfo->forRuleInfo->isInProgressComputing()) {
delegate.error("invalid state for marking task complete");
buildCancelled = true;
return;
}
RuleInfo* ruleInfo = taskInfo->forRuleInfo;
assert(taskInfo == ruleInfo->getPendingTaskInfo());
// Update the signature of the result (even if we ultimately computed the
// same value).
ruleInfo->result.signature = ruleInfo->rule->signature;
// Process the provided result.
if (!forceChange && value == ruleInfo->result.value) {
// If the value is unchanged, do nothing.
} else {
// Otherwise, updated the result and the computed at time.
ruleInfo->result.value = std::move(value);
ruleInfo->result.computedAt = currentEpoch;
}
// Enqueue the finished task.
{
std::lock_guard<std::mutex> guard(finishedTaskInfosMutex);
finishedTaskInfos.push_back(taskInfo);
}
// Notify the engine to wake up, if necessary.
finishedTaskInfosCondition.notify_one();
}
/// @}
/// @name Internal APIs
/// @{
Epoch getCurrentEpoch() const { return currentEpoch; }
/// @}
};
}
#pragma mark - TaskInterface
Epoch TaskInterface::currentEpoch() {
return static_cast<BuildEngineImpl*>(impl)->getCurrentEpoch();
}
bool TaskInterface::isCancelled() {
return static_cast<BuildEngineImpl*>(impl)->isCancelled();
}
BuildEngineDelegate* TaskInterface::delegate() {
return static_cast<BuildEngineImpl*>(impl)->getDelegate();
}
void TaskInterface::request(const KeyType& key, uintptr_t inputID) {
Task* task = static_cast<Task*>(ctx);
static_cast<BuildEngineImpl*>(impl)->taskNeedsInput(task, key, inputID);
}
void TaskInterface::requestSingleUse(const KeyType &key, uintptr_t inputID) {
Task* task = static_cast<Task*>(ctx);
static_cast<BuildEngineImpl*>(impl)->taskNeedsSingleUseInput(task, key, inputID);
}
void TaskInterface::mustFollow(const KeyType& key) {
Task* task = static_cast<Task*>(ctx);
static_cast<BuildEngineImpl*>(impl)->taskMustFollow(task, key);
}
void TaskInterface::discoveredDependency(const KeyType& key) {
Task* task = static_cast<Task*>(ctx);
static_cast<BuildEngineImpl*>(impl)->taskDiscoveredDependency(task, key);
}
void TaskInterface::complete(ValueType &&value, bool forceChange) {
Task* task = static_cast<Task*>(ctx);
static_cast<BuildEngineImpl*>(impl)->taskIsComplete(task, std::move(value),
forceChange);
}
void TaskInterface::spawn(basic::QueueJob&& job, basic::QueueJobPriority priority) {
// FIXME: handle environment
static_cast<BuildEngineImpl*>(impl)->getExecutionQueue().addJob(std::move(job), priority);
}
void TaskInterface::spawn(basic::QueueJobContext *context,
ArrayRef<StringRef> commandLine,
ArrayRef<std::pair<StringRef, StringRef> > environment,
basic::ProcessAttributes attributes,
llvm::Optional<basic::ProcessCompletionFn> completionFn,
basic::ProcessDelegate* delegate) {
static_cast<BuildEngineImpl*>(impl)->getExecutionQueue().executeProcess(
context, commandLine, environment, attributes, completionFn, delegate);
}
basic::ProcessStatus TaskInterface::spawn(basic::QueueJobContext *context,
ArrayRef<StringRef> commandLine) {
// FIXME: handle environment
return static_cast<BuildEngineImpl*>(impl)->getExecutionQueue().executeProcess(
context, commandLine);
}
#pragma mark - BuildEngine
BuildEngine::BuildEngine(BuildEngineDelegate& delegate)
: impl(new BuildEngineImpl(*this, delegate))
{
}
BuildEngine::~BuildEngine() {
delete static_cast<BuildEngineImpl*>(impl);
}
BuildEngineDelegate* BuildEngine::getDelegate() {
return static_cast<BuildEngineImpl*>(impl)->getDelegate();
}
Epoch BuildEngine::getCurrentEpoch() {
return static_cast<BuildEngineImpl*>(impl)->getCurrentEpoch();
}
void BuildEngine::addRule(std::unique_ptr<Rule>&& rule) {
static_cast<BuildEngineImpl*>(impl)->addRule(std::move(rule));
}
const ValueType& BuildEngine::build(const KeyType& key) {
return static_cast<BuildEngineImpl*>(impl)->build(key);
}
void BuildEngine::resetForBuild() {
static_cast<BuildEngineImpl*>(impl)->resetForBuild();
}
void BuildEngine::cancelBuild() {
static_cast<BuildEngineImpl*>(impl)->cancelBuild();
}
bool BuildEngine::isCancelled() {
return static_cast<BuildEngineImpl*>(impl)->isCancelled();
}
void BuildEngine::addCancellationDelegate(CancellationDelegate* del) {
static_cast<BuildEngineImpl*>(impl)->addCancellationDelegate(std::move(del));
}
void BuildEngine::removeCancellationDelegate(CancellationDelegate* del) {
static_cast<BuildEngineImpl*>(impl)->removeCancellationDelegate(del);
}
void BuildEngine::dumpGraphToFile(const std::string& path) {
static_cast<BuildEngineImpl*>(impl)->dumpGraphToFile(path);
}
bool BuildEngine::attachDB(std::unique_ptr<BuildDB> database, std::string* error_out) {
return static_cast<BuildEngineImpl*>(impl)->attachDB(std::move(database), error_out);
}
bool BuildEngine::enableTracing(const std::string& path,
std::string* error_out) {
return static_cast<BuildEngineImpl*>(impl)->enableTracing(path, error_out);
}
|