1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
|
//===- bolt/Core/BinaryContext.cpp - Low-level context --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BinaryContext class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryEmitter.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "bolt/Utils/NameResolver.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Regex.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <numeric>
#include <unordered_set>
using namespace llvm;
#undef DEBUG_TYPE
#define DEBUG_TYPE "bolt"
namespace opts {
cl::opt<bool> NoHugePages("no-huge-pages",
cl::desc("use regular size pages for code alignment"),
cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
PrintDebugInfo("print-debug-info",
cl::desc("print debug info when printing functions"),
cl::Hidden,
cl::ZeroOrMore,
cl::cat(BoltCategory));
cl::opt<bool> PrintRelocations(
"print-relocations",
cl::desc("print relocations when printing functions/objects"), cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
PrintMemData("print-mem-data",
cl::desc("print memory data annotations when printing functions"),
cl::Hidden,
cl::ZeroOrMore,
cl::cat(BoltCategory));
} // namespace opts
namespace llvm {
namespace bolt {
BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx,
std::unique_ptr<DWARFContext> DwCtx,
std::unique_ptr<Triple> TheTriple,
const Target *TheTarget, std::string TripleName,
std::unique_ptr<MCCodeEmitter> MCE,
std::unique_ptr<MCObjectFileInfo> MOFI,
std::unique_ptr<const MCAsmInfo> AsmInfo,
std::unique_ptr<const MCInstrInfo> MII,
std::unique_ptr<const MCSubtargetInfo> STI,
std::unique_ptr<MCInstPrinter> InstPrinter,
std::unique_ptr<const MCInstrAnalysis> MIA,
std::unique_ptr<MCPlusBuilder> MIB,
std::unique_ptr<const MCRegisterInfo> MRI,
std::unique_ptr<MCDisassembler> DisAsm)
: Ctx(std::move(Ctx)), DwCtx(std::move(DwCtx)),
TheTriple(std::move(TheTriple)), TheTarget(TheTarget),
TripleName(TripleName), MCE(std::move(MCE)), MOFI(std::move(MOFI)),
AsmInfo(std::move(AsmInfo)), MII(std::move(MII)), STI(std::move(STI)),
InstPrinter(std::move(InstPrinter)), MIA(std::move(MIA)),
MIB(std::move(MIB)), MRI(std::move(MRI)), DisAsm(std::move(DisAsm)) {
Relocation::Arch = this->TheTriple->getArch();
RegularPageSize = isAArch64() ? RegularPageSizeAArch64 : RegularPageSizeX86;
PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize;
}
BinaryContext::~BinaryContext() {
for (BinarySection *Section : Sections)
delete Section;
for (BinaryFunction *InjectedFunction : InjectedBinaryFunctions)
delete InjectedFunction;
for (std::pair<const uint64_t, JumpTable *> JTI : JumpTables)
delete JTI.second;
clearBinaryData();
}
/// Create BinaryContext for a given architecture \p ArchName and
/// triple \p TripleName.
Expected<std::unique_ptr<BinaryContext>>
BinaryContext::createBinaryContext(const ObjectFile *File, bool IsPIC,
std::unique_ptr<DWARFContext> DwCtx) {
StringRef ArchName = "";
StringRef FeaturesStr = "";
switch (File->getArch()) {
case llvm::Triple::x86_64:
ArchName = "x86-64";
FeaturesStr = "+nopl";
break;
case llvm::Triple::aarch64:
ArchName = "aarch64";
FeaturesStr = "+all";
break;
case llvm::Triple::riscv64:
ArchName = "riscv64";
// RV64GC
FeaturesStr = "+m,+a,+f,+d,+zicsr,+zifencei,+c";
break;
default:
return createStringError(std::errc::not_supported,
"BOLT-ERROR: Unrecognized machine in ELF file");
}
auto TheTriple = std::make_unique<Triple>(File->makeTriple());
const std::string TripleName = TheTriple->str();
std::string Error;
const Target *TheTarget =
TargetRegistry::lookupTarget(std::string(ArchName), *TheTriple, Error);
if (!TheTarget)
return createStringError(make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: ", Error));
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
if (!MRI)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: no register info for target ", TripleName));
// Set up disassembler.
std::unique_ptr<MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName, MCTargetOptions()));
if (!AsmInfo)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: no assembly info for target ", TripleName));
// BOLT creates "func@PLT" symbols for PLT entries. In function assembly dump
// we want to emit such names as using @PLT without double quotes to convey
// variant kind to the assembler. BOLT doesn't rely on the linker so we can
// override the default AsmInfo behavior to emit names the way we want.
AsmInfo->setAllowAtInName(true);
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", FeaturesStr));
if (!STI)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: no subtarget info for target ", TripleName));
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: no instruction info for target ", TripleName));
std::unique_ptr<MCContext> Ctx(
new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get()));
std::unique_ptr<MCObjectFileInfo> MOFI(
TheTarget->createMCObjectFileInfo(*Ctx, IsPIC));
Ctx->setObjectFileInfo(MOFI.get());
// We do not support X86 Large code model. Change this in the future.
bool Large = false;
if (TheTriple->getArch() == llvm::Triple::aarch64)
Large = true;
unsigned LSDAEncoding =
Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4;
if (IsPIC) {
LSDAEncoding = dwarf::DW_EH_PE_pcrel |
(Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
}
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, *Ctx));
if (!DisAsm)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: no disassembler info for target ", TripleName));
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
if (!MIA)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: failed to create instruction analysis for target ",
TripleName));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> InstructionPrinter(
TheTarget->createMCInstPrinter(*TheTriple, AsmPrinterVariant, *AsmInfo,
*MII, *MRI));
if (!InstructionPrinter)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: no instruction printer for target ", TripleName));
InstructionPrinter->setPrintImmHex(true);
std::unique_ptr<MCCodeEmitter> MCE(
TheTarget->createMCCodeEmitter(*MII, *Ctx));
// Make sure we don't miss any output on core dumps.
outs().SetUnbuffered();
errs().SetUnbuffered();
dbgs().SetUnbuffered();
auto BC = std::make_unique<BinaryContext>(
std::move(Ctx), std::move(DwCtx), std::move(TheTriple), TheTarget,
std::string(TripleName), std::move(MCE), std::move(MOFI),
std::move(AsmInfo), std::move(MII), std::move(STI),
std::move(InstructionPrinter), std::move(MIA), nullptr, std::move(MRI),
std::move(DisAsm));
BC->LSDAEncoding = LSDAEncoding;
BC->MAB = std::unique_ptr<MCAsmBackend>(
BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions()));
BC->setFilename(File->getFileName());
BC->HasFixedLoadAddress = !IsPIC;
BC->SymbolicDisAsm = std::unique_ptr<MCDisassembler>(
BC->TheTarget->createMCDisassembler(*BC->STI, *BC->Ctx));
if (!BC->SymbolicDisAsm)
return createStringError(
make_error_code(std::errc::not_supported),
Twine("BOLT-ERROR: no disassembler info for target ", TripleName));
return std::move(BC);
}
bool BinaryContext::forceSymbolRelocations(StringRef SymbolName) const {
if (opts::HotText &&
(SymbolName == "__hot_start" || SymbolName == "__hot_end"))
return true;
if (opts::HotData &&
(SymbolName == "__hot_data_start" || SymbolName == "__hot_data_end"))
return true;
if (SymbolName == "_end")
return true;
return false;
}
std::unique_ptr<MCObjectWriter>
BinaryContext::createObjectWriter(raw_pwrite_stream &OS) {
return MAB->createObjectWriter(OS);
}
bool BinaryContext::validateObjectNesting() const {
auto Itr = BinaryDataMap.begin();
auto End = BinaryDataMap.end();
bool Valid = true;
while (Itr != End) {
auto Next = std::next(Itr);
while (Next != End &&
Itr->second->getSection() == Next->second->getSection() &&
Itr->second->containsRange(Next->second->getAddress(),
Next->second->getSize())) {
if (Next->second->Parent != Itr->second) {
errs() << "BOLT-WARNING: object nesting incorrect for:\n"
<< "BOLT-WARNING: " << *Itr->second << "\n"
<< "BOLT-WARNING: " << *Next->second << "\n";
Valid = false;
}
++Next;
}
Itr = Next;
}
return Valid;
}
bool BinaryContext::validateHoles() const {
bool Valid = true;
for (BinarySection &Section : sections()) {
for (const Relocation &Rel : Section.relocations()) {
uint64_t RelAddr = Rel.Offset + Section.getAddress();
const BinaryData *BD = getBinaryDataContainingAddress(RelAddr);
if (!BD) {
errs() << "BOLT-WARNING: no BinaryData found for relocation at address"
<< " 0x" << Twine::utohexstr(RelAddr) << " in "
<< Section.getName() << "\n";
Valid = false;
} else if (!BD->getAtomicRoot()) {
errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at "
<< "address 0x" << Twine::utohexstr(RelAddr) << " in "
<< Section.getName() << "\n";
Valid = false;
}
}
}
return Valid;
}
void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) {
const uint64_t Address = GAI->second->getAddress();
const uint64_t Size = GAI->second->getSize();
auto fixParents = [&](BinaryDataMapType::iterator Itr,
BinaryData *NewParent) {
BinaryData *OldParent = Itr->second->Parent;
Itr->second->Parent = NewParent;
++Itr;
while (Itr != BinaryDataMap.end() && OldParent &&
Itr->second->Parent == OldParent) {
Itr->second->Parent = NewParent;
++Itr;
}
};
// Check if the previous symbol contains the newly added symbol.
if (GAI != BinaryDataMap.begin()) {
BinaryData *Prev = std::prev(GAI)->second;
while (Prev) {
if (Prev->getSection() == GAI->second->getSection() &&
Prev->containsRange(Address, Size)) {
fixParents(GAI, Prev);
} else {
fixParents(GAI, nullptr);
}
Prev = Prev->Parent;
}
}
// Check if the newly added symbol contains any subsequent symbols.
if (Size != 0) {
BinaryData *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second;
auto Itr = std::next(GAI);
while (
Itr != BinaryDataMap.end() &&
BD->containsRange(Itr->second->getAddress(), Itr->second->getSize())) {
Itr->second->Parent = BD;
++Itr;
}
}
}
iterator_range<BinaryContext::binary_data_iterator>
BinaryContext::getSubBinaryData(BinaryData *BD) {
auto Start = std::next(BinaryDataMap.find(BD->getAddress()));
auto End = Start;
while (End != BinaryDataMap.end() && BD->isAncestorOf(End->second))
++End;
return make_range(Start, End);
}
std::pair<const MCSymbol *, uint64_t>
BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF,
bool IsPCRel) {
if (isAArch64()) {
// Check if this is an access to a constant island and create bookkeeping
// to keep track of it and emit it later as part of this function.
if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address))
return std::make_pair(IslandSym, 0);
// Detect custom code written in assembly that refers to arbitrary
// constant islands from other functions. Write this reference so we
// can pull this constant island and emit it as part of this function
// too.
auto IslandIter = AddressToConstantIslandMap.lower_bound(Address);
if (IslandIter != AddressToConstantIslandMap.begin() &&
(IslandIter == AddressToConstantIslandMap.end() ||
IslandIter->first > Address))
--IslandIter;
if (IslandIter != AddressToConstantIslandMap.end()) {
// Fall-back to referencing the original constant island in the presence
// of dynamic relocs, as we currently do not support cloning them.
// Notice: we might fail to link because of this, if the original constant
// island we are referring would be emitted too far away.
if (IslandIter->second->hasDynamicRelocationAtIsland()) {
MCSymbol *IslandSym =
IslandIter->second->getOrCreateIslandAccess(Address);
if (IslandSym)
return std::make_pair(IslandSym, 0);
} else if (MCSymbol *IslandSym =
IslandIter->second->getOrCreateProxyIslandAccess(Address,
BF)) {
BF.createIslandDependency(IslandSym, IslandIter->second);
return std::make_pair(IslandSym, 0);
}
}
}
// Note that the address does not necessarily have to reside inside
// a section, it could be an absolute address too.
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
if (Section && Section->isText()) {
if (BF.containsAddress(Address, /*UseMaxSize=*/isAArch64())) {
if (Address != BF.getAddress()) {
// The address could potentially escape. Mark it as another entry
// point into the function.
if (opts::Verbosity >= 1) {
outs() << "BOLT-INFO: potentially escaped address 0x"
<< Twine::utohexstr(Address) << " in function " << BF << '\n';
}
BF.HasInternalLabelReference = true;
return std::make_pair(
BF.addEntryPointAtOffset(Address - BF.getAddress()), 0);
}
} else {
addInterproceduralReference(&BF, Address);
}
}
// With relocations, catch jump table references outside of the basic block
// containing the indirect jump.
if (HasRelocations) {
const MemoryContentsType MemType = analyzeMemoryAt(Address, BF);
if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) {
const MCSymbol *Symbol =
getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC);
return std::make_pair(Symbol, 0);
}
}
if (BinaryData *BD = getBinaryDataContainingAddress(Address))
return std::make_pair(BD->getSymbol(), Address - BD->getAddress());
// TODO: use DWARF info to get size/alignment here?
MCSymbol *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat");
LLVM_DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName() << '\n');
return std::make_pair(TargetSymbol, 0);
}
MemoryContentsType BinaryContext::analyzeMemoryAt(uint64_t Address,
BinaryFunction &BF) {
if (!isX86())
return MemoryContentsType::UNKNOWN;
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
if (!Section) {
// No section - possibly an absolute address. Since we don't allow
// internal function addresses to escape the function scope - we
// consider it a tail call.
if (opts::Verbosity > 1) {
errs() << "BOLT-WARNING: no section for address 0x"
<< Twine::utohexstr(Address) << " referenced from function " << BF
<< '\n';
}
return MemoryContentsType::UNKNOWN;
}
if (Section->isVirtual()) {
// The contents are filled at runtime.
return MemoryContentsType::UNKNOWN;
}
// No support for jump tables in code yet.
if (Section->isText())
return MemoryContentsType::UNKNOWN;
// Start with checking for PIC jump table. We expect non-PIC jump tables
// to have high 32 bits set to 0.
if (analyzeJumpTable(Address, JumpTable::JTT_PIC, BF))
return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
if (analyzeJumpTable(Address, JumpTable::JTT_NORMAL, BF))
return MemoryContentsType::POSSIBLE_JUMP_TABLE;
return MemoryContentsType::UNKNOWN;
}
bool BinaryContext::analyzeJumpTable(const uint64_t Address,
const JumpTable::JumpTableType Type,
const BinaryFunction &BF,
const uint64_t NextJTAddress,
JumpTable::AddressesType *EntriesAsAddress,
bool *HasEntryInFragment) const {
// Is one of the targets __builtin_unreachable?
bool HasUnreachable = false;
// Number of targets other than __builtin_unreachable.
uint64_t NumRealEntries = 0;
auto addEntryAddress = [&](uint64_t EntryAddress) {
if (EntriesAsAddress)
EntriesAsAddress->emplace_back(EntryAddress);
};
ErrorOr<const BinarySection &> Section = getSectionForAddress(Address);
if (!Section)
return false;
// The upper bound is defined by containing object, section limits, and
// the next jump table in memory.
uint64_t UpperBound = Section->getEndAddress();
const BinaryData *JumpTableBD = getBinaryDataAtAddress(Address);
if (JumpTableBD && JumpTableBD->getSize()) {
assert(JumpTableBD->getEndAddress() <= UpperBound &&
"data object cannot cross a section boundary");
UpperBound = JumpTableBD->getEndAddress();
}
if (NextJTAddress)
UpperBound = std::min(NextJTAddress, UpperBound);
LLVM_DEBUG({
using JTT = JumpTable::JumpTableType;
dbgs() << formatv("BOLT-DEBUG: analyzeJumpTable @{0:x} in {1}, JTT={2}\n",
Address, BF.getPrintName(),
Type == JTT::JTT_PIC ? "PIC" : "Normal");
});
const uint64_t EntrySize = getJumpTableEntrySize(Type);
for (uint64_t EntryAddress = Address; EntryAddress <= UpperBound - EntrySize;
EntryAddress += EntrySize) {
LLVM_DEBUG(dbgs() << " * Checking 0x" << Twine::utohexstr(EntryAddress)
<< " -> ");
// Check if there's a proper relocation against the jump table entry.
if (HasRelocations) {
if (Type == JumpTable::JTT_PIC &&
!DataPCRelocations.count(EntryAddress)) {
LLVM_DEBUG(
dbgs() << "FAIL: JTT_PIC table, no relocation for this address\n");
break;
}
if (Type == JumpTable::JTT_NORMAL && !getRelocationAt(EntryAddress)) {
LLVM_DEBUG(
dbgs()
<< "FAIL: JTT_NORMAL table, no relocation for this address\n");
break;
}
}
const uint64_t Value =
(Type == JumpTable::JTT_PIC)
? Address + *getSignedValueAtAddress(EntryAddress, EntrySize)
: *getPointerAtAddress(EntryAddress);
// __builtin_unreachable() case.
if (Value == BF.getAddress() + BF.getSize()) {
addEntryAddress(Value);
HasUnreachable = true;
LLVM_DEBUG(dbgs() << formatv("OK: {0:x} __builtin_unreachable\n", Value));
continue;
}
// Function or one of its fragments.
const BinaryFunction *TargetBF = getBinaryFunctionContainingAddress(Value);
bool DoesBelongToFunction = BF.containsAddress(Value) ||
(TargetBF && TargetBF->isParentOrChildOf(BF));
// We assume that a jump table cannot have function start as an entry.
if (!DoesBelongToFunction || Value == BF.getAddress()) {
LLVM_DEBUG({
if (!BF.containsAddress(Value)) {
dbgs() << "FAIL: function doesn't contain this address\n";
if (TargetBF) {
dbgs() << " ! function containing this address: "
<< TargetBF->getPrintName() << '\n';
if (TargetBF->isFragment()) {
dbgs() << " ! is a fragment";
for (BinaryFunction *Parent : TargetBF->ParentFragments)
dbgs() << ", parent: " << Parent->getPrintName();
dbgs() << '\n';
}
}
}
if (Value == BF.getAddress())
dbgs() << "FAIL: jump table cannot have function start as an entry\n";
});
break;
}
// Check there's an instruction at this offset.
if (TargetBF->getState() == BinaryFunction::State::Disassembled &&
!TargetBF->getInstructionAtOffset(Value - TargetBF->getAddress())) {
LLVM_DEBUG(dbgs() << formatv("FAIL: no instruction at {0:x}\n", Value));
break;
}
++NumRealEntries;
LLVM_DEBUG(dbgs() << formatv("OK: {0:x} real entry\n", Value));
if (TargetBF != &BF && HasEntryInFragment)
*HasEntryInFragment = true;
addEntryAddress(Value);
}
// It's a jump table if the number of real entries is more than 1, or there's
// one real entry and "unreachable" targets. If there are only multiple
// "unreachable" targets, then it's not a jump table.
return NumRealEntries + HasUnreachable >= 2;
}
void BinaryContext::populateJumpTables() {
LLVM_DEBUG(dbgs() << "DataPCRelocations: " << DataPCRelocations.size()
<< '\n');
for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE;
++JTI) {
JumpTable *JT = JTI->second;
bool NonSimpleParent = false;
for (BinaryFunction *BF : JT->Parents)
NonSimpleParent |= !BF->isSimple();
if (NonSimpleParent)
continue;
uint64_t NextJTAddress = 0;
auto NextJTI = std::next(JTI);
if (NextJTI != JTE)
NextJTAddress = NextJTI->second->getAddress();
const bool Success =
analyzeJumpTable(JT->getAddress(), JT->Type, *(JT->Parents[0]),
NextJTAddress, &JT->EntriesAsAddress, &JT->IsSplit);
if (!Success) {
LLVM_DEBUG({
dbgs() << "failed to analyze ";
JT->print(dbgs());
if (NextJTI != JTE) {
dbgs() << "next ";
NextJTI->second->print(dbgs());
}
});
llvm_unreachable("jump table heuristic failure");
}
for (BinaryFunction *Frag : JT->Parents) {
if (JT->IsSplit)
Frag->setHasIndirectTargetToSplitFragment(true);
for (uint64_t EntryAddress : JT->EntriesAsAddress)
// if target is builtin_unreachable
if (EntryAddress == Frag->getAddress() + Frag->getSize()) {
Frag->IgnoredBranches.emplace_back(EntryAddress - Frag->getAddress(),
Frag->getSize());
} else if (EntryAddress >= Frag->getAddress() &&
EntryAddress < Frag->getAddress() + Frag->getSize()) {
Frag->registerReferencedOffset(EntryAddress - Frag->getAddress());
}
}
// In strict mode, erase PC-relative relocation record. Later we check that
// all such records are erased and thus have been accounted for.
if (opts::StrictMode && JT->Type == JumpTable::JTT_PIC) {
for (uint64_t Address = JT->getAddress();
Address < JT->getAddress() + JT->getSize();
Address += JT->EntrySize) {
DataPCRelocations.erase(DataPCRelocations.find(Address));
}
}
// Mark to skip the function and all its fragments.
for (BinaryFunction *Frag : JT->Parents)
if (Frag->hasIndirectTargetToSplitFragment())
addFragmentsToSkip(Frag);
}
if (opts::StrictMode && DataPCRelocations.size()) {
LLVM_DEBUG({
dbgs() << DataPCRelocations.size()
<< " unclaimed PC-relative relocations left in data:\n";
for (uint64_t Reloc : DataPCRelocations)
dbgs() << Twine::utohexstr(Reloc) << '\n';
});
assert(0 && "unclaimed PC-relative relocations left in data\n");
}
clearList(DataPCRelocations);
}
void BinaryContext::skipMarkedFragments() {
std::vector<BinaryFunction *> FragmentQueue;
// Copy the functions to FragmentQueue.
FragmentQueue.assign(FragmentsToSkip.begin(), FragmentsToSkip.end());
auto addToWorklist = [&](BinaryFunction *Function) -> void {
if (FragmentsToSkip.count(Function))
return;
FragmentQueue.push_back(Function);
addFragmentsToSkip(Function);
};
// Functions containing split jump tables need to be skipped with all
// fragments (transitively).
for (size_t I = 0; I != FragmentQueue.size(); I++) {
BinaryFunction *BF = FragmentQueue[I];
assert(FragmentsToSkip.count(BF) &&
"internal error in traversing function fragments");
if (opts::Verbosity >= 1)
errs() << "BOLT-WARNING: Ignoring " << BF->getPrintName() << '\n';
BF->setSimple(false);
BF->setHasIndirectTargetToSplitFragment(true);
llvm::for_each(BF->Fragments, addToWorklist);
llvm::for_each(BF->ParentFragments, addToWorklist);
}
if (!FragmentsToSkip.empty())
errs() << "BOLT-WARNING: skipped " << FragmentsToSkip.size() << " function"
<< (FragmentsToSkip.size() == 1 ? "" : "s")
<< " due to cold fragments\n";
}
MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix,
uint64_t Size,
uint16_t Alignment,
unsigned Flags) {
auto Itr = BinaryDataMap.find(Address);
if (Itr != BinaryDataMap.end()) {
assert(Itr->second->getSize() == Size || !Size);
return Itr->second->getSymbol();
}
std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str();
assert(!GlobalSymbols.count(Name) && "created name is not unique");
return registerNameAtAddress(Name, Address, Size, Alignment, Flags);
}
MCSymbol *BinaryContext::getOrCreateUndefinedGlobalSymbol(StringRef Name) {
return Ctx->getOrCreateSymbol(Name);
}
BinaryFunction *BinaryContext::createBinaryFunction(
const std::string &Name, BinarySection &Section, uint64_t Address,
uint64_t Size, uint64_t SymbolSize, uint16_t Alignment) {
auto Result = BinaryFunctions.emplace(
Address, BinaryFunction(Name, Section, Address, Size, *this));
assert(Result.second == true && "unexpected duplicate function");
BinaryFunction *BF = &Result.first->second;
registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size,
Alignment);
setSymbolToFunctionMap(BF->getSymbol(), BF);
return BF;
}
const MCSymbol *
BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address,
JumpTable::JumpTableType Type) {
// Two fragments of same function access same jump table
if (JumpTable *JT = getJumpTableContainingAddress(Address)) {
assert(JT->Type == Type && "jump table types have to match");
assert(Address == JT->getAddress() && "unexpected non-empty jump table");
// Prevent associating a jump table to a specific fragment twice.
// This simple check arises from the assumption: no more than 2 fragments.
if (JT->Parents.size() == 1 && JT->Parents[0] != &Function) {
assert(JT->Parents[0]->isParentOrChildOf(Function) &&
"cannot re-use jump table of a different function");
// Duplicate the entry for the parent function for easy access
JT->Parents.push_back(&Function);
if (opts::Verbosity > 2) {
outs() << "BOLT-INFO: Multiple fragments access same jump table: "
<< JT->Parents[0]->getPrintName() << "; "
<< Function.getPrintName() << "\n";
JT->print(outs());
}
Function.JumpTables.emplace(Address, JT);
JT->Parents[0]->setHasIndirectTargetToSplitFragment(true);
JT->Parents[1]->setHasIndirectTargetToSplitFragment(true);
}
bool IsJumpTableParent = false;
(void)IsJumpTableParent;
for (BinaryFunction *Frag : JT->Parents)
if (Frag == &Function)
IsJumpTableParent = true;
assert(IsJumpTableParent &&
"cannot re-use jump table of a different function");
return JT->getFirstLabel();
}
// Re-use the existing symbol if possible.
MCSymbol *JTLabel = nullptr;
if (BinaryData *Object = getBinaryDataAtAddress(Address)) {
if (!isInternalSymbolName(Object->getSymbol()->getName()))
JTLabel = Object->getSymbol();
}
const uint64_t EntrySize = getJumpTableEntrySize(Type);
if (!JTLabel) {
const std::string JumpTableName = generateJumpTableName(Function, Address);
JTLabel = registerNameAtAddress(JumpTableName, Address, 0, EntrySize);
}
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTLabel->getName()
<< " in function " << Function << '\n');
JumpTable *JT = new JumpTable(*JTLabel, Address, EntrySize, Type,
JumpTable::LabelMapType{{0, JTLabel}},
*getSectionForAddress(Address));
JT->Parents.push_back(&Function);
if (opts::Verbosity > 2)
JT->print(outs());
JumpTables.emplace(Address, JT);
// Duplicate the entry for the parent function for easy access.
Function.JumpTables.emplace(Address, JT);
return JTLabel;
}
std::pair<uint64_t, const MCSymbol *>
BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT,
const MCSymbol *OldLabel) {
auto L = scopeLock();
unsigned Offset = 0;
bool Found = false;
for (std::pair<const unsigned, MCSymbol *> Elmt : JT->Labels) {
if (Elmt.second != OldLabel)
continue;
Offset = Elmt.first;
Found = true;
break;
}
assert(Found && "Label not found");
(void)Found;
MCSymbol *NewLabel = Ctx->createNamedTempSymbol("duplicatedJT");
JumpTable *NewJT =
new JumpTable(*NewLabel, JT->getAddress(), JT->EntrySize, JT->Type,
JumpTable::LabelMapType{{Offset, NewLabel}},
*getSectionForAddress(JT->getAddress()));
NewJT->Parents = JT->Parents;
NewJT->Entries = JT->Entries;
NewJT->Counts = JT->Counts;
uint64_t JumpTableID = ++DuplicatedJumpTables;
// Invert it to differentiate from regular jump tables whose IDs are their
// addresses in the input binary memory space
JumpTableID = ~JumpTableID;
JumpTables.emplace(JumpTableID, NewJT);
Function.JumpTables.emplace(JumpTableID, NewJT);
return std::make_pair(JumpTableID, NewLabel);
}
std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF,
uint64_t Address) {
size_t Id;
uint64_t Offset = 0;
if (const JumpTable *JT = BF.getJumpTableContainingAddress(Address)) {
Offset = Address - JT->getAddress();
auto Itr = JT->Labels.find(Offset);
if (Itr != JT->Labels.end())
return std::string(Itr->second->getName());
Id = JumpTableIds.at(JT->getAddress());
} else {
Id = JumpTableIds[Address] = BF.JumpTables.size();
}
return ("JUMP_TABLE/" + BF.getOneName().str() + "." + std::to_string(Id) +
(Offset ? ("." + std::to_string(Offset)) : ""));
}
bool BinaryContext::hasValidCodePadding(const BinaryFunction &BF) {
// FIXME: aarch64 support is missing.
if (!isX86())
return true;
if (BF.getSize() == BF.getMaxSize())
return true;
ErrorOr<ArrayRef<unsigned char>> FunctionData = BF.getData();
assert(FunctionData && "cannot get function as data");
uint64_t Offset = BF.getSize();
MCInst Instr;
uint64_t InstrSize = 0;
uint64_t InstrAddress = BF.getAddress() + Offset;
using std::placeholders::_1;
// Skip instructions that satisfy the predicate condition.
auto skipInstructions = [&](std::function<bool(const MCInst &)> Predicate) {
const uint64_t StartOffset = Offset;
for (; Offset < BF.getMaxSize();
Offset += InstrSize, InstrAddress += InstrSize) {
if (!DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset),
InstrAddress, nulls()))
break;
if (!Predicate(Instr))
break;
}
return Offset - StartOffset;
};
// Skip a sequence of zero bytes.
auto skipZeros = [&]() {
const uint64_t StartOffset = Offset;
for (; Offset < BF.getMaxSize(); ++Offset)
if ((*FunctionData)[Offset] != 0)
break;
return Offset - StartOffset;
};
// Accept the whole padding area filled with breakpoints.
auto isBreakpoint = std::bind(&MCPlusBuilder::isBreakpoint, MIB.get(), _1);
if (skipInstructions(isBreakpoint) && Offset == BF.getMaxSize())
return true;
auto isNoop = std::bind(&MCPlusBuilder::isNoop, MIB.get(), _1);
// Some functions have a jump to the next function or to the padding area
// inserted after the body.
auto isSkipJump = [&](const MCInst &Instr) {
uint64_t TargetAddress = 0;
if (MIB->isUnconditionalBranch(Instr) &&
MIB->evaluateBranch(Instr, InstrAddress, InstrSize, TargetAddress)) {
if (TargetAddress >= InstrAddress + InstrSize &&
TargetAddress <= BF.getAddress() + BF.getMaxSize()) {
return true;
}
}
return false;
};
// Skip over nops, jumps, and zero padding. Allow interleaving (this happens).
while (skipInstructions(isNoop) || skipInstructions(isSkipJump) ||
skipZeros())
;
if (Offset == BF.getMaxSize())
return true;
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: bad padding at address 0x"
<< Twine::utohexstr(BF.getAddress() + BF.getSize())
<< " starting at offset " << (Offset - BF.getSize())
<< " in function " << BF << '\n'
<< FunctionData->slice(BF.getSize(), BF.getMaxSize() - BF.getSize())
<< '\n';
}
return false;
}
void BinaryContext::adjustCodePadding() {
for (auto &BFI : BinaryFunctions) {
BinaryFunction &BF = BFI.second;
if (!shouldEmit(BF))
continue;
if (!hasValidCodePadding(BF)) {
if (HasRelocations) {
if (opts::Verbosity >= 1) {
outs() << "BOLT-INFO: function " << BF
<< " has invalid padding. Ignoring the function.\n";
}
BF.setIgnored();
} else {
BF.setMaxSize(BF.getSize());
}
}
}
}
MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name, uint64_t Address,
uint64_t Size,
uint16_t Alignment,
unsigned Flags) {
// Register the name with MCContext.
MCSymbol *Symbol = Ctx->getOrCreateSymbol(Name);
auto GAI = BinaryDataMap.find(Address);
BinaryData *BD;
if (GAI == BinaryDataMap.end()) {
ErrorOr<BinarySection &> SectionOrErr = getSectionForAddress(Address);
BinarySection &Section =
SectionOrErr ? SectionOrErr.get() : absoluteSection();
BD = new BinaryData(*Symbol, Address, Size, Alignment ? Alignment : 1,
Section, Flags);
GAI = BinaryDataMap.emplace(Address, BD).first;
GlobalSymbols[Name] = BD;
updateObjectNesting(GAI);
} else {
BD = GAI->second;
if (!BD->hasName(Name)) {
GlobalSymbols[Name] = BD;
BD->Symbols.push_back(Symbol);
}
}
return Symbol;
}
const BinaryData *
BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address) const {
auto NI = BinaryDataMap.lower_bound(Address);
auto End = BinaryDataMap.end();
if ((NI != End && Address == NI->first) ||
((NI != BinaryDataMap.begin()) && (NI-- != BinaryDataMap.begin()))) {
if (NI->second->containsAddress(Address))
return NI->second;
// If this is a sub-symbol, see if a parent data contains the address.
const BinaryData *BD = NI->second->getParent();
while (BD) {
if (BD->containsAddress(Address))
return BD;
BD = BD->getParent();
}
}
return nullptr;
}
bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) {
auto NI = BinaryDataMap.find(Address);
assert(NI != BinaryDataMap.end());
if (NI == BinaryDataMap.end())
return false;
// TODO: it's possible that a jump table starts at the same address
// as a larger blob of private data. When we set the size of the
// jump table, it might be smaller than the total blob size. In this
// case we just leave the original size since (currently) it won't really
// affect anything.
assert((!NI->second->Size || NI->second->Size == Size ||
(NI->second->isJumpTable() && NI->second->Size > Size)) &&
"can't change the size of a symbol that has already had its "
"size set");
if (!NI->second->Size) {
NI->second->Size = Size;
updateObjectNesting(NI);
return true;
}
return false;
}
void BinaryContext::generateSymbolHashes() {
auto isPadding = [](const BinaryData &BD) {
StringRef Contents = BD.getSection().getContents();
StringRef SymData = Contents.substr(BD.getOffset(), BD.getSize());
return (BD.getName().startswith("HOLEat") ||
SymData.find_first_not_of(0) == StringRef::npos);
};
uint64_t NumCollisions = 0;
for (auto &Entry : BinaryDataMap) {
BinaryData &BD = *Entry.second;
StringRef Name = BD.getName();
if (!isInternalSymbolName(Name))
continue;
// First check if a non-anonymous alias exists and move it to the front.
if (BD.getSymbols().size() > 1) {
auto Itr = llvm::find_if(BD.getSymbols(), [&](const MCSymbol *Symbol) {
return !isInternalSymbolName(Symbol->getName());
});
if (Itr != BD.getSymbols().end()) {
size_t Idx = std::distance(BD.getSymbols().begin(), Itr);
std::swap(BD.getSymbols()[0], BD.getSymbols()[Idx]);
continue;
}
}
// We have to skip 0 size symbols since they will all collide.
if (BD.getSize() == 0) {
continue;
}
const uint64_t Hash = BD.getSection().hash(BD);
const size_t Idx = Name.find("0x");
std::string NewName =
(Twine(Name.substr(0, Idx)) + "_" + Twine::utohexstr(Hash)).str();
if (getBinaryDataByName(NewName)) {
// Ignore collisions for symbols that appear to be padding
// (i.e. all zeros or a "hole")
if (!isPadding(BD)) {
if (opts::Verbosity) {
errs() << "BOLT-WARNING: collision detected when hashing " << BD
<< " with new name (" << NewName << "), skipping.\n";
}
++NumCollisions;
}
continue;
}
BD.Symbols.insert(BD.Symbols.begin(), Ctx->getOrCreateSymbol(NewName));
GlobalSymbols[NewName] = &BD;
}
if (NumCollisions) {
errs() << "BOLT-WARNING: " << NumCollisions
<< " collisions detected while hashing binary objects";
if (!opts::Verbosity)
errs() << ". Use -v=1 to see the list.";
errs() << '\n';
}
}
bool BinaryContext::registerFragment(BinaryFunction &TargetFunction,
BinaryFunction &Function) const {
assert(TargetFunction.isFragment() && "TargetFunction must be a fragment");
if (TargetFunction.isChildOf(Function))
return true;
TargetFunction.addParentFragment(Function);
Function.addFragment(TargetFunction);
if (!HasRelocations) {
TargetFunction.setSimple(false);
Function.setSimple(false);
}
if (opts::Verbosity >= 1) {
outs() << "BOLT-INFO: marking " << TargetFunction << " as a fragment of "
<< Function << '\n';
}
return true;
}
void BinaryContext::addAdrpAddRelocAArch64(BinaryFunction &BF,
MCInst &LoadLowBits,
MCInst &LoadHiBits,
uint64_t Target) {
const MCSymbol *TargetSymbol;
uint64_t Addend = 0;
std::tie(TargetSymbol, Addend) = handleAddressRef(Target, BF,
/*IsPCRel*/ true);
int64_t Val;
MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), Val,
ELF::R_AARCH64_ADR_PREL_PG_HI21);
MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(),
Val, ELF::R_AARCH64_ADD_ABS_LO12_NC);
}
bool BinaryContext::handleAArch64Veneer(uint64_t Address, bool MatchOnly) {
BinaryFunction *TargetFunction = getBinaryFunctionContainingAddress(Address);
if (TargetFunction)
return false;
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
assert(Section && "cannot get section for referenced address");
if (!Section->isText())
return false;
bool Ret = false;
StringRef SectionContents = Section->getContents();
uint64_t Offset = Address - Section->getAddress();
const uint64_t MaxSize = SectionContents.size() - Offset;
const uint8_t *Bytes =
reinterpret_cast<const uint8_t *>(SectionContents.data());
ArrayRef<uint8_t> Data(Bytes + Offset, MaxSize);
auto matchVeneer = [&](BinaryFunction::InstrMapType &Instructions,
MCInst &Instruction, uint64_t Offset,
uint64_t AbsoluteInstrAddr,
uint64_t TotalSize) -> bool {
MCInst *TargetHiBits, *TargetLowBits;
uint64_t TargetAddress, Count;
Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(),
AbsoluteInstrAddr, Instruction, TargetHiBits,
TargetLowBits, TargetAddress);
if (!Count)
return false;
if (MatchOnly)
return true;
// NOTE The target symbol was created during disassemble's
// handleExternalReference
const MCSymbol *VeneerSymbol = getOrCreateGlobalSymbol(Address, "FUNCat");
BinaryFunction *Veneer = createBinaryFunction(VeneerSymbol->getName().str(),
*Section, Address, TotalSize);
addAdrpAddRelocAArch64(*Veneer, *TargetLowBits, *TargetHiBits,
TargetAddress);
MIB->addAnnotation(Instruction, "AArch64Veneer", true);
Veneer->addInstruction(Offset, std::move(Instruction));
--Count;
for (auto It = Instructions.rbegin(); Count != 0; ++It, --Count) {
MIB->addAnnotation(It->second, "AArch64Veneer", true);
Veneer->addInstruction(It->first, std::move(It->second));
}
Veneer->getOrCreateLocalLabel(Address);
Veneer->setMaxSize(TotalSize);
Veneer->updateState(BinaryFunction::State::Disassembled);
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: handling veneer function at 0x" << Address
<< "\n");
return true;
};
uint64_t Size = 0, TotalSize = 0;
BinaryFunction::InstrMapType VeneerInstructions;
for (Offset = 0; Offset < MaxSize; Offset += Size) {
MCInst Instruction;
const uint64_t AbsoluteInstrAddr = Address + Offset;
if (!SymbolicDisAsm->getInstruction(Instruction, Size, Data.slice(Offset),
AbsoluteInstrAddr, nulls()))
break;
TotalSize += Size;
if (MIB->isBranch(Instruction)) {
Ret = matchVeneer(VeneerInstructions, Instruction, Offset,
AbsoluteInstrAddr, TotalSize);
break;
}
VeneerInstructions.emplace(Offset, std::move(Instruction));
}
return Ret;
}
void BinaryContext::processInterproceduralReferences() {
for (const std::pair<BinaryFunction *, uint64_t> &It :
InterproceduralReferences) {
BinaryFunction &Function = *It.first;
uint64_t Address = It.second;
if (!Address || Function.isIgnored())
continue;
BinaryFunction *TargetFunction =
getBinaryFunctionContainingAddress(Address);
if (&Function == TargetFunction)
continue;
if (TargetFunction) {
if (TargetFunction->isFragment() &&
!TargetFunction->isChildOf(Function)) {
errs() << "BOLT-WARNING: interprocedural reference between unrelated "
"fragments: "
<< Function.getPrintName() << " and "
<< TargetFunction->getPrintName() << '\n';
}
if (uint64_t Offset = Address - TargetFunction->getAddress())
TargetFunction->addEntryPointAtOffset(Offset);
continue;
}
// Check if address falls in function padding space - this could be
// unmarked data in code. In this case adjust the padding space size.
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
assert(Section && "cannot get section for referenced address");
if (!Section->isText())
continue;
// PLT requires special handling and could be ignored in this context.
StringRef SectionName = Section->getName();
if (SectionName == ".plt" || SectionName == ".plt.got")
continue;
// Check if it is aarch64 veneer written at Address
if (isAArch64() && handleAArch64Veneer(Address))
continue;
if (opts::processAllFunctions()) {
errs() << "BOLT-ERROR: cannot process binaries with unmarked "
<< "object in code at address 0x" << Twine::utohexstr(Address)
<< " belonging to section " << SectionName << " in current mode\n";
exit(1);
}
TargetFunction = getBinaryFunctionContainingAddress(Address,
/*CheckPastEnd=*/false,
/*UseMaxSize=*/true);
// We are not going to overwrite non-simple functions, but for simple
// ones - adjust the padding size.
if (TargetFunction && TargetFunction->isSimple()) {
errs() << "BOLT-WARNING: function " << *TargetFunction
<< " has an object detected in a padding region at address 0x"
<< Twine::utohexstr(Address) << '\n';
TargetFunction->setMaxSize(TargetFunction->getSize());
}
}
InterproceduralReferences.clear();
}
void BinaryContext::postProcessSymbolTable() {
fixBinaryDataHoles();
bool Valid = true;
for (auto &Entry : BinaryDataMap) {
BinaryData *BD = Entry.second;
if ((BD->getName().startswith("SYMBOLat") ||
BD->getName().startswith("DATAat")) &&
!BD->getParent() && !BD->getSize() && !BD->isAbsolute() &&
BD->getSection()) {
errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n";
Valid = false;
}
}
assert(Valid);
(void)Valid;
generateSymbolHashes();
}
void BinaryContext::foldFunction(BinaryFunction &ChildBF,
BinaryFunction &ParentBF) {
assert(!ChildBF.isMultiEntry() && !ParentBF.isMultiEntry() &&
"cannot merge functions with multiple entry points");
std::unique_lock<llvm::sys::RWMutex> WriteCtxLock(CtxMutex, std::defer_lock);
std::unique_lock<llvm::sys::RWMutex> WriteSymbolMapLock(
SymbolToFunctionMapMutex, std::defer_lock);
const StringRef ChildName = ChildBF.getOneName();
// Move symbols over and update bookkeeping info.
for (MCSymbol *Symbol : ChildBF.getSymbols()) {
ParentBF.getSymbols().push_back(Symbol);
WriteSymbolMapLock.lock();
SymbolToFunctionMap[Symbol] = &ParentBF;
WriteSymbolMapLock.unlock();
// NB: there's no need to update BinaryDataMap and GlobalSymbols.
}
ChildBF.getSymbols().clear();
// Move other names the child function is known under.
llvm::move(ChildBF.Aliases, std::back_inserter(ParentBF.Aliases));
ChildBF.Aliases.clear();
if (HasRelocations) {
// Merge execution counts of ChildBF into those of ParentBF.
// Without relocations, we cannot reliably merge profiles as both functions
// continue to exist and either one can be executed.
ChildBF.mergeProfileDataInto(ParentBF);
std::shared_lock<llvm::sys::RWMutex> ReadBfsLock(BinaryFunctionsMutex,
std::defer_lock);
std::unique_lock<llvm::sys::RWMutex> WriteBfsLock(BinaryFunctionsMutex,
std::defer_lock);
// Remove ChildBF from the global set of functions in relocs mode.
ReadBfsLock.lock();
auto FI = BinaryFunctions.find(ChildBF.getAddress());
ReadBfsLock.unlock();
assert(FI != BinaryFunctions.end() && "function not found");
assert(&ChildBF == &FI->second && "function mismatch");
WriteBfsLock.lock();
ChildBF.clearDisasmState();
FI = BinaryFunctions.erase(FI);
WriteBfsLock.unlock();
} else {
// In non-relocation mode we keep the function, but rename it.
std::string NewName = "__ICF_" + ChildName.str();
WriteCtxLock.lock();
ChildBF.getSymbols().push_back(Ctx->getOrCreateSymbol(NewName));
WriteCtxLock.unlock();
ChildBF.setFolded(&ParentBF);
}
ParentBF.setHasFunctionsFoldedInto();
}
void BinaryContext::fixBinaryDataHoles() {
assert(validateObjectNesting() && "object nesting inconsitency detected");
for (BinarySection &Section : allocatableSections()) {
std::vector<std::pair<uint64_t, uint64_t>> Holes;
auto isNotHole = [&Section](const binary_data_iterator &Itr) {
BinaryData *BD = Itr->second;
bool isHole = (!BD->getParent() && !BD->getSize() && BD->isObject() &&
(BD->getName().startswith("SYMBOLat0x") ||
BD->getName().startswith("DATAat0x") ||
BD->getName().startswith("ANONYMOUS")));
return !isHole && BD->getSection() == Section && !BD->getParent();
};
auto BDStart = BinaryDataMap.begin();
auto BDEnd = BinaryDataMap.end();
auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd);
auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd);
uint64_t EndAddress = Section.getAddress();
while (Itr != End) {
if (Itr->second->getAddress() > EndAddress) {
uint64_t Gap = Itr->second->getAddress() - EndAddress;
Holes.emplace_back(EndAddress, Gap);
}
EndAddress = Itr->second->getEndAddress();
++Itr;
}
if (EndAddress < Section.getEndAddress())
Holes.emplace_back(EndAddress, Section.getEndAddress() - EndAddress);
// If there is already a symbol at the start of the hole, grow that symbol
// to cover the rest. Otherwise, create a new symbol to cover the hole.
for (std::pair<uint64_t, uint64_t> &Hole : Holes) {
BinaryData *BD = getBinaryDataAtAddress(Hole.first);
if (BD) {
// BD->getSection() can be != Section if there are sections that
// overlap. In this case it is probably safe to just skip the holes
// since the overlapping section will not(?) have any symbols in it.
if (BD->getSection() == Section)
setBinaryDataSize(Hole.first, Hole.second);
} else {
getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1);
}
}
}
assert(validateObjectNesting() && "object nesting inconsitency detected");
assert(validateHoles() && "top level hole detected in object map");
}
void BinaryContext::printGlobalSymbols(raw_ostream &OS) const {
const BinarySection *CurrentSection = nullptr;
bool FirstSection = true;
for (auto &Entry : BinaryDataMap) {
const BinaryData *BD = Entry.second;
const BinarySection &Section = BD->getSection();
if (FirstSection || Section != *CurrentSection) {
uint64_t Address, Size;
StringRef Name = Section.getName();
if (Section) {
Address = Section.getAddress();
Size = Section.getSize();
} else {
Address = BD->getAddress();
Size = BD->getSize();
}
OS << "BOLT-INFO: Section " << Name << ", "
<< "0x" + Twine::utohexstr(Address) << ":"
<< "0x" + Twine::utohexstr(Address + Size) << "/" << Size << "\n";
CurrentSection = &Section;
FirstSection = false;
}
OS << "BOLT-INFO: ";
const BinaryData *P = BD->getParent();
while (P) {
OS << " ";
P = P->getParent();
}
OS << *BD << "\n";
}
}
Expected<unsigned> BinaryContext::getDwarfFile(
StringRef Directory, StringRef FileName, unsigned FileNumber,
std::optional<MD5::MD5Result> Checksum, std::optional<StringRef> Source,
unsigned CUID, unsigned DWARFVersion) {
DwarfLineTable &Table = DwarfLineTablesCUMap[CUID];
return Table.tryGetFile(Directory, FileName, Checksum, Source, DWARFVersion,
FileNumber);
}
unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID,
const uint32_t SrcCUID,
unsigned FileIndex) {
DWARFCompileUnit *SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID);
const DWARFDebugLine::LineTable *LineTable =
DwCtx->getLineTableForUnit(SrcUnit);
const std::vector<DWARFDebugLine::FileNameEntry> &FileNames =
LineTable->Prologue.FileNames;
// Dir indexes start at 1, as DWARF file numbers, and a dir index 0
// means empty dir.
assert(FileIndex > 0 && FileIndex <= FileNames.size() &&
"FileIndex out of range for the compilation unit.");
StringRef Dir = "";
if (FileNames[FileIndex - 1].DirIdx != 0) {
if (std::optional<const char *> DirName = dwarf::toString(
LineTable->Prologue
.IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1])) {
Dir = *DirName;
}
}
StringRef FileName = "";
if (std::optional<const char *> FName =
dwarf::toString(FileNames[FileIndex - 1].Name))
FileName = *FName;
assert(FileName != "");
DWARFCompileUnit *DstUnit = DwCtx->getCompileUnitForOffset(DestCUID);
return cantFail(getDwarfFile(Dir, FileName, 0, std::nullopt, std::nullopt,
DestCUID, DstUnit->getVersion()));
}
std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() {
std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size());
llvm::transform(llvm::make_second_range(BinaryFunctions),
SortedFunctions.begin(),
[](BinaryFunction &BF) { return &BF; });
llvm::stable_sort(SortedFunctions,
[](const BinaryFunction *A, const BinaryFunction *B) {
if (A->hasValidIndex() && B->hasValidIndex()) {
return A->getIndex() < B->getIndex();
}
return A->hasValidIndex();
});
return SortedFunctions;
}
std::vector<BinaryFunction *> BinaryContext::getAllBinaryFunctions() {
std::vector<BinaryFunction *> AllFunctions;
AllFunctions.reserve(BinaryFunctions.size() + InjectedBinaryFunctions.size());
llvm::transform(llvm::make_second_range(BinaryFunctions),
std::back_inserter(AllFunctions),
[](BinaryFunction &BF) { return &BF; });
llvm::copy(InjectedBinaryFunctions, std::back_inserter(AllFunctions));
return AllFunctions;
}
std::optional<DWARFUnit *> BinaryContext::getDWOCU(uint64_t DWOId) {
auto Iter = DWOCUs.find(DWOId);
if (Iter == DWOCUs.end())
return std::nullopt;
return Iter->second;
}
DWARFContext *BinaryContext::getDWOContext() const {
if (DWOCUs.empty())
return nullptr;
return &DWOCUs.begin()->second->getContext();
}
/// Handles DWO sections that can either be in .o, .dwo or .dwp files.
void BinaryContext::preprocessDWODebugInfo() {
for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) {
DWARFUnit *const DwarfUnit = CU.get();
if (std::optional<uint64_t> DWOId = DwarfUnit->getDWOId()) {
DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit();
if (!DWOCU->isDWOUnit()) {
std::string DWOName = dwarf::toString(
DwarfUnit->getUnitDIE().find(
{dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}),
"");
outs() << "BOLT-WARNING: Debug Fission: DWO debug information for "
<< DWOName
<< " was not retrieved and won't be updated. Please check "
"relative path.\n";
continue;
}
DWOCUs[*DWOId] = DWOCU;
}
}
if (!DWOCUs.empty())
outs() << "BOLT-INFO: processing split DWARF\n";
}
void BinaryContext::preprocessDebugInfo() {
struct CURange {
uint64_t LowPC;
uint64_t HighPC;
DWARFUnit *Unit;
bool operator<(const CURange &Other) const { return LowPC < Other.LowPC; }
};
// Building a map of address ranges to CUs similar to .debug_aranges and use
// it to assign CU to functions.
std::vector<CURange> AllRanges;
AllRanges.reserve(DwCtx->getNumCompileUnits());
for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) {
Expected<DWARFAddressRangesVector> RangesOrError =
CU->getUnitDIE().getAddressRanges();
if (!RangesOrError) {
consumeError(RangesOrError.takeError());
continue;
}
for (DWARFAddressRange &Range : *RangesOrError) {
// Parts of the debug info could be invalidated due to corresponding code
// being removed from the binary by the linker. Hence we check if the
// address is a valid one.
if (containsAddress(Range.LowPC))
AllRanges.emplace_back(CURange{Range.LowPC, Range.HighPC, CU.get()});
}
ContainsDwarf5 |= CU->getVersion() >= 5;
ContainsDwarfLegacy |= CU->getVersion() < 5;
}
llvm::sort(AllRanges);
for (auto &KV : BinaryFunctions) {
const uint64_t FunctionAddress = KV.first;
BinaryFunction &Function = KV.second;
auto It = llvm::partition_point(
AllRanges, [=](CURange R) { return R.HighPC <= FunctionAddress; });
if (It != AllRanges.end() && It->LowPC <= FunctionAddress)
Function.setDWARFUnit(It->Unit);
}
// Discover units with debug info that needs to be updated.
for (const auto &KV : BinaryFunctions) {
const BinaryFunction &BF = KV.second;
if (shouldEmit(BF) && BF.getDWARFUnit())
ProcessedCUs.insert(BF.getDWARFUnit());
}
// Clear debug info for functions from units that we are not going to process.
for (auto &KV : BinaryFunctions) {
BinaryFunction &BF = KV.second;
if (BF.getDWARFUnit() && !ProcessedCUs.count(BF.getDWARFUnit()))
BF.setDWARFUnit(nullptr);
}
if (opts::Verbosity >= 1) {
outs() << "BOLT-INFO: " << ProcessedCUs.size() << " out of "
<< DwCtx->getNumCompileUnits() << " CUs will be updated\n";
}
preprocessDWODebugInfo();
// Populate MCContext with DWARF files from all units.
StringRef GlobalPrefix = AsmInfo->getPrivateGlobalPrefix();
for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) {
const uint64_t CUID = CU->getOffset();
DwarfLineTable &BinaryLineTable = getDwarfLineTable(CUID);
BinaryLineTable.setLabel(Ctx->getOrCreateSymbol(
GlobalPrefix + "line_table_start" + Twine(CUID)));
if (!ProcessedCUs.count(CU.get()))
continue;
const DWARFDebugLine::LineTable *LineTable =
DwCtx->getLineTableForUnit(CU.get());
const std::vector<DWARFDebugLine::FileNameEntry> &FileNames =
LineTable->Prologue.FileNames;
uint16_t DwarfVersion = LineTable->Prologue.getVersion();
if (DwarfVersion >= 5) {
std::optional<MD5::MD5Result> Checksum;
if (LineTable->Prologue.ContentTypes.HasMD5)
Checksum = LineTable->Prologue.FileNames[0].Checksum;
std::optional<const char *> Name =
dwarf::toString(CU->getUnitDIE().find(dwarf::DW_AT_name), nullptr);
if (std::optional<uint64_t> DWOID = CU->getDWOId()) {
auto Iter = DWOCUs.find(*DWOID);
assert(Iter != DWOCUs.end() && "DWO CU was not found.");
Name = dwarf::toString(
Iter->second->getUnitDIE().find(dwarf::DW_AT_name), nullptr);
}
BinaryLineTable.setRootFile(CU->getCompilationDir(), *Name, Checksum,
std::nullopt);
}
BinaryLineTable.setDwarfVersion(DwarfVersion);
// Assign a unique label to every line table, one per CU.
// Make sure empty debug line tables are registered too.
if (FileNames.empty()) {
cantFail(getDwarfFile("", "<unknown>", 0, std::nullopt, std::nullopt,
CUID, DwarfVersion));
continue;
}
const uint32_t Offset = DwarfVersion < 5 ? 1 : 0;
for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) {
// Dir indexes start at 1, as DWARF file numbers, and a dir index 0
// means empty dir.
StringRef Dir = "";
if (FileNames[I].DirIdx != 0 || DwarfVersion >= 5)
if (std::optional<const char *> DirName = dwarf::toString(
LineTable->Prologue
.IncludeDirectories[FileNames[I].DirIdx - Offset]))
Dir = *DirName;
StringRef FileName = "";
if (std::optional<const char *> FName =
dwarf::toString(FileNames[I].Name))
FileName = *FName;
assert(FileName != "");
std::optional<MD5::MD5Result> Checksum;
if (DwarfVersion >= 5 && LineTable->Prologue.ContentTypes.HasMD5)
Checksum = LineTable->Prologue.FileNames[I].Checksum;
cantFail(getDwarfFile(Dir, FileName, 0, Checksum, std::nullopt, CUID,
DwarfVersion));
}
}
}
bool BinaryContext::shouldEmit(const BinaryFunction &Function) const {
if (Function.isPseudo())
return false;
if (opts::processAllFunctions())
return true;
if (Function.isIgnored())
return false;
// In relocation mode we will emit non-simple functions with CFG.
// If the function does not have a CFG it should be marked as ignored.
return HasRelocations || Function.isSimple();
}
void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) {
uint32_t Operation = Inst.getOperation();
switch (Operation) {
case MCCFIInstruction::OpSameValue:
OS << "OpSameValue Reg" << Inst.getRegister();
break;
case MCCFIInstruction::OpRememberState:
OS << "OpRememberState";
break;
case MCCFIInstruction::OpRestoreState:
OS << "OpRestoreState";
break;
case MCCFIInstruction::OpOffset:
OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset();
break;
case MCCFIInstruction::OpDefCfaRegister:
OS << "OpDefCfaRegister Reg" << Inst.getRegister();
break;
case MCCFIInstruction::OpDefCfaOffset:
OS << "OpDefCfaOffset " << Inst.getOffset();
break;
case MCCFIInstruction::OpDefCfa:
OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset();
break;
case MCCFIInstruction::OpRelOffset:
OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset();
break;
case MCCFIInstruction::OpAdjustCfaOffset:
OS << "OfAdjustCfaOffset " << Inst.getOffset();
break;
case MCCFIInstruction::OpEscape:
OS << "OpEscape";
break;
case MCCFIInstruction::OpRestore:
OS << "OpRestore Reg" << Inst.getRegister();
break;
case MCCFIInstruction::OpUndefined:
OS << "OpUndefined Reg" << Inst.getRegister();
break;
case MCCFIInstruction::OpRegister:
OS << "OpRegister Reg" << Inst.getRegister() << " Reg"
<< Inst.getRegister2();
break;
case MCCFIInstruction::OpWindowSave:
OS << "OpWindowSave";
break;
case MCCFIInstruction::OpGnuArgsSize:
OS << "OpGnuArgsSize";
break;
default:
OS << "Op#" << Operation;
break;
}
}
MarkerSymType BinaryContext::getMarkerType(const SymbolRef &Symbol) const {
// For aarch64, the ABI defines mapping symbols so we identify data in the
// code section (see IHI0056B). $x identifies a symbol starting code or the
// end of a data chunk inside code, $d indentifies start of data.
if (!isAArch64() || ELFSymbolRef(Symbol).getSize())
return MarkerSymType::NONE;
Expected<StringRef> NameOrError = Symbol.getName();
Expected<object::SymbolRef::Type> TypeOrError = Symbol.getType();
if (!TypeOrError || !NameOrError)
return MarkerSymType::NONE;
if (*TypeOrError != SymbolRef::ST_Unknown)
return MarkerSymType::NONE;
if (*NameOrError == "$x" || NameOrError->startswith("$x."))
return MarkerSymType::CODE;
if (*NameOrError == "$d" || NameOrError->startswith("$d."))
return MarkerSymType::DATA;
return MarkerSymType::NONE;
}
bool BinaryContext::isMarker(const SymbolRef &Symbol) const {
return getMarkerType(Symbol) != MarkerSymType::NONE;
}
static void printDebugInfo(raw_ostream &OS, const MCInst &Instruction,
const BinaryFunction *Function,
DWARFContext *DwCtx) {
DebugLineTableRowRef RowRef =
DebugLineTableRowRef::fromSMLoc(Instruction.getLoc());
if (RowRef == DebugLineTableRowRef::NULL_ROW)
return;
const DWARFDebugLine::LineTable *LineTable;
if (Function && Function->getDWARFUnit() &&
Function->getDWARFUnit()->getOffset() == RowRef.DwCompileUnitIndex) {
LineTable = Function->getDWARFLineTable();
} else {
LineTable = DwCtx->getLineTableForUnit(
DwCtx->getCompileUnitForOffset(RowRef.DwCompileUnitIndex));
}
assert(LineTable && "line table expected for instruction with debug info");
const DWARFDebugLine::Row &Row = LineTable->Rows[RowRef.RowIndex - 1];
StringRef FileName = "";
if (std::optional<const char *> FName =
dwarf::toString(LineTable->Prologue.FileNames[Row.File - 1].Name))
FileName = *FName;
OS << " # debug line " << FileName << ":" << Row.Line;
if (Row.Column)
OS << ":" << Row.Column;
if (Row.Discriminator)
OS << " discriminator:" << Row.Discriminator;
}
void BinaryContext::printInstruction(raw_ostream &OS, const MCInst &Instruction,
uint64_t Offset,
const BinaryFunction *Function,
bool PrintMCInst, bool PrintMemData,
bool PrintRelocations,
StringRef Endl) const {
if (MIB->isEHLabel(Instruction)) {
OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << Endl;
return;
}
OS << format(" %08" PRIx64 ": ", Offset);
if (MIB->isCFI(Instruction)) {
uint32_t Offset = Instruction.getOperand(0).getImm();
OS << "\t!CFI\t$" << Offset << "\t; ";
if (Function)
printCFI(OS, *Function->getCFIFor(Instruction));
OS << Endl;
return;
}
InstPrinter->printInst(&Instruction, 0, "", *STI, OS);
if (MIB->isCall(Instruction)) {
if (MIB->isTailCall(Instruction))
OS << " # TAILCALL ";
if (MIB->isInvoke(Instruction)) {
const std::optional<MCPlus::MCLandingPad> EHInfo =
MIB->getEHInfo(Instruction);
OS << " # handler: ";
if (EHInfo->first)
OS << *EHInfo->first;
else
OS << '0';
OS << "; action: " << EHInfo->second;
const int64_t GnuArgsSize = MIB->getGnuArgsSize(Instruction);
if (GnuArgsSize >= 0)
OS << "; GNU_args_size = " << GnuArgsSize;
}
} else if (MIB->isIndirectBranch(Instruction)) {
if (uint64_t JTAddress = MIB->getJumpTable(Instruction)) {
OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress);
} else {
OS << " # UNKNOWN CONTROL FLOW";
}
}
if (std::optional<uint32_t> Offset = MIB->getOffset(Instruction))
OS << " # Offset: " << *Offset;
MIB->printAnnotations(Instruction, OS);
if (opts::PrintDebugInfo)
printDebugInfo(OS, Instruction, Function, DwCtx.get());
if ((opts::PrintRelocations || PrintRelocations) && Function) {
const uint64_t Size = computeCodeSize(&Instruction, &Instruction + 1);
Function->printRelocations(OS, Offset, Size);
}
OS << Endl;
if (PrintMCInst) {
Instruction.dump_pretty(OS, InstPrinter.get());
OS << Endl;
}
}
std::optional<uint64_t>
BinaryContext::getBaseAddressForMapping(uint64_t MMapAddress,
uint64_t FileOffset) const {
// Find a segment with a matching file offset.
for (auto &KV : SegmentMapInfo) {
const SegmentInfo &SegInfo = KV.second;
if (alignDown(SegInfo.FileOffset, SegInfo.Alignment) == FileOffset) {
// Use segment's aligned memory offset to calculate the base address.
const uint64_t MemOffset = alignDown(SegInfo.Address, SegInfo.Alignment);
return MMapAddress - MemOffset;
}
}
return std::nullopt;
}
ErrorOr<BinarySection &> BinaryContext::getSectionForAddress(uint64_t Address) {
auto SI = AddressToSection.upper_bound(Address);
if (SI != AddressToSection.begin()) {
--SI;
uint64_t UpperBound = SI->first + SI->second->getSize();
if (!SI->second->getSize())
UpperBound += 1;
if (UpperBound > Address)
return *SI->second;
}
return std::make_error_code(std::errc::bad_address);
}
ErrorOr<StringRef>
BinaryContext::getSectionNameForAddress(uint64_t Address) const {
if (ErrorOr<const BinarySection &> Section = getSectionForAddress(Address))
return Section->getName();
return std::make_error_code(std::errc::bad_address);
}
BinarySection &BinaryContext::registerSection(BinarySection *Section) {
auto Res = Sections.insert(Section);
(void)Res;
assert(Res.second && "can't register the same section twice.");
// Only register allocatable sections in the AddressToSection map.
if (Section->isAllocatable() && Section->getAddress())
AddressToSection.insert(std::make_pair(Section->getAddress(), Section));
NameToSection.insert(
std::make_pair(std::string(Section->getName()), Section));
if (Section->hasSectionRef())
SectionRefToBinarySection.insert(
std::make_pair(Section->getSectionRef(), Section));
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n");
return *Section;
}
BinarySection &BinaryContext::registerSection(SectionRef Section) {
return registerSection(new BinarySection(*this, Section));
}
BinarySection &
BinaryContext::registerSection(const Twine &SectionName,
const BinarySection &OriginalSection) {
return registerSection(
new BinarySection(*this, SectionName, OriginalSection));
}
BinarySection &
BinaryContext::registerOrUpdateSection(const Twine &Name, unsigned ELFType,
unsigned ELFFlags, uint8_t *Data,
uint64_t Size, unsigned Alignment) {
auto NamedSections = getSectionByName(Name);
if (NamedSections.begin() != NamedSections.end()) {
assert(std::next(NamedSections.begin()) == NamedSections.end() &&
"can only update unique sections");
BinarySection *Section = NamedSections.begin()->second;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> ");
const bool Flag = Section->isAllocatable();
(void)Flag;
Section->update(Data, Size, Alignment, ELFType, ELFFlags);
LLVM_DEBUG(dbgs() << *Section << "\n");
// FIXME: Fix section flags/attributes for MachO.
if (isELF())
assert(Flag == Section->isAllocatable() &&
"can't change section allocation status");
return *Section;
}
return registerSection(
new BinarySection(*this, Name, Data, Size, Alignment, ELFType, ELFFlags));
}
void BinaryContext::deregisterSectionName(const BinarySection &Section) {
auto NameRange = NameToSection.equal_range(Section.getName().str());
while (NameRange.first != NameRange.second) {
if (NameRange.first->second == &Section) {
NameToSection.erase(NameRange.first);
break;
}
++NameRange.first;
}
}
void BinaryContext::deregisterUnusedSections() {
ErrorOr<BinarySection &> AbsSection = getUniqueSectionByName("<absolute>");
for (auto SI = Sections.begin(); SI != Sections.end();) {
BinarySection *Section = *SI;
// We check getOutputData() instead of getOutputSize() because sometimes
// zero-sized .text.cold sections are allocated.
if (Section->hasSectionRef() || Section->getOutputData() ||
(AbsSection && Section == &AbsSection.get())) {
++SI;
continue;
}
LLVM_DEBUG(dbgs() << "LLVM-DEBUG: deregistering " << Section->getName()
<< '\n';);
deregisterSectionName(*Section);
SI = Sections.erase(SI);
delete Section;
}
}
bool BinaryContext::deregisterSection(BinarySection &Section) {
BinarySection *SectionPtr = &Section;
auto Itr = Sections.find(SectionPtr);
if (Itr != Sections.end()) {
auto Range = AddressToSection.equal_range(SectionPtr->getAddress());
while (Range.first != Range.second) {
if (Range.first->second == SectionPtr) {
AddressToSection.erase(Range.first);
break;
}
++Range.first;
}
deregisterSectionName(*SectionPtr);
Sections.erase(Itr);
delete SectionPtr;
return true;
}
return false;
}
void BinaryContext::renameSection(BinarySection &Section,
const Twine &NewName) {
auto Itr = Sections.find(&Section);
assert(Itr != Sections.end() && "Section must exist to be renamed.");
Sections.erase(Itr);
deregisterSectionName(Section);
Section.Name = NewName.str();
Section.setOutputName(Section.Name);
NameToSection.insert(std::make_pair(Section.Name, &Section));
// Reinsert with the new name.
Sections.insert(&Section);
}
void BinaryContext::printSections(raw_ostream &OS) const {
for (BinarySection *const &Section : Sections)
OS << "BOLT-INFO: " << *Section << "\n";
}
BinarySection &BinaryContext::absoluteSection() {
if (ErrorOr<BinarySection &> Section = getUniqueSectionByName("<absolute>"))
return *Section;
return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u);
}
ErrorOr<uint64_t> BinaryContext::getUnsignedValueAtAddress(uint64_t Address,
size_t Size) const {
const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address);
if (!Section)
return std::make_error_code(std::errc::bad_address);
if (Section->isVirtual())
return 0;
DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(),
AsmInfo->getCodePointerSize());
auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress());
return DE.getUnsigned(&ValueOffset, Size);
}
ErrorOr<uint64_t> BinaryContext::getSignedValueAtAddress(uint64_t Address,
size_t Size) const {
const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address);
if (!Section)
return std::make_error_code(std::errc::bad_address);
if (Section->isVirtual())
return 0;
DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(),
AsmInfo->getCodePointerSize());
auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress());
return DE.getSigned(&ValueOffset, Size);
}
void BinaryContext::addRelocation(uint64_t Address, MCSymbol *Symbol,
uint64_t Type, uint64_t Addend,
uint64_t Value) {
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
assert(Section && "cannot find section for address");
Section->addRelocation(Address - Section->getAddress(), Symbol, Type, Addend,
Value);
}
void BinaryContext::addDynamicRelocation(uint64_t Address, MCSymbol *Symbol,
uint64_t Type, uint64_t Addend,
uint64_t Value) {
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
assert(Section && "cannot find section for address");
Section->addDynamicRelocation(Address - Section->getAddress(), Symbol, Type,
Addend, Value);
}
bool BinaryContext::removeRelocationAt(uint64_t Address) {
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
assert(Section && "cannot find section for address");
return Section->removeRelocationAt(Address - Section->getAddress());
}
const Relocation *BinaryContext::getRelocationAt(uint64_t Address) const {
ErrorOr<const BinarySection &> Section = getSectionForAddress(Address);
if (!Section)
return nullptr;
return Section->getRelocationAt(Address - Section->getAddress());
}
const Relocation *
BinaryContext::getDynamicRelocationAt(uint64_t Address) const {
ErrorOr<const BinarySection &> Section = getSectionForAddress(Address);
if (!Section)
return nullptr;
return Section->getDynamicRelocationAt(Address - Section->getAddress());
}
void BinaryContext::markAmbiguousRelocations(BinaryData &BD,
const uint64_t Address) {
auto setImmovable = [&](BinaryData &BD) {
BinaryData *Root = BD.getAtomicRoot();
LLVM_DEBUG(if (Root->isMoveable()) {
dbgs() << "BOLT-DEBUG: setting " << *Root << " as immovable "
<< "due to ambiguous relocation referencing 0x"
<< Twine::utohexstr(Address) << '\n';
});
Root->setIsMoveable(false);
};
if (Address == BD.getAddress()) {
setImmovable(BD);
// Set previous symbol as immovable
BinaryData *Prev = getBinaryDataContainingAddress(Address - 1);
if (Prev && Prev->getEndAddress() == BD.getAddress())
setImmovable(*Prev);
}
if (Address == BD.getEndAddress()) {
setImmovable(BD);
// Set next symbol as immovable
BinaryData *Next = getBinaryDataContainingAddress(BD.getEndAddress());
if (Next && Next->getAddress() == BD.getEndAddress())
setImmovable(*Next);
}
}
BinaryFunction *BinaryContext::getFunctionForSymbol(const MCSymbol *Symbol,
uint64_t *EntryDesc) {
std::shared_lock<llvm::sys::RWMutex> Lock(SymbolToFunctionMapMutex);
auto BFI = SymbolToFunctionMap.find(Symbol);
if (BFI == SymbolToFunctionMap.end())
return nullptr;
BinaryFunction *BF = BFI->second;
if (EntryDesc)
*EntryDesc = BF->getEntryIDForSymbol(Symbol);
return BF;
}
void BinaryContext::exitWithBugReport(StringRef Message,
const BinaryFunction &Function) const {
errs() << "=======================================\n";
errs() << "BOLT is unable to proceed because it couldn't properly understand "
"this function.\n";
errs() << "If you are running the most recent version of BOLT, you may "
"want to "
"report this and paste this dump.\nPlease check that there is no "
"sensitive contents being shared in this dump.\n";
errs() << "\nOffending function: " << Function.getPrintName() << "\n\n";
ScopedPrinter SP(errs());
SP.printBinaryBlock("Function contents", *Function.getData());
errs() << "\n";
Function.dump();
errs() << "ERROR: " << Message;
errs() << "\n=======================================\n";
exit(1);
}
BinaryFunction *
BinaryContext::createInjectedBinaryFunction(const std::string &Name,
bool IsSimple) {
InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple));
BinaryFunction *BF = InjectedBinaryFunctions.back();
setSymbolToFunctionMap(BF->getSymbol(), BF);
BF->CurrentState = BinaryFunction::State::CFG;
return BF;
}
std::pair<size_t, size_t>
BinaryContext::calculateEmittedSize(BinaryFunction &BF, bool FixBranches) {
// Adjust branch instruction to match the current layout.
if (FixBranches)
BF.fixBranches();
// Create local MC context to isolate the effect of ephemeral code emission.
IndependentCodeEmitter MCEInstance = createIndependentMCCodeEmitter();
MCContext *LocalCtx = MCEInstance.LocalCtx.get();
MCAsmBackend *MAB =
TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions());
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(VecOS);
std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer(
*TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW),
std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI,
/*RelaxAll=*/false,
/*IncrementalLinkerCompatible=*/false,
/*DWARFMustBeAtTheEnd=*/false));
Streamer->initSections(false, *STI);
MCSection *Section = MCEInstance.LocalMOFI->getTextSection();
Section->setHasInstructions(true);
// Create symbols in the LocalCtx so that they get destroyed with it.
MCSymbol *StartLabel = LocalCtx->createTempSymbol();
MCSymbol *EndLabel = LocalCtx->createTempSymbol();
Streamer->switchSection(Section);
Streamer->emitLabel(StartLabel);
emitFunctionBody(*Streamer, BF, BF.getLayout().getMainFragment(),
/*EmitCodeOnly=*/true);
Streamer->emitLabel(EndLabel);
using LabelRange = std::pair<const MCSymbol *, const MCSymbol *>;
SmallVector<LabelRange> SplitLabels;
for (FunctionFragment &FF : BF.getLayout().getSplitFragments()) {
MCSymbol *const SplitStartLabel = LocalCtx->createTempSymbol();
MCSymbol *const SplitEndLabel = LocalCtx->createTempSymbol();
SplitLabels.emplace_back(SplitStartLabel, SplitEndLabel);
MCSectionELF *const SplitSection = LocalCtx->getELFSection(
BF.getCodeSectionName(FF.getFragmentNum()), ELF::SHT_PROGBITS,
ELF::SHF_EXECINSTR | ELF::SHF_ALLOC);
SplitSection->setHasInstructions(true);
Streamer->switchSection(SplitSection);
Streamer->emitLabel(SplitStartLabel);
emitFunctionBody(*Streamer, BF, FF, /*EmitCodeOnly=*/true);
Streamer->emitLabel(SplitEndLabel);
// To avoid calling MCObjectStreamer::flushPendingLabels() which is
// private
Streamer->emitBytes(StringRef(""));
Streamer->switchSection(Section);
}
// To avoid calling MCObjectStreamer::flushPendingLabels() which is private or
// MCStreamer::Finish(), which does more than we want
Streamer->emitBytes(StringRef(""));
MCAssembler &Assembler =
static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler();
MCAsmLayout Layout(Assembler);
Assembler.layout(Layout);
const uint64_t HotSize =
Layout.getSymbolOffset(*EndLabel) - Layout.getSymbolOffset(*StartLabel);
const uint64_t ColdSize =
std::accumulate(SplitLabels.begin(), SplitLabels.end(), 0ULL,
[&](const uint64_t Accu, const LabelRange &Labels) {
return Accu + Layout.getSymbolOffset(*Labels.second) -
Layout.getSymbolOffset(*Labels.first);
});
// Clean-up the effect of the code emission.
for (const MCSymbol &Symbol : Assembler.symbols()) {
MCSymbol *MutableSymbol = const_cast<MCSymbol *>(&Symbol);
MutableSymbol->setUndefined();
MutableSymbol->setIsRegistered(false);
}
return std::make_pair(HotSize, ColdSize);
}
bool BinaryContext::validateInstructionEncoding(
ArrayRef<uint8_t> InputSequence) const {
MCInst Inst;
uint64_t InstSize;
DisAsm->getInstruction(Inst, InstSize, InputSequence, 0, nulls());
assert(InstSize == InputSequence.size() &&
"Disassembled instruction size does not match the sequence.");
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
MCE->encodeInstruction(Inst, Code, Fixups, *STI);
auto OutputSequence = ArrayRef<uint8_t>((uint8_t *)Code.data(), Code.size());
if (InputSequence != OutputSequence) {
if (opts::Verbosity > 1) {
errs() << "BOLT-WARNING: mismatched encoding detected\n"
<< " input: " << InputSequence << '\n'
<< " output: " << OutputSequence << '\n';
}
return false;
}
return true;
}
uint64_t BinaryContext::getHotThreshold() const {
static uint64_t Threshold = 0;
if (Threshold == 0) {
Threshold = std::max(
(uint64_t)opts::ExecutionCountThreshold,
NumProfiledFuncs ? SumExecutionCount / (2 * NumProfiledFuncs) : 1);
}
return Threshold;
}
BinaryFunction *BinaryContext::getBinaryFunctionContainingAddress(
uint64_t Address, bool CheckPastEnd, bool UseMaxSize) {
auto FI = BinaryFunctions.upper_bound(Address);
if (FI == BinaryFunctions.begin())
return nullptr;
--FI;
const uint64_t UsedSize =
UseMaxSize ? FI->second.getMaxSize() : FI->second.getSize();
if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0))
return nullptr;
return &FI->second;
}
BinaryFunction *BinaryContext::getBinaryFunctionAtAddress(uint64_t Address) {
// First, try to find a function starting at the given address. If the
// function was folded, this will get us the original folded function if it
// wasn't removed from the list, e.g. in non-relocation mode.
auto BFI = BinaryFunctions.find(Address);
if (BFI != BinaryFunctions.end())
return &BFI->second;
// We might have folded the function matching the object at the given
// address. In such case, we look for a function matching the symbol
// registered at the original address. The new function (the one that the
// original was folded into) will hold the symbol.
if (const BinaryData *BD = getBinaryDataAtAddress(Address)) {
uint64_t EntryID = 0;
BinaryFunction *BF = getFunctionForSymbol(BD->getSymbol(), &EntryID);
if (BF && EntryID == 0)
return BF;
}
return nullptr;
}
DebugAddressRangesVector BinaryContext::translateModuleAddressRanges(
const DWARFAddressRangesVector &InputRanges) const {
DebugAddressRangesVector OutputRanges;
for (const DWARFAddressRange Range : InputRanges) {
auto BFI = BinaryFunctions.lower_bound(Range.LowPC);
while (BFI != BinaryFunctions.end()) {
const BinaryFunction &Function = BFI->second;
if (Function.getAddress() >= Range.HighPC)
break;
const DebugAddressRangesVector FunctionRanges =
Function.getOutputAddressRanges();
llvm::move(FunctionRanges, std::back_inserter(OutputRanges));
std::advance(BFI, 1);
}
}
return OutputRanges;
}
} // namespace bolt
} // namespace llvm
|