1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
|
//===- unittests/Core/BuildEngineTest.cpp ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "llbuild/Core/BuildEngine.h"
#include "llbuild/Basic/ExecutionQueue.h"
#include "llbuild/Core/BuildDB.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "gtest/gtest.h"
#include <future>
#include <condition_variable>
#include <unordered_map>
#include <vector>
using namespace llbuild;
using namespace llbuild::core;
namespace {
class SimpleBuildEngineDelegate : public core::BuildEngineDelegate, public basic::ExecutionQueueDelegate {
/// The cycle, if one was detected during building.
public:
std::vector<std::string> cycle;
bool resolveCycle = false;
std::vector<std::string> errors;
bool expectedError = false;
private:
virtual std::unique_ptr<core::Rule> lookupRule(const core::KeyType& key) override {
// We never expect dynamic rule lookup.
fprintf(stderr, "error: unexpected rule lookup for \"%s\"\n",
key.c_str());
abort();
return nullptr;
}
virtual void cycleDetected(const std::vector<core::Rule*>& items) override {
cycle.clear();
std::transform(items.begin(), items.end(), std::back_inserter(cycle),
[](auto rule) { return rule->key.str(); });
}
virtual bool shouldResolveCycle(const std::vector<Rule*>& items,
Rule* candidateRule,
Rule::CycleAction action) override {
return resolveCycle;
}
virtual void error(const Twine& message) override {
errors.push_back(message.str());
if (!expectedError) {
fprintf(stderr, "error: %s\n", message.str().c_str());
abort();
}
}
void processStarted(basic::ProcessContext*, basic::ProcessHandle, llbuild_pid_t) override { }
void processHadError(basic::ProcessContext*, basic::ProcessHandle, const Twine&) override { }
void processHadOutput(basic::ProcessContext*, basic::ProcessHandle, StringRef) override { }
void processFinished(basic::ProcessContext*, basic::ProcessHandle, const basic::ProcessResult&) override { }
void queueJobStarted(basic::JobDescriptor*) override { }
void queueJobFinished(basic::JobDescriptor*) override { }
std::unique_ptr<basic::ExecutionQueue> createExecutionQueue() override {
return createSerialQueue(*this, nullptr);
}
};
static int32_t intFromValue(const core::ValueType& value) {
assert(value.size() == 4);
return ((value[0] << 0) |
(value[1] << 8) |
(value[2] << 16) |
(value[3] << 24));
}
static core::ValueType intToValue(int32_t value) {
std::vector<uint8_t> result(4);
result[0] = (value >> 0) & 0xFF;
result[1] = (value >> 8) & 0xFF;
result[2] = (value >> 16) & 0xFF;
result[3] = (value >> 24) & 0xFF;
return result;
}
// Simple task implementation which takes a fixed set of dependencies, evaluates
// them all, and then provides the output.
class SimpleTask : public Task {
public:
typedef std::function<std::vector<KeyType>()> InputListingFnType;
typedef std::function<int(const std::vector<int>&)> ComputeFnType;
private:
InputListingFnType listInputs;
std::vector<int> inputValues;
ComputeFnType compute;
public:
SimpleTask(InputListingFnType listInputs, ComputeFnType compute)
: listInputs(listInputs), compute(compute)
{
}
virtual void start(TaskInterface ti) override {
// Compute the list of inputs.
auto inputs = listInputs();
// Request all of the inputs.
inputValues.resize(inputs.size());
for (int i = 0, e = inputs.size(); i != e; ++i) {
ti.request(inputs[i], i);
}
}
virtual void provideValue(TaskInterface, uintptr_t inputID,
const ValueType& value) override {
// Update the input values.
assert(inputID < inputValues.size());
inputValues[inputID] = intFromValue(value);
}
virtual void inputsAvailable(TaskInterface ti) override {
ti.complete(intToValue(compute(inputValues)));
}
};
// Helper function for creating a simple action.
typedef std::function<Task*(BuildEngine&)> ActionFn;
class SimpleRule: public Rule {
public:
typedef std::function<bool(const ValueType& value)> ValidFnType;
typedef std::function<void(core::Rule::StatusKind status)> StatusFnType;
private:
SimpleTask::ComputeFnType compute;
std::vector<KeyType> inputs;
ValidFnType valid;
StatusFnType update;
public:
SimpleRule(const KeyType& key, const std::vector<KeyType>& inputs,
SimpleTask::ComputeFnType compute, ValidFnType valid = nullptr,
StatusFnType update = nullptr, const basic::CommandSignature& sig = {})
: Rule(key, sig), compute(compute), inputs(inputs), valid(valid), update(update) { }
Task* createTask(BuildEngine&) override { return new SimpleTask([this]{ return inputs; }, compute); }
bool isResultValid(BuildEngine&, const ValueType& value) override {
if (!valid) return true;
return valid(value);
}
void updateStatus(BuildEngine&, core::Rule::StatusKind status) override {
if (update) update(status);
}
};
TEST(BuildEngineTest, basic) {
// Check a trivial build graph.
std::vector<std::string> builtKeys;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-A");
return 2; })));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-B", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-B");
return 3; })));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"result", {"value-A", "value-B"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(2U, inputs.size());
EXPECT_EQ(2, inputs[0]);
EXPECT_EQ(3, inputs[1]);
builtKeys.push_back("result");
return inputs[0] * inputs[1] * 5;
})));
// Build the result.
EXPECT_EQ(2 * 3 * 5, intFromValue(engine.build("result")));
EXPECT_EQ(3U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
EXPECT_EQ("value-B", builtKeys[1]);
EXPECT_EQ("result", builtKeys[2]);
// Check that we can get results for already built nodes, without building
// anything.
builtKeys.clear();
EXPECT_EQ(2, intFromValue(engine.build("value-A")));
EXPECT_TRUE(builtKeys.empty());
builtKeys.clear();
EXPECT_EQ(3, intFromValue(engine.build("value-B")));
EXPECT_TRUE(builtKeys.empty());
}
TEST(BuildEngineTest, duplicateRule) {
SimpleBuildEngineDelegate delegate;
delegate.expectedError = true;
core::BuildEngine engine(delegate);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) { return 1; })));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) { return 2; })));
EXPECT_EQ(1U, delegate.errors.size());
EXPECT_TRUE(delegate.errors[0].find("duplicate") != std::string::npos);
}
TEST(BuildEngineTest, basicWithSharedInput) {
// Check a build graph with a input key shared by multiple rules.
//
// Dependencies:
// value-C: (value-A, value-B)
// value-R: (value-A, value-C)
std::vector<std::string> builtKeys;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-A");
return 2; })));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-B", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-B");
return 3; })));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-C", {"value-A", "value-B"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(2U, inputs.size());
EXPECT_EQ(2, inputs[0]);
EXPECT_EQ(3, inputs[1]);
builtKeys.push_back("value-C");
return inputs[0] * inputs[1] * 5;
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-R", {"value-A", "value-C"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(2U, inputs.size());
EXPECT_EQ(2, inputs[0]);
EXPECT_EQ(2 * 3 * 5, inputs[1]);
builtKeys.push_back("value-R");
return inputs[0] * inputs[1] * 7;
})));
// Build the result.
EXPECT_EQ(2 * 2 * 3 * 5 * 7, intFromValue(engine.build("value-R")));
EXPECT_EQ(4U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
EXPECT_EQ("value-B", builtKeys[1]);
EXPECT_EQ("value-C", builtKeys[2]);
EXPECT_EQ("value-R", builtKeys[3]);
}
TEST(BuildEngineTest, veryBasicIncremental) {
// Check a trivial build graph responds to incremental changes appropriately.
//
// Dependencies:
// value-R: (value-A, value-B)
std::vector<std::string> builtKeys;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
int valueA = 2;
int valueB = 3;
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-A");
return valueA; },
[&](const ValueType& value) {
return valueA == intFromValue(value);
} )));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-B", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-B");
return valueB; },
[&](const ValueType& value) {
return valueB == intFromValue(value);
} )));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-R", {"value-A", "value-B"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(2U, inputs.size());
EXPECT_EQ(valueA, inputs[0]);
EXPECT_EQ(valueB, inputs[1]);
builtKeys.push_back("value-R");
return inputs[0] * inputs[1] * 5;
})));
// Build the first result.
builtKeys.clear();
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine.build("value-R")));
EXPECT_EQ(3U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
EXPECT_EQ("value-B", builtKeys[1]);
EXPECT_EQ("value-R", builtKeys[2]);
// Mark value-A as having changed, then rebuild and sanity check.
valueA = 7;
builtKeys.clear();
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine.build("value-R")));
EXPECT_EQ(2U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
EXPECT_EQ("value-R", builtKeys[1]);
// Check that a subsequent build is null.
builtKeys.clear();
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine.build("value-R")));
EXPECT_EQ(0U, builtKeys.size());
}
TEST(BuildEngineTest, basicIncremental) {
// Check a build graph responds to incremental changes appropriately.
//
// Dependencies:
// value-C: (value-A, value-B)
// value-R: (value-A, value-C)
// value-D: (value-R)
// value-R2: (value-D)
//
// If value-A or value-B change, then value-C and value-R are recomputed when
// value-R is built, but value-R2 is not recomputed.
//
// If value-R2 is built, then value-B changes and value-R is built, then when
// value-R2 is built again only value-D and value-R2 are rebuilt.
std::vector<std::string> builtKeys;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
int valueA = 2;
int valueB = 3;
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-A");
return valueA; },
[&](const ValueType& value) {
return valueA == intFromValue(value);
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-B", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-B");
return valueB; },
[&](const ValueType& value) {
return valueB == intFromValue(value);
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-C", {"value-A", "value-B"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(2U, inputs.size());
EXPECT_EQ(valueA, inputs[0]);
EXPECT_EQ(valueB, inputs[1]);
builtKeys.push_back("value-C");
return inputs[0] * inputs[1] * 5;
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-R", {"value-A", "value-C"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(2U, inputs.size());
EXPECT_EQ(valueA, inputs[0]);
EXPECT_EQ(valueA * valueB * 5, inputs[1]);
builtKeys.push_back("value-R");
return inputs[0] * inputs[1] * 7;
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-D", {"value-R"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(1U, inputs.size());
EXPECT_EQ(valueA * valueA * valueB * 5 * 7,
inputs[0]);
builtKeys.push_back("value-D");
return inputs[0] * 11;
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-R2", {"value-D"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(1U, inputs.size());
EXPECT_EQ(valueA * valueA * valueB * 5 * 7 * 11,
inputs[0]);
builtKeys.push_back("value-R2");
return inputs[0] * 13;
})));
// Build the first result.
builtKeys.clear();
EXPECT_EQ(valueA * valueA * valueB * 5 * 7,
intFromValue(engine.build("value-R")));
EXPECT_EQ(4U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
EXPECT_EQ("value-B", builtKeys[1]);
EXPECT_EQ("value-C", builtKeys[2]);
EXPECT_EQ("value-R", builtKeys[3]);
// Mark value-A as having changed, then rebuild and sanity check.
valueA = 17;
builtKeys.clear();
EXPECT_EQ(valueA * valueA * valueB * 5 * 7,
intFromValue(engine.build("value-R")));
EXPECT_EQ(3U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
EXPECT_EQ("value-C", builtKeys[1]);
EXPECT_EQ("value-R", builtKeys[2]);
// Mark value-B as having changed, then rebuild and sanity check.
valueB = 19;
builtKeys.clear();
EXPECT_EQ(valueA * valueA * valueB * 5 * 7,
intFromValue(engine.build("value-R")));
EXPECT_EQ(3U, builtKeys.size());
EXPECT_EQ("value-B", builtKeys[0]);
EXPECT_EQ("value-C", builtKeys[1]);
EXPECT_EQ("value-R", builtKeys[2]);
// Build value-R2 for the first time.
builtKeys.clear();
EXPECT_EQ(valueA * valueA * valueB * 5 * 7 * 11 * 13,
intFromValue(engine.build("value-R2")));
EXPECT_EQ(2U, builtKeys.size());
EXPECT_EQ("value-D", builtKeys[0]);
EXPECT_EQ("value-R2", builtKeys[1]);
// Now mark value-B as having changed, then rebuild value-R, then build
// value-R2 and sanity check.
valueB = 23;
builtKeys.clear();
EXPECT_EQ(valueA * valueA * valueB * 5 * 7,
intFromValue(engine.build("value-R")));
EXPECT_EQ(3U, builtKeys.size());
EXPECT_EQ("value-B", builtKeys[0]);
EXPECT_EQ("value-C", builtKeys[1]);
EXPECT_EQ("value-R", builtKeys[2]);
builtKeys.clear();
EXPECT_EQ(valueA * valueA * valueB * 5 * 7 * 11 * 13,
intFromValue(engine.build("value-R2")));
EXPECT_EQ(2U, builtKeys.size());
EXPECT_EQ("value-D", builtKeys[0]);
EXPECT_EQ("value-R2", builtKeys[1]);
// Final sanity check.
builtKeys.clear();
EXPECT_EQ(valueA * valueA * valueB * 5 * 7,
intFromValue(engine.build("value-R")));
EXPECT_EQ(valueA * valueA * valueB * 5 * 7 * 11 * 13,
intFromValue(engine.build("value-R2")));
EXPECT_EQ(0U, builtKeys.size());
}
TEST(BuildEngineTest, incrementalDependency) {
// Check that the engine properly clears the individual result dependencies
// when a rule is rerun.
//
// Dependencies:
// value-R: (value-A)
//
// FIXME: This test is rather cumbersome for all it is trying to check, maybe
// we need a logging BuildDB implementation or something that would be easier
// to test against (or just update the trace to track it).
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
// Attach a custom database, used to get the results.
class CustomDB : public BuildDB {
public:
llvm::StringMap<bool> keyTable;
std::unordered_map<KeyType, Result> ruleResults;
virtual void attachDelegate(BuildDBDelegate* delegate) override { ; }
virtual uint64_t getCurrentEpoch(bool* success_out, std::string* error_out) override {
return 0;
}
virtual bool setCurrentIteration(uint64_t value, std::string* error_out) override { return true; }
virtual bool lookupRuleResult(KeyID keyID,
const KeyType& key,
Result* result_out,
std::string* error_out) override {
return false;
}
virtual bool setRuleResult(KeyID key,
const Rule& rule,
const Result& result,
std::string* error_out) override {
ruleResults[rule.key] = result;
return true;
}
virtual bool buildStarted(std::string* error_out) override { return true; }
virtual void buildComplete() override {}
virtual bool getKeys(std::vector<KeyType>& keys_out, std::string* error_out) override { return false; }
virtual bool getKeysWithResult(std::vector<KeyType> &keys_out, std::vector<Result> &results_out, std::string* error_out) override { return false; };
};
CustomDB *db = new CustomDB();
std::string error;
engine.attachDB(std::unique_ptr<CustomDB>(db), &error);
int valueA = 2;
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) {
return valueA; },
[&](const ValueType& value) {
return valueA == intFromValue(value);
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-R", {"value-A"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(1U, inputs.size());
EXPECT_EQ(valueA, inputs[0]);
return inputs[0] * 3;
})));
// Build the first result.
EXPECT_EQ(valueA * 3, intFromValue(engine.build("value-R")));
// Mark value-A as having changed, then rebuild.
valueA = 5;
EXPECT_EQ(valueA * 3, intFromValue(engine.build("value-R")));
// Check the rule results.
const Result& valueRResult = db->ruleResults["value-R"];
EXPECT_EQ(valueA * 3, intFromValue(valueRResult.value));
EXPECT_EQ(1U, valueRResult.dependencies.size());
}
TEST(BuildEngineTest, deepDependencyScanningStack) {
// Check that the engine can handle dependency scanning of a very deep stack,
// which would probably crash blowing the stack if the engine used naive
// recursion.
//
// FIXME: It would be nice to run this on a thread with a small stack to
// guarantee this, and to be able to make the depth small so the test runs
// faster.
int depth = 10000;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
int lastInputValue = 0;
for (int i = 0; i != depth; ++i) {
char name[32];
snprintf(name, sizeof(name), "input-%d", i);
if (i != depth-1) {
char inputName[32];
snprintf(inputName, sizeof(inputName), "input-%d", i+1);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
name, { inputName },
[] (const std::vector<int>& inputs) {
return inputs[0]; })));
} else {
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
name, {},
[&] (const std::vector<int>& inputs) {
return lastInputValue; },
[&](const ValueType& value) {
// FIXME: Once we have custom ValueType objects, we would like to
// have timestamps on the value and just compare to a timestamp
// (similar to what we would do for a file).
return lastInputValue == intFromValue(value);
})));
}
}
// Build the first result.
lastInputValue = 42;
EXPECT_EQ(lastInputValue, intFromValue(engine.build("input-0")));
// Perform a null build on the result.
EXPECT_EQ(lastInputValue, intFromValue(engine.build("input-0")));
// Perform a full rebuild on the result.
lastInputValue = 52;
EXPECT_EQ(lastInputValue, intFromValue(engine.build("input-0")));
}
TEST(BuildEngineTest, discoveredDependencies) {
// Check basic support for tasks to report discovered dependencies.
// This models a task which has some out-of-band way to read the input.
class TaskWithDiscoveredDependency : public Task {
int& valueB;
int computedInputValue = -1;
public:
TaskWithDiscoveredDependency(int& valueB) : valueB(valueB) { }
virtual void start(TaskInterface ti) override {
// Request the known input.
ti.request("value-A", 0);
}
virtual void provideValue(TaskInterface, uintptr_t inputID,
const ValueType& value) override {
assert(inputID == 0);
computedInputValue = intFromValue(value);
}
virtual void inputsAvailable(TaskInterface ti) override {
// Report the discovered dependency.
ti.discoveredDependency("value-B");
ti.complete(intToValue(computedInputValue * valueB * 5));
}
};
std::vector<std::string> builtKeys;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
int valueA = 2;
int valueB = 3;
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", { },
[&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-A");
return valueA;
},
[&](const ValueType& value) {
return valueA == intFromValue(value);
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-B", { },
[&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-B");
return valueB;
},
[&](const ValueType& value) {
return valueB == intFromValue(value);
})));
class RuleWithDiscoveredDependency: public Rule {
std::vector<std::string>& builtKeys;
int& dep;
public:
RuleWithDiscoveredDependency(const KeyType& key,
std::vector<std::string>& builtKeys, int& dep)
: Rule(key), builtKeys(builtKeys), dep(dep) { }
Task* createTask(BuildEngine&) override {
builtKeys.push_back(key.str());
return new TaskWithDiscoveredDependency(dep);
}
bool isResultValid(BuildEngine&, const ValueType&) override { return true; }
};
engine.addRule(std::unique_ptr<core::Rule>(new RuleWithDiscoveredDependency("output", builtKeys, valueB)));
// Build the first result.
builtKeys.clear();
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine.build("output")));
EXPECT_EQ(std::vector<std::string>({ "output", "value-A", "value-B" }),
builtKeys);
// Verify that the next build is a null build.
builtKeys.clear();
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine.build("output")));
EXPECT_EQ(std::vector<std::string>(), builtKeys);
// Verify that the build depends on valueB.
valueB = 7;
builtKeys.clear();
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine.build("output")));
EXPECT_EQ(std::vector<std::string>({ "value-B", "output" }),
builtKeys);
// Verify again that the next build is a null build.
builtKeys.clear();
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine.build("output")));
EXPECT_EQ(std::vector<std::string>(), builtKeys);
}
TEST(BuildEngineTest, unchangedOutputs) {
// Check building with unchanged outputs.
std::vector<std::string> builtKeys;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value");
return 2; },
[&](const ValueType&) {
// Always rebuild
return false;
})));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"result", {"value"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(1U, inputs.size());
EXPECT_EQ(2, inputs[0]);
builtKeys.push_back("result");
return inputs[0] * 3;
})));
// Build the result.
EXPECT_EQ(2 * 3, intFromValue(engine.build("result")));
EXPECT_EQ(2U, builtKeys.size());
EXPECT_EQ("value", builtKeys[0]);
EXPECT_EQ("result", builtKeys[1]);
// Rebuild the result.
//
// Only "value" should rebuild, as it explicitly declares itself invalid each
// time, but "result" should not need to rerun.
builtKeys.clear();
EXPECT_EQ(2 * 3, intFromValue(engine.build("result")));
EXPECT_EQ(1U, builtKeys.size());
EXPECT_EQ("value", builtKeys[0]);
}
TEST(BuildEngineTest, StatusCallbacks) {
unsigned numScanned = 0;
unsigned numComplete = 0;
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"input", {}, [&] (const std::vector<int>& inputs) {
return 2; },
nullptr,
[&] (core::Rule::StatusKind status) {
if (status == core::Rule::StatusKind::IsScanning) {
++numScanned;
} else {
assert(status == core::Rule::StatusKind::IsComplete);
++numComplete;
}
} )));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"output", {"input"},
[&] (const std::vector<int>& inputs) {
return inputs[0] * 3;
},
nullptr,
[&] (core::Rule::StatusKind status) {
if (status == core::Rule::StatusKind::IsScanning) {
++numScanned;
} else {
assert(status == core::Rule::StatusKind::IsComplete);
++numComplete;
}
} )));
// Build the result.
EXPECT_EQ(2 * 3, intFromValue(engine.build("output")));
EXPECT_EQ(2U, numScanned);
EXPECT_EQ(2U, numComplete);
}
/// Check basic cycle detection.
TEST(BuildEngineTest, SimpleCycle) {
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"A", {"B"}, [&](const std::vector<int>& inputs) {
return 2; })));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"B", {"A"}, [&](const std::vector<int>& inputs) {
return 2; })));
// Build the result.
auto result = engine.build("A");
EXPECT_EQ(ValueType{}, result);
EXPECT_EQ(std::vector<std::string>({ "A", "B", "A" }), delegate.cycle);
}
/// Check detection of a cycle discovered during scanning from input.
TEST(BuildEngineTest, CycleDuringScanningFromTop) {
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
unsigned iteration = 0;
class CycleRule: public Rule {
public:
typedef std::function<std::vector<KeyType>()> InputFnType;
typedef std::function<int(const std::vector<int>&)> ComputeFnType;
private:
InputFnType input;
ComputeFnType compute;
bool valid;
public:
CycleRule(const KeyType& key, InputFnType input, ComputeFnType compute, bool valid = true)
: Rule(key), input(input), compute(compute), valid(valid) { }
Task* createTask(BuildEngine&) override {
return new SimpleTask(input, compute);
}
bool isResultValid(BuildEngine&, const ValueType&) override {
return valid;
}
};
engine.addRule(std::unique_ptr<core::Rule>(new CycleRule(
"A",
[&iteration]() -> std::vector<KeyType> {
switch (iteration) {
case 0:
return { "B", "C" };
case 1:
return { "B" };
default:
llvm::report_fatal_error("unexpected iterator");
}
},
[](const std::vector<int>& inputs) { return 2; }
)));
engine.addRule(std::unique_ptr<core::Rule>(new CycleRule(
"B",
[&iteration]() -> std::vector<KeyType> {
switch (iteration) {
case 0:
return { "C" };
case 1:
return { "C" };
default:
llvm::report_fatal_error("unexpected iterator");
}
},
[](const std::vector<int>& inputs) { return 2; }
)));
engine.addRule(std::unique_ptr<core::Rule>(new CycleRule(
"C",
[&iteration]() -> std::vector<KeyType> {
switch (iteration) {
case 0:
return { };
case 1:
return { "B" };
default:
llvm::report_fatal_error("unexpected iterator");
}
},
[](const std::vector<int>& inputs) { return 2; },
false // always rebuild
)));
// Build the result.
{
EXPECT_EQ(2, intFromValue(engine.build("A")));
EXPECT_EQ(std::vector<std::string>({}), delegate.cycle);
}
// Introduce a cycle, and rebuild.
{
iteration = 1;
auto result = engine.build("A");
EXPECT_EQ(ValueType{}, result);
EXPECT_EQ(std::vector<std::string>({ "A", "B", "C", "B" }), delegate.cycle);
}
// Rebuild, allowing the engine to resolve the cycle
{
iteration = 1;
delegate.cycle.clear();
delegate.resolveCycle = true;
auto result = engine.build("A");
EXPECT_EQ(2, intFromValue(result));
EXPECT_EQ(std::vector<std::string>({}), delegate.cycle);
}
}
TEST(BuildEngineTest, basicIncrementalSignatureChange) {
// Check a trivial build graph responds to incremental changes in rule
// signatures appropriately.
//
// Dependencies:
// value-R: (value-A, value-B)
// Create a temporary file.
llvm::SmallString<256> dbPath;
auto ec = llvm::sys::fs::createTemporaryFile("build", "db", dbPath);
EXPECT_EQ(bool(ec), false);
fprintf(stderr, "using db: %s\n", dbPath.c_str());
std::vector<std::string> builtKeys;
SimpleBuildEngineDelegate delegate;
int valueA = 2;
int valueB = 3;
int sigA = 1;
int sigB = 2;
auto setupEngine = [&](core::BuildEngine& engine) {
// Attach the database.
{
std::string error;
auto db = createSQLiteBuildDB(dbPath, 1, /* recreateUnmatchedVersion = */ true, &error);
EXPECT_EQ(bool(db), true);
if (!db) {
fprintf(stderr, "unable to open database: %s\n", error.c_str());
return;
}
engine.attachDB(std::move(db), &error);
}
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-A", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-A");
return valueA; },
[&](const ValueType& value) {
return valueA == intFromValue(value);
}, nullptr, basic::CommandSignature(sigA))));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-B", {}, [&] (const std::vector<int>& inputs) {
builtKeys.push_back("value-B");
return valueB; },
[&](const ValueType& value) {
return valueB == intFromValue(value);
}, nullptr, basic::CommandSignature(sigB))));
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"value-R", {"value-A", "value-B"},
[&] (const std::vector<int>& inputs) {
EXPECT_EQ(2U, inputs.size());
EXPECT_EQ(valueA, inputs[0]);
EXPECT_EQ(valueB, inputs[1]);
builtKeys.push_back("value-R");
return inputs[0] * inputs[1] * 5;
})));
};
std::unique_ptr<core::BuildEngine> engine;
// Build the first result.
builtKeys.clear();
engine = llvm::make_unique<core::BuildEngine>(delegate);
setupEngine(*engine);
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine->build("value-R")));
EXPECT_EQ(3U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
EXPECT_EQ("value-B", builtKeys[1]);
EXPECT_EQ("value-R", builtKeys[2]);
// Mark value-A as having a different signature, then rebuild and sanity check.
builtKeys.clear();
engine = llvm::make_unique<core::BuildEngine>(delegate);
sigA = 2;
setupEngine(*engine);
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine->build("value-R")));
EXPECT_EQ(1U, builtKeys.size());
EXPECT_EQ("value-A", builtKeys[0]);
// Check that a subsequent build is null.
builtKeys.clear();
engine = llvm::make_unique<core::BuildEngine>(delegate);
setupEngine(*engine);
EXPECT_EQ(valueA * valueB * 5, intFromValue(engine->build("value-R")));
EXPECT_EQ(0U, builtKeys.size());
}
TEST(BuildEngineTest, concurrentProtection) {
// Cross thread coordination
std::mutex mutex;
bool started = false;
std::condition_variable started_cv;
bool done = false;
std::condition_variable done_cv;
// Basic 1-rule build graph
SimpleBuildEngineDelegate delegate;
core::BuildEngine engine(delegate);
engine.addRule(std::unique_ptr<core::Rule>(new SimpleRule(
"result", {}, [&] (const std::vector<int>& inputs) {
auto lock = std::unique_lock<std::mutex>(mutex);
started = true;
started_cv.notify_all();
while (!done) {
done_cv.wait(lock);
}
return 1;
})
));
// Start a build on another thread
auto build1 = std::async( std::launch::async, [&](){
// We expect that this build should eventually succeed with the build value
// of '1' from above.
EXPECT_EQ(1, intFromValue(engine.build("result")));
});
// Wait for the build to actually start
auto lock = std::unique_lock<std::mutex>(mutex);
while (!started) {
started_cv.wait(lock);
}
lock.unlock();
// Expect that we'll get an error trying to start this build
delegate.expectedError = true;
engine.build("result");
EXPECT_EQ(1U, delegate.errors.size());
EXPECT_TRUE(delegate.errors[0].find("busy") != std::string::npos);
// Wrap up the first build
lock.lock();
done = true;
lock.unlock();
done_cv.notify_all();
build1.wait();
// Ensure that we can build again
delegate.errors.clear();
delegate.expectedError = false;
EXPECT_EQ(1, intFromValue(engine.build("result")));
EXPECT_EQ(0U, delegate.errors.size());
}
}
|