1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
//===- bolt/Core/BinaryBasicBlock.cpp - Low-level basic block -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BinaryBasicBlock class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Errc.h"
#define DEBUG_TYPE "bolt"
namespace llvm {
namespace bolt {
constexpr uint32_t BinaryBasicBlock::INVALID_OFFSET;
bool operator<(const BinaryBasicBlock &LHS, const BinaryBasicBlock &RHS) {
return LHS.Index < RHS.Index;
}
bool BinaryBasicBlock::hasCFG() const { return getParent()->hasCFG(); }
bool BinaryBasicBlock::isEntryPoint() const {
return getParent()->isEntryPoint(*this);
}
bool BinaryBasicBlock::hasInstructions() const {
return getParent()->hasInstructions();
}
const JumpTable *BinaryBasicBlock::getJumpTable() const {
const MCInst *Inst = getLastNonPseudoInstr();
const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
return JT;
}
void BinaryBasicBlock::adjustNumPseudos(const MCInst &Inst, int Sign) {
BinaryContext &BC = Function->getBinaryContext();
if (BC.MIB->isPseudo(Inst))
NumPseudos += Sign;
}
BinaryBasicBlock::iterator BinaryBasicBlock::getFirstNonPseudo() {
const BinaryContext &BC = Function->getBinaryContext();
for (auto II = Instructions.begin(), E = Instructions.end(); II != E; ++II) {
if (!BC.MIB->isPseudo(*II))
return II;
}
return end();
}
BinaryBasicBlock::reverse_iterator BinaryBasicBlock::getLastNonPseudo() {
const BinaryContext &BC = Function->getBinaryContext();
for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E;
++RII) {
if (!BC.MIB->isPseudo(*RII))
return RII;
}
return rend();
}
bool BinaryBasicBlock::validateSuccessorInvariants() {
const MCInst *Inst = getLastNonPseudoInstr();
const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
BinaryContext &BC = Function->getBinaryContext();
bool Valid = true;
if (JT) {
// Note: for now we assume that successors do not reference labels from
// any overlapping jump tables. We only look at the entries for the jump
// table that is referenced at the last instruction.
const auto Range = JT->getEntriesForAddress(BC.MIB->getJumpTable(*Inst));
const std::vector<const MCSymbol *> Entries(
std::next(JT->Entries.begin(), Range.first),
std::next(JT->Entries.begin(), Range.second));
std::set<const MCSymbol *> UniqueSyms(Entries.begin(), Entries.end());
for (BinaryBasicBlock *Succ : Successors) {
auto Itr = UniqueSyms.find(Succ->getLabel());
if (Itr != UniqueSyms.end()) {
UniqueSyms.erase(Itr);
} else {
// Work on the assumption that jump table blocks don't
// have a conditional successor.
Valid = false;
errs() << "BOLT-WARNING: Jump table successor " << Succ->getName()
<< " not contained in the jump table.\n";
}
}
// If there are any leftover entries in the jump table, they
// must be one of the function end labels.
if (Valid) {
for (const MCSymbol *Sym : UniqueSyms) {
Valid &= (Sym == Function->getFunctionEndLabel() ||
Sym == Function->getFunctionEndLabel(getFragmentNum()));
if (!Valid) {
errs() << "BOLT-WARNING: Jump table contains illegal entry: "
<< Sym->getName() << "\n";
}
}
}
} else {
// Unknown control flow.
if (Inst && BC.MIB->isIndirectBranch(*Inst))
return true;
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
switch (Successors.size()) {
case 0:
Valid = !CondBranch && !UncondBranch;
break;
case 1: {
const bool HasCondBlock =
CondBranch && Function->getBasicBlockForLabel(
BC.MIB->getTargetSymbol(*CondBranch));
Valid = !CondBranch || !HasCondBlock;
break;
}
case 2:
Valid = (CondBranch &&
(TBB == getConditionalSuccessor(true)->getLabel() &&
((!UncondBranch && !FBB) ||
(UncondBranch &&
FBB == getConditionalSuccessor(false)->getLabel()))));
break;
}
}
}
if (!Valid) {
errs() << "BOLT-WARNING: CFG invalid in " << *getFunction() << " @ "
<< getName() << "\n";
if (JT) {
errs() << "Jump Table instruction addr = 0x"
<< Twine::utohexstr(BC.MIB->getJumpTable(*Inst)) << "\n";
JT->print(errs());
}
getFunction()->dump();
}
return Valid;
}
BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label) const {
if (!Label && succ_size() == 1)
return *succ_begin();
for (BinaryBasicBlock *BB : successors())
if (BB->getLabel() == Label)
return BB;
return nullptr;
}
BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label,
BinaryBranchInfo &BI) const {
auto BIIter = branch_info_begin();
for (BinaryBasicBlock *BB : successors()) {
if (BB->getLabel() == Label) {
BI = *BIIter;
return BB;
}
++BIIter;
}
return nullptr;
}
BinaryBasicBlock *BinaryBasicBlock::getLandingPad(const MCSymbol *Label) const {
for (BinaryBasicBlock *BB : landing_pads())
if (BB->getLabel() == Label)
return BB;
return nullptr;
}
int32_t BinaryBasicBlock::getCFIStateAtInstr(const MCInst *Instr) const {
assert(
getFunction()->getState() >= BinaryFunction::State::CFG &&
"can only calculate CFI state when function is in or past the CFG state");
const BinaryFunction::CFIInstrMapType &FDEProgram =
getFunction()->getFDEProgram();
// Find the last CFI preceding Instr in this basic block.
const MCInst *LastCFI = nullptr;
bool InstrSeen = (Instr == nullptr);
for (const MCInst &Inst : llvm::reverse(Instructions)) {
if (!InstrSeen) {
InstrSeen = (&Inst == Instr);
continue;
}
if (Function->getBinaryContext().MIB->isCFI(Inst)) {
LastCFI = &Inst;
break;
}
}
assert(InstrSeen && "instruction expected in basic block");
// CFI state is the same as at basic block entry point.
if (!LastCFI)
return getCFIState();
// Fold all RememberState/RestoreState sequences, such as for:
//
// [ CFI #(K-1) ]
// RememberState (#K)
// ....
// RestoreState
// RememberState
// ....
// RestoreState
// [ GNU_args_size ]
// RememberState
// ....
// RestoreState <- LastCFI
//
// we return K - the most efficient state to (re-)generate.
int64_t State = LastCFI->getOperand(0).getImm();
while (State >= 0 &&
FDEProgram[State].getOperation() == MCCFIInstruction::OpRestoreState) {
int32_t Depth = 1;
--State;
assert(State >= 0 && "first CFI cannot be RestoreState");
while (Depth && State >= 0) {
const MCCFIInstruction &CFIInstr = FDEProgram[State];
if (CFIInstr.getOperation() == MCCFIInstruction::OpRestoreState)
++Depth;
else if (CFIInstr.getOperation() == MCCFIInstruction::OpRememberState)
--Depth;
--State;
}
assert(Depth == 0 && "unbalanced RememberState/RestoreState stack");
// Skip any GNU_args_size.
while (State >= 0 && FDEProgram[State].getOperation() ==
MCCFIInstruction::OpGnuArgsSize) {
--State;
}
}
assert((State + 1 >= 0) && "miscalculated CFI state");
return State + 1;
}
void BinaryBasicBlock::addSuccessor(BinaryBasicBlock *Succ, uint64_t Count,
uint64_t MispredictedCount) {
Successors.push_back(Succ);
BranchInfo.push_back({Count, MispredictedCount});
Succ->Predecessors.push_back(this);
}
void BinaryBasicBlock::replaceSuccessor(BinaryBasicBlock *Succ,
BinaryBasicBlock *NewSucc,
uint64_t Count,
uint64_t MispredictedCount) {
Succ->removePredecessor(this, /*Multiple=*/false);
auto I = succ_begin();
auto BI = BranchInfo.begin();
for (; I != succ_end(); ++I) {
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
if (*I == Succ)
break;
++BI;
}
assert(I != succ_end() && "no such successor!");
*I = NewSucc;
*BI = BinaryBranchInfo{Count, MispredictedCount};
NewSucc->addPredecessor(this);
}
void BinaryBasicBlock::removeAllSuccessors() {
SmallPtrSet<BinaryBasicBlock *, 2> UniqSuccessors(succ_begin(), succ_end());
for (BinaryBasicBlock *SuccessorBB : UniqSuccessors)
SuccessorBB->removePredecessor(this);
Successors.clear();
BranchInfo.clear();
}
void BinaryBasicBlock::removeSuccessor(BinaryBasicBlock *Succ) {
Succ->removePredecessor(this, /*Multiple=*/false);
auto I = succ_begin();
auto BI = BranchInfo.begin();
for (; I != succ_end(); ++I) {
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
if (*I == Succ)
break;
++BI;
}
assert(I != succ_end() && "no such successor!");
Successors.erase(I);
BranchInfo.erase(BI);
}
void BinaryBasicBlock::addPredecessor(BinaryBasicBlock *Pred) {
Predecessors.push_back(Pred);
}
void BinaryBasicBlock::removePredecessor(BinaryBasicBlock *Pred,
bool Multiple) {
// Note: the predecessor could be listed multiple times.
bool Erased = false;
for (auto PredI = Predecessors.begin(); PredI != Predecessors.end();) {
if (*PredI == Pred) {
Erased = true;
PredI = Predecessors.erase(PredI);
if (!Multiple)
return;
} else {
++PredI;
}
}
assert(Erased && "Pred is not a predecessor of this block!");
(void)Erased;
}
void BinaryBasicBlock::removeDuplicateConditionalSuccessor(MCInst *CondBranch) {
assert(succ_size() == 2 && Successors[0] == Successors[1] &&
"conditional successors expected");
BinaryBasicBlock *Succ = Successors[0];
const BinaryBranchInfo CondBI = BranchInfo[0];
const BinaryBranchInfo UncondBI = BranchInfo[1];
eraseInstruction(findInstruction(CondBranch));
Successors.clear();
BranchInfo.clear();
Successors.push_back(Succ);
uint64_t Count = COUNT_NO_PROFILE;
if (CondBI.Count != COUNT_NO_PROFILE && UncondBI.Count != COUNT_NO_PROFILE)
Count = CondBI.Count + UncondBI.Count;
BranchInfo.push_back({Count, 0});
}
void BinaryBasicBlock::updateJumpTableSuccessors() {
const JumpTable *JT = getJumpTable();
assert(JT && "Expected jump table instruction.");
// Clear existing successors.
removeAllSuccessors();
// Generate the list of successors in deterministic order without duplicates.
SmallVector<BinaryBasicBlock *, 16> SuccessorBBs;
for (const MCSymbol *Label : JT->Entries) {
BinaryBasicBlock *BB = getFunction()->getBasicBlockForLabel(Label);
// Ignore __builtin_unreachable()
if (!BB) {
assert(Label == getFunction()->getFunctionEndLabel() &&
"JT label should match a block or end of function.");
continue;
}
SuccessorBBs.emplace_back(BB);
}
llvm::sort(SuccessorBBs,
[](const BinaryBasicBlock *BB1, const BinaryBasicBlock *BB2) {
return BB1->getInputOffset() < BB2->getInputOffset();
});
SuccessorBBs.erase(std::unique(SuccessorBBs.begin(), SuccessorBBs.end()),
SuccessorBBs.end());
for (BinaryBasicBlock *BB : SuccessorBBs)
addSuccessor(BB);
}
void BinaryBasicBlock::adjustExecutionCount(double Ratio) {
auto adjustedCount = [&](uint64_t Count) -> uint64_t {
double NewCount = Count * Ratio;
if (!NewCount && Count && (Ratio > 0.0))
NewCount = 1;
return NewCount;
};
setExecutionCount(adjustedCount(getKnownExecutionCount()));
for (BinaryBranchInfo &BI : branch_info()) {
if (BI.Count != COUNT_NO_PROFILE)
BI.Count = adjustedCount(BI.Count);
if (BI.MispredictedCount != COUNT_INFERRED)
BI.MispredictedCount = adjustedCount(BI.MispredictedCount);
}
}
bool BinaryBasicBlock::analyzeBranch(const MCSymbol *&TBB, const MCSymbol *&FBB,
MCInst *&CondBranch,
MCInst *&UncondBranch) {
auto &MIB = Function->getBinaryContext().MIB;
return MIB->analyzeBranch(Instructions.begin(), Instructions.end(), TBB, FBB,
CondBranch, UncondBranch);
}
bool BinaryBasicBlock::isMacroOpFusionPair(const_iterator I) const {
auto &MIB = Function->getBinaryContext().MIB;
ArrayRef<MCInst> Insts = Instructions;
return MIB->isMacroOpFusionPair(Insts.slice(I - begin()));
}
BinaryBasicBlock::const_iterator
BinaryBasicBlock::getMacroOpFusionPair() const {
if (!Function->getBinaryContext().isX86())
return end();
if (getNumNonPseudos() < 2 || succ_size() != 2)
return end();
auto RI = getLastNonPseudo();
assert(RI != rend() && "cannot have an empty block with 2 successors");
BinaryContext &BC = Function->getBinaryContext();
// Skip instruction if it's an unconditional branch following
// a conditional one.
if (BC.MIB->isUnconditionalBranch(*RI))
++RI;
if (!BC.MIB->isConditionalBranch(*RI))
return end();
// Start checking with instruction preceding the conditional branch.
++RI;
if (RI == rend())
return end();
auto II = std::prev(RI.base()); // convert to a forward iterator
if (isMacroOpFusionPair(II))
return II;
return end();
}
MCInst *BinaryBasicBlock::getTerminatorBefore(MCInst *Pos) {
BinaryContext &BC = Function->getBinaryContext();
auto Itr = rbegin();
bool Check = Pos ? false : true;
MCInst *FirstTerminator = nullptr;
while (Itr != rend()) {
if (!Check) {
if (&*Itr == Pos)
Check = true;
++Itr;
continue;
}
if (BC.MIB->isTerminator(*Itr))
FirstTerminator = &*Itr;
++Itr;
}
return FirstTerminator;
}
bool BinaryBasicBlock::hasTerminatorAfter(MCInst *Pos) {
BinaryContext &BC = Function->getBinaryContext();
auto Itr = rbegin();
while (Itr != rend()) {
if (&*Itr == Pos)
return false;
if (BC.MIB->isTerminator(*Itr))
return true;
++Itr;
}
return false;
}
bool BinaryBasicBlock::swapConditionalSuccessors() {
if (succ_size() != 2)
return false;
std::swap(Successors[0], Successors[1]);
std::swap(BranchInfo[0], BranchInfo[1]);
return true;
}
void BinaryBasicBlock::addBranchInstruction(const BinaryBasicBlock *Successor) {
assert(isSuccessor(Successor));
BinaryContext &BC = Function->getBinaryContext();
MCInst NewInst;
std::unique_lock<llvm::sys::RWMutex> Lock(BC.CtxMutex);
BC.MIB->createUncondBranch(NewInst, Successor->getLabel(), BC.Ctx.get());
Instructions.emplace_back(std::move(NewInst));
}
void BinaryBasicBlock::addTailCallInstruction(const MCSymbol *Target) {
BinaryContext &BC = Function->getBinaryContext();
MCInst NewInst;
BC.MIB->createTailCall(NewInst, Target, BC.Ctx.get());
Instructions.emplace_back(std::move(NewInst));
}
uint32_t BinaryBasicBlock::getNumCalls() const {
uint32_t N = 0;
BinaryContext &BC = Function->getBinaryContext();
for (const MCInst &Instr : Instructions) {
if (BC.MIB->isCall(Instr))
++N;
}
return N;
}
uint32_t BinaryBasicBlock::getNumPseudos() const {
#ifndef NDEBUG
BinaryContext &BC = Function->getBinaryContext();
uint32_t N = 0;
for (const MCInst &Instr : Instructions)
if (BC.MIB->isPseudo(Instr))
++N;
if (N != NumPseudos) {
errs() << "BOLT-ERROR: instructions for basic block " << getName()
<< " in function " << *Function << ": calculated pseudos " << N
<< ", set pseudos " << NumPseudos << ", size " << size() << '\n';
llvm_unreachable("pseudos mismatch");
}
#endif
return NumPseudos;
}
ErrorOr<std::pair<double, double>>
BinaryBasicBlock::getBranchStats(const BinaryBasicBlock *Succ) const {
if (Function->hasValidProfile()) {
uint64_t TotalCount = 0;
uint64_t TotalMispreds = 0;
for (const BinaryBranchInfo &BI : BranchInfo) {
if (BI.Count != COUNT_NO_PROFILE) {
TotalCount += BI.Count;
TotalMispreds += BI.MispredictedCount;
}
}
if (TotalCount > 0) {
auto Itr = llvm::find(Successors, Succ);
assert(Itr != Successors.end());
const BinaryBranchInfo &BI = BranchInfo[Itr - Successors.begin()];
if (BI.Count && BI.Count != COUNT_NO_PROFILE) {
if (TotalMispreds == 0)
TotalMispreds = 1;
return std::make_pair(double(BI.Count) / TotalCount,
double(BI.MispredictedCount) / TotalMispreds);
}
}
}
return make_error_code(llvm::errc::result_out_of_range);
}
void BinaryBasicBlock::dump() const {
BinaryContext &BC = Function->getBinaryContext();
if (Label)
outs() << Label->getName() << ":\n";
BC.printInstructions(outs(), Instructions.begin(), Instructions.end(),
getOffset(), Function);
outs() << "preds:";
for (auto itr = pred_begin(); itr != pred_end(); ++itr) {
outs() << " " << (*itr)->getName();
}
outs() << "\nsuccs:";
for (auto itr = succ_begin(); itr != succ_end(); ++itr) {
outs() << " " << (*itr)->getName();
}
outs() << "\n";
}
uint64_t BinaryBasicBlock::estimateSize(const MCCodeEmitter *Emitter) const {
return Function->getBinaryContext().computeCodeSize(begin(), end(), Emitter);
}
BinaryBasicBlock::BinaryBranchInfo &
BinaryBasicBlock::getBranchInfo(const BinaryBasicBlock &Succ) {
return const_cast<BinaryBranchInfo &>(
static_cast<const BinaryBasicBlock &>(*this).getBranchInfo(Succ));
}
const BinaryBasicBlock::BinaryBranchInfo &
BinaryBasicBlock::getBranchInfo(const BinaryBasicBlock &Succ) const {
const auto Zip = llvm::zip(successors(), branch_info());
const auto Result = llvm::find_if(
Zip, [&](const auto &Tuple) { return std::get<0>(Tuple) == &Succ; });
assert(Result != Zip.end() && "Cannot find target in successors");
return std::get<1>(*Result);
}
BinaryBasicBlock *BinaryBasicBlock::splitAt(iterator II) {
assert(II != end() && "expected iterator pointing to instruction");
BinaryBasicBlock *NewBlock = getFunction()->addBasicBlock();
// Adjust successors/predecessors and propagate the execution count.
moveAllSuccessorsTo(NewBlock);
addSuccessor(NewBlock, getExecutionCount(), 0);
// Set correct CFI state for the new block.
NewBlock->setCFIState(getCFIStateAtInstr(&*II));
// Move instructions over.
adjustNumPseudos(II, end(), -1);
NewBlock->addInstructions(II, end());
Instructions.erase(II, end());
return NewBlock;
}
void BinaryBasicBlock::updateOutputValues(const MCAsmLayout &Layout) {
if (!LocSyms)
return;
const uint64_t BBAddress = getOutputAddressRange().first;
const uint64_t BBOffset = Layout.getSymbolOffset(*getLabel());
for (const auto &LocSymKV : *LocSyms) {
const uint32_t InputFunctionOffset = LocSymKV.first;
const uint32_t OutputOffset = static_cast<uint32_t>(
Layout.getSymbolOffset(*LocSymKV.second) - BBOffset);
getOffsetTranslationTable().emplace_back(
std::make_pair(OutputOffset, InputFunctionOffset));
// Update reverse (relative to BAT) address lookup table for function.
if (getFunction()->requiresAddressTranslation()) {
getFunction()->getInputOffsetToAddressMap().emplace(
std::make_pair(InputFunctionOffset, OutputOffset + BBAddress));
}
}
LocSyms.reset(nullptr);
}
} // namespace bolt
} // namespace llvm
|