1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
|
//===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the collection of functions and classes used for
// emission of code and data into object/binary file.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryEmitter.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/DebugData.h"
#include "bolt/Core/FunctionLayout.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "bolt/Utils/Utils.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/SMLoc.h"
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::opt<JumpTableSupportLevel> JumpTables;
extern cl::opt<bool> PreserveBlocksAlignment;
cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
cl::cat(BoltOptCategory));
cl::opt<MacroFusionType>
AlignMacroOpFusion("align-macro-fusion",
cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"),
cl::init(MFT_HOT),
cl::values(clEnumValN(MFT_NONE, "none",
"do not insert alignment no-ops for macro-fusion"),
clEnumValN(MFT_HOT, "hot",
"only insert alignment no-ops on hot execution paths (default)"),
clEnumValN(MFT_ALL, "all",
"always align instructions to allow macro-fusion")),
cl::ZeroOrMore,
cl::cat(BoltRelocCategory));
static cl::list<std::string>
BreakFunctionNames("break-funcs",
cl::CommaSeparated,
cl::desc("list of functions to core dump on (debugging)"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::list<std::string>
FunctionPadSpec("pad-funcs",
cl::CommaSeparated,
cl::desc("list of functions to pad with amount of bytes"),
cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool> MarkFuncs(
"mark-funcs",
cl::desc("mark function boundaries with break instruction to make "
"sure we accidentally don't cross them"),
cl::ReallyHidden, cl::cat(BoltCategory));
static cl::opt<bool> PrintJumpTables("print-jump-tables",
cl::desc("print jump tables"), cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
cl::desc("only apply branch boundary alignment in hot code"),
cl::init(true),
cl::cat(BoltOptCategory));
size_t padFunction(const BinaryFunction &Function) {
static std::map<std::string, size_t> FunctionPadding;
if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
for (std::string &Spec : FunctionPadSpec) {
size_t N = Spec.find(':');
if (N == std::string::npos)
continue;
std::string Name = Spec.substr(0, N);
size_t Padding = std::stoull(Spec.substr(N + 1));
FunctionPadding[Name] = Padding;
}
}
for (auto &FPI : FunctionPadding) {
std::string Name = FPI.first;
size_t Padding = FPI.second;
if (Function.hasNameRegex(Name))
return Padding;
}
return 0;
}
} // namespace opts
namespace {
using JumpTable = bolt::JumpTable;
class BinaryEmitter {
private:
BinaryEmitter(const BinaryEmitter &) = delete;
BinaryEmitter &operator=(const BinaryEmitter &) = delete;
MCStreamer &Streamer;
BinaryContext &BC;
public:
BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
: Streamer(Streamer), BC(BC) {}
/// Emit all code and data.
void emitAll(StringRef OrgSecPrefix);
/// Emit function code. The caller is responsible for emitting function
/// symbol(s) and setting the section to emit the code to.
void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
bool EmitCodeOnly = false);
private:
/// Emit function code.
void emitFunctions();
/// Emit a single function.
bool emitFunction(BinaryFunction &BF, FunctionFragment &FF);
/// Helper for emitFunctionBody to write data inside a function
/// (used for AArch64)
void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
BinaryFunction *OnBehalfOf = nullptr);
/// Emit jump tables for the function.
void emitJumpTables(const BinaryFunction &BF);
/// Emit jump table data. Callee supplies sections for the data.
void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
MCSection *ColdSection);
void emitCFIInstruction(const MCCFIInstruction &Inst) const;
/// Emit exception handling ranges for the function.
void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF);
/// Emit line number information corresponding to \p NewLoc. \p PrevLoc
/// provides a context for de-duplication of line number info.
/// \p FirstInstr indicates if \p NewLoc represents the first instruction
/// in a sequence, such as a function fragment.
///
/// Return new current location which is either \p NewLoc or \p PrevLoc.
SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
bool FirstInstr);
/// Use \p FunctionEndSymbol to mark the end of the line info sequence.
/// Note that it does not automatically result in the insertion of the EOS
/// marker in the line table program, but provides one to the DWARF generator
/// when it needs it.
void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);
/// Emit debug line info for unprocessed functions from CUs that include
/// emitted functions.
void emitDebugLineInfoForOriginalFunctions();
/// Emit debug line for CUs that were not modified.
void emitDebugLineInfoForUnprocessedCUs();
/// Emit data sections that have code references in them.
void emitDataSections(StringRef OrgSecPrefix);
};
} // anonymous namespace
void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
Streamer.initSections(false, *BC.STI);
if (opts::UpdateDebugSections && BC.isELF()) {
// Force the emission of debug line info into allocatable section to ensure
// JITLink will process it.
//
// NB: on MachO all sections are required for execution, hence no need
// to change flags/attributes.
MCSectionELF *ELFDwarfLineSection =
static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
MCSectionELF *ELFDwarfLineStrSection =
static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineStrSection());
ELFDwarfLineStrSection->setFlags(ELF::SHF_ALLOC);
}
if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
RtLibrary->emitBinary(BC, Streamer);
BC.getTextSection()->setAlignment(Align(opts::AlignText));
emitFunctions();
if (opts::UpdateDebugSections) {
emitDebugLineInfoForOriginalFunctions();
DwarfLineTable::emit(BC, Streamer);
}
emitDataSections(OrgSecPrefix);
}
void BinaryEmitter::emitFunctions() {
auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
const bool HasProfile = BC.NumProfiledFuncs > 0;
const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
for (BinaryFunction *Function : Functions) {
if (!BC.shouldEmit(*Function))
continue;
LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
<< "\" : " << Function->getFunctionNumber() << '\n');
// Was any part of the function emitted.
bool Emitted = false;
// Turn off Intel JCC Erratum mitigation for cold code if requested
if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
!Function->hasValidProfile())
Streamer.setAllowAutoPadding(false);
FunctionLayout &Layout = Function->getLayout();
Emitted |= emitFunction(*Function, Layout.getMainFragment());
if (Function->isSplit()) {
if (opts::X86AlignBranchBoundaryHotOnly)
Streamer.setAllowAutoPadding(false);
assert((Layout.fragment_size() == 1 || Function->isSimple()) &&
"Only simple functions can have fragments");
for (FunctionFragment &FF : Layout.getSplitFragments()) {
// Skip empty fragments so no symbols and sections for empty fragments
// are generated
if (FF.empty() && !Function->hasConstantIsland())
continue;
Emitted |= emitFunction(*Function, FF);
}
}
Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);
if (Emitted)
Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
}
};
// Mark the start of hot text.
if (opts::HotText) {
Streamer.switchSection(BC.getTextSection());
Streamer.emitLabel(BC.getHotTextStartSymbol());
}
// Emit functions in sorted order.
std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
emit(SortedFunctions);
// Emit functions added by BOLT.
emit(BC.getInjectedBinaryFunctions());
// Mark the end of hot text.
if (opts::HotText) {
Streamer.switchSection(BC.getTextSection());
Streamer.emitLabel(BC.getHotTextEndSymbol());
}
}
bool BinaryEmitter::emitFunction(BinaryFunction &Function,
FunctionFragment &FF) {
if (Function.size() == 0 && !Function.hasIslandsInfo())
return false;
if (Function.getState() == BinaryFunction::State::Empty)
return false;
// Avoid emitting function without instructions when overwriting the original
// function in-place. Otherwise, emit the empty function to define the symbol.
if (!BC.HasRelocations && !Function.hasNonPseudoInstructions())
return false;
MCSection *Section =
BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum()));
Streamer.switchSection(Section);
Section->setHasInstructions(true);
BC.Ctx->addGenDwarfSection(Section);
if (BC.HasRelocations) {
// Set section alignment to at least maximum possible object alignment.
// We need this to support LongJmp and other passes that calculates
// tentative layout.
Section->ensureMinAlignment(Align(opts::AlignFunctions));
Streamer.emitCodeAlignment(Align(BinaryFunction::MinAlign), &*BC.STI);
uint16_t MaxAlignBytes = FF.isSplitFragment()
? Function.getMaxColdAlignmentBytes()
: Function.getMaxAlignmentBytes();
if (MaxAlignBytes > 0)
Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI, MaxAlignBytes);
} else {
Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI);
}
MCContext &Context = Streamer.getContext();
const MCAsmInfo *MAI = Context.getAsmInfo();
MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum());
// Emit all symbols associated with the main function entry.
if (FF.isMainFragment()) {
for (MCSymbol *Symbol : Function.getSymbols()) {
Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
Streamer.emitLabel(Symbol);
}
} else {
Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
Streamer.emitLabel(StartSymbol);
}
// Emit CFI start
if (Function.hasCFI()) {
Streamer.emitCFIStartProc(/*IsSimple=*/false);
if (Function.getPersonalityFunction() != nullptr)
Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
Function.getPersonalityEncoding());
MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum());
if (LSDASymbol)
Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
else
Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
// Emit CFI instructions relative to the CIE
for (const MCCFIInstruction &CFIInstr : Function.cie()) {
// Only write CIE CFI insns that LLVM will not already emit
const std::vector<MCCFIInstruction> &FrameInstrs =
MAI->getInitialFrameState();
if (!llvm::is_contained(FrameInstrs, CFIInstr))
emitCFIInstruction(CFIInstr);
}
}
assert((Function.empty() || !(*Function.begin()).isCold()) &&
"first basic block should never be cold");
// Emit UD2 at the beginning if requested by user.
if (!opts::BreakFunctionNames.empty()) {
for (std::string &Name : opts::BreakFunctionNames) {
if (Function.hasNameRegex(Name)) {
Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
break;
}
}
}
// Emit code.
emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false);
// Emit padding if requested.
if (size_t Padding = opts::padFunction(Function)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
<< Padding << " bytes\n");
Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
}
if (opts::MarkFuncs)
Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
// Emit CFI end
if (Function.hasCFI())
Streamer.emitCFIEndProc();
MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum());
Streamer.emitLabel(EndSymbol);
if (MAI->hasDotTypeDotSizeDirective()) {
const MCExpr *SizeExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(EndSymbol, Context),
MCSymbolRefExpr::create(StartSymbol, Context), Context);
Streamer.emitELFSize(StartSymbol, SizeExpr);
}
if (opts::UpdateDebugSections && Function.getDWARFUnit())
emitLineInfoEnd(Function, EndSymbol);
// Exception handling info for the function.
emitLSDA(Function, FF);
if (FF.isMainFragment() && opts::JumpTables > JTS_NONE)
emitJumpTables(Function);
return true;
}
void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
bool EmitCodeOnly) {
if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) {
assert(BF.getLayout().isHotColdSplit() &&
"Constant island support only with hot/cold split");
BF.duplicateConstantIslands();
}
if (!FF.empty() && FF.front()->isLandingPad()) {
assert(!FF.front()->isEntryPoint() &&
"Landing pad cannot be entry point of function");
// If the first block of the fragment is a landing pad, it's offset from the
// start of the area that the corresponding LSDA describes is zero. In this
// case, the call site entries in that LSDA have 0 as offset to the landing
// pad, which the runtime interprets as "no handler". To prevent this,
// insert some padding.
Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
}
// Track the first emitted instruction with debug info.
bool FirstInstr = true;
for (BinaryBasicBlock *const BB : FF) {
if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
BB->getAlignment() > 1)
Streamer.emitCodeAlignment(BB->getAlign(), &*BC.STI,
BB->getAlignmentMaxBytes());
Streamer.emitLabel(BB->getLabel());
if (!EmitCodeOnly) {
if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
Streamer.emitLabel(EntrySymbol);
}
// Check if special alignment for macro-fusion is needed.
bool MayNeedMacroFusionAlignment =
(opts::AlignMacroOpFusion == MFT_ALL) ||
(opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount());
BinaryBasicBlock::const_iterator MacroFusionPair;
if (MayNeedMacroFusionAlignment) {
MacroFusionPair = BB->getMacroOpFusionPair();
if (MacroFusionPair == BB->end())
MayNeedMacroFusionAlignment = false;
}
SMLoc LastLocSeen;
// Remember if the last instruction emitted was a prefix.
bool LastIsPrefix = false;
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
MCInst &Instr = *I;
if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
continue;
// Handle pseudo instructions.
if (BC.MIB->isEHLabel(Instr)) {
const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr);
assert(Instr.getNumOperands() >= 1 && Label &&
"bad EH_LABEL instruction");
Streamer.emitLabel(const_cast<MCSymbol *>(Label));
continue;
}
if (BC.MIB->isCFI(Instr)) {
emitCFIInstruction(*BF.getCFIFor(Instr));
continue;
}
// Handle macro-fusion alignment. If we emitted a prefix as
// the last instruction, we should've already emitted the associated
// alignment hint, so don't emit it twice.
if (MayNeedMacroFusionAlignment && !LastIsPrefix &&
I == MacroFusionPair) {
// This assumes the second instruction in the macro-op pair will get
// assigned to its own MCRelaxableFragment. Since all JCC instructions
// are relaxable, we should be safe.
}
if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) {
LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr);
FirstInstr = false;
}
// Prepare to tag this location with a label if we need to keep track of
// the location of calls/returns for BOLT address translation maps
if (!EmitCodeOnly && BF.requiresAddressTranslation() &&
BC.MIB->getOffset(Instr)) {
const uint32_t Offset = *BC.MIB->getOffset(Instr);
MCSymbol *LocSym = BC.Ctx->createTempSymbol();
Streamer.emitLabel(LocSym);
BB->getLocSyms().emplace_back(Offset, LocSym);
}
Streamer.emitInstruction(Instr, *BC.STI);
LastIsPrefix = BC.MIB->isPrefix(Instr);
}
}
if (!EmitCodeOnly)
emitConstantIslands(BF, FF.isSplitFragment());
}
void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
BinaryFunction *OnBehalfOf) {
if (!BF.hasIslandsInfo())
return;
BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
return;
// AArch64 requires CI to be aligned to 8 bytes due to access instructions
// restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
const uint16_t Alignment = OnBehalfOf
? OnBehalfOf->getConstantIslandAlignment()
: BF.getConstantIslandAlignment();
Streamer.emitCodeAlignment(Align(Alignment), &*BC.STI);
if (!OnBehalfOf) {
if (!EmitColdPart)
Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
else
Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
}
assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
"spurious OnBehalfOf constant island emission");
assert(!BF.isInjected() &&
"injected functions should not have constant islands");
// Raw contents of the function.
StringRef SectionContents = BF.getOriginSection()->getContents();
// Raw contents of the function.
StringRef FunctionContents = SectionContents.substr(
BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
if (opts::Verbosity && !OnBehalfOf)
outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n";
// We split the island into smaller blocks and output labels between them.
auto IS = Islands.Offsets.begin();
for (auto DataIter = Islands.DataOffsets.begin();
DataIter != Islands.DataOffsets.end(); ++DataIter) {
uint64_t FunctionOffset = *DataIter;
uint64_t EndOffset = 0ULL;
// Determine size of this data chunk
auto NextData = std::next(DataIter);
auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
if (CodeIter == Islands.CodeOffsets.end() &&
NextData == Islands.DataOffsets.end())
EndOffset = BF.getMaxSize();
else if (CodeIter == Islands.CodeOffsets.end())
EndOffset = *NextData;
else if (NextData == Islands.DataOffsets.end())
EndOffset = *CodeIter;
else
EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;
if (FunctionOffset == EndOffset)
continue; // Size is zero, nothing to emit
auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
if (FunctionOffset >= EndOffset)
return;
for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
It != Islands.Relocations.end(); ++It) {
if (It->first >= EndOffset)
break;
const Relocation &Relocation = It->second;
if (FunctionOffset < Relocation.Offset) {
Streamer.emitBytes(
FunctionContents.slice(FunctionOffset, Relocation.Offset));
FunctionOffset = Relocation.Offset;
}
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: emitting constant island relocation"
<< " for " << BF << " at offset 0x"
<< Twine::utohexstr(Relocation.Offset) << " with size "
<< Relocation::getSizeForType(Relocation.Type) << '\n');
FunctionOffset += Relocation.emit(&Streamer);
}
assert(FunctionOffset <= EndOffset && "overflow error");
if (FunctionOffset < EndOffset) {
Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
FunctionOffset = EndOffset;
}
};
// Emit labels, relocs and data
while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
auto NextLabelOffset =
IS == Islands.Offsets.end() ? EndOffset : IS->first;
auto NextStop = std::min(NextLabelOffset, EndOffset);
assert(NextStop <= EndOffset && "internal overflow error");
emitCI(FunctionOffset, NextStop);
if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
// This is a slightly complex code to decide which label to emit. We
// have 4 cases to handle: regular symbol, cold symbol, regular or cold
// symbol being emitted on behalf of an external function.
if (!OnBehalfOf) {
if (!EmitColdPart) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
<< IS->second->getName() << " at offset 0x"
<< Twine::utohexstr(IS->first) << '\n');
if (IS->second->isUndefined())
Streamer.emitLabel(IS->second);
else
assert(BF.hasName(std::string(IS->second->getName())));
} else if (Islands.ColdSymbols.count(IS->second) != 0) {
LLVM_DEBUG(dbgs()
<< "BOLT-DEBUG: emitted label "
<< Islands.ColdSymbols[IS->second]->getName() << '\n');
if (Islands.ColdSymbols[IS->second]->isUndefined())
Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
}
} else {
if (!EmitColdPart) {
if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
<< Sym->getName() << '\n');
Streamer.emitLabel(Sym);
}
} else if (MCSymbol *Sym =
Islands.ColdProxies[OnBehalfOf][IS->second]) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
<< '\n');
Streamer.emitLabel(Sym);
}
}
++IS;
}
}
assert(FunctionOffset <= EndOffset && "overflow error");
emitCI(FunctionOffset, EndOffset);
}
assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");
if (OnBehalfOf)
return;
// Now emit constant islands from other functions that we may have used in
// this function.
for (BinaryFunction *ExternalFunc : Islands.Dependency)
emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
}
SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
SMLoc PrevLoc, bool FirstInstr) {
DWARFUnit *FunctionCU = BF.getDWARFUnit();
const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
assert(FunctionCU && "cannot emit line info for function without CU");
DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
// Check if no new line info needs to be emitted.
if (RowReference == DebugLineTableRowRef::NULL_ROW ||
NewLoc.getPointer() == PrevLoc.getPointer())
return PrevLoc;
unsigned CurrentFilenum = 0;
const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;
// If the CU id from the current instruction location does not
// match the CU id from the current function, it means that we
// have come across some inlined code. We must look up the CU
// for the instruction's original function and get the line table
// from that.
const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
if (CurrentUnitIndex != FunctionUnitIndex) {
CurrentLineTable = BC.DwCtx->getLineTableForUnit(
BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
// Add filename from the inlined function to the current CU.
CurrentFilenum = BC.addDebugFilenameToUnit(
FunctionUnitIndex, CurrentUnitIndex,
CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
}
const DWARFDebugLine::Row &CurrentRow =
CurrentLineTable->Rows[RowReference.RowIndex - 1];
if (!CurrentFilenum)
CurrentFilenum = CurrentRow.File;
unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
(DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
(DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
(DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);
// Always emit is_stmt at the beginning of function fragment.
if (FirstInstr)
Flags |= DWARF2_FLAG_IS_STMT;
BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
Flags, CurrentRow.Isa, CurrentRow.Discriminator);
const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
BC.Ctx->clearDwarfLocSeen();
MCSymbol *LineSym = BC.Ctx->createTempSymbol();
Streamer.emitLabel(LineSym);
BC.getDwarfLineTable(FunctionUnitIndex)
.getMCLineSections()
.addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc),
Streamer.getCurrentSectionOnly());
return NewLoc;
}
void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
MCSymbol *FunctionEndLabel) {
DWARFUnit *FunctionCU = BF.getDWARFUnit();
assert(FunctionCU && "DWARF unit expected");
BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
BC.Ctx->clearDwarfLocSeen();
BC.getDwarfLineTable(FunctionCU->getOffset())
.getMCLineSections()
.addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
Streamer.getCurrentSectionOnly());
}
void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
if (!BF.hasJumpTables())
return;
if (opts::PrintJumpTables)
outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";
for (auto &JTI : BF.jumpTables()) {
JumpTable &JT = *JTI.second;
// Only emit shared jump tables once, when processing the first parent
if (JT.Parents.size() > 1 && JT.Parents[0] != &BF)
continue;
if (opts::PrintJumpTables)
JT.print(outs());
if (opts::JumpTables == JTS_BASIC && BC.HasRelocations) {
JT.updateOriginal();
} else {
MCSection *HotSection, *ColdSection;
if (opts::JumpTables == JTS_BASIC) {
// In non-relocation mode we have to emit jump tables in local sections.
// This way we only overwrite them when the corresponding function is
// overwritten.
std::string Name = ".local." + JT.Labels[0]->getName().str();
std::replace(Name.begin(), Name.end(), '/', '.');
BinarySection &Section =
BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
Section.setAnonymous(true);
JT.setOutputSection(Section);
HotSection = BC.getDataSection(Name);
ColdSection = HotSection;
} else {
if (BF.isSimple()) {
HotSection = ReadOnlySection;
ColdSection = ReadOnlyColdSection;
} else {
HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
ColdSection = HotSection;
}
}
emitJumpTable(JT, HotSection, ColdSection);
}
}
}
void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
MCSection *ColdSection) {
// Pre-process entries for aggressive splitting.
// Each label represents a separate switch table and gets its own count
// determining its destination.
std::map<MCSymbol *, uint64_t> LabelCounts;
if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
MCSymbol *CurrentLabel = JT.Labels.at(0);
uint64_t CurrentLabelCount = 0;
for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
auto LI = JT.Labels.find(Index * JT.EntrySize);
if (LI != JT.Labels.end()) {
LabelCounts[CurrentLabel] = CurrentLabelCount;
CurrentLabel = LI->second;
CurrentLabelCount = 0;
}
CurrentLabelCount += JT.Counts[Index].Count;
}
LabelCounts[CurrentLabel] = CurrentLabelCount;
} else {
Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection);
Streamer.emitValueToAlignment(Align(JT.EntrySize));
}
MCSymbol *LastLabel = nullptr;
uint64_t Offset = 0;
for (MCSymbol *Entry : JT.Entries) {
auto LI = JT.Labels.find(Offset);
if (LI != JT.Labels.end()) {
LLVM_DEBUG({
dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName()
<< " (originally was at address 0x"
<< Twine::utohexstr(JT.getAddress() + Offset)
<< (Offset ? ") as part of larger jump table\n" : ")\n");
});
if (!LabelCounts.empty()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
<< LabelCounts[LI->second] << '\n');
if (LabelCounts[LI->second] > 0)
Streamer.switchSection(HotSection);
else
Streamer.switchSection(ColdSection);
Streamer.emitValueToAlignment(Align(JT.EntrySize));
}
// Emit all labels registered at the address of this jump table
// to sync with our global symbol table. We may have two labels
// registered at this address if one label was created via
// getOrCreateGlobalSymbol() (e.g. LEA instructions referencing
// this location) and another via getOrCreateJumpTable(). This
// creates a race where the symbols created by these two
// functions may or may not be the same, but they are both
// registered in our symbol table at the same address. By
// emitting them all here we make sure there is no ambiguity
// that depends on the order that these symbols were created, so
// whenever this address is referenced in the binary, it is
// certain to point to the jump table identified at this
// address.
if (BinaryData *BD = BC.getBinaryDataByName(LI->second->getName())) {
for (MCSymbol *S : BD->getSymbols())
Streamer.emitLabel(S);
} else {
Streamer.emitLabel(LI->second);
}
LastLabel = LI->second;
}
if (JT.Type == JumpTable::JTT_NORMAL) {
Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
} else { // JTT_PIC
const MCSymbolRefExpr *JTExpr =
MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
const MCSymbolRefExpr *E =
MCSymbolRefExpr::create(Entry, Streamer.getContext());
const MCBinaryExpr *Value =
MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
Streamer.emitValue(Value, JT.EntrySize);
}
Offset += JT.EntrySize;
}
}
void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
switch (Inst.getOperation()) {
default:
llvm_unreachable("Unexpected instruction");
case MCCFIInstruction::OpDefCfaOffset:
Streamer.emitCFIDefCfaOffset(Inst.getOffset());
break;
case MCCFIInstruction::OpAdjustCfaOffset:
Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
break;
case MCCFIInstruction::OpDefCfa:
Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
break;
case MCCFIInstruction::OpDefCfaRegister:
Streamer.emitCFIDefCfaRegister(Inst.getRegister());
break;
case MCCFIInstruction::OpOffset:
Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
break;
case MCCFIInstruction::OpRegister:
Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
break;
case MCCFIInstruction::OpWindowSave:
Streamer.emitCFIWindowSave();
break;
case MCCFIInstruction::OpNegateRAState:
Streamer.emitCFINegateRAState();
break;
case MCCFIInstruction::OpSameValue:
Streamer.emitCFISameValue(Inst.getRegister());
break;
case MCCFIInstruction::OpGnuArgsSize:
Streamer.emitCFIGnuArgsSize(Inst.getOffset());
break;
case MCCFIInstruction::OpEscape:
Streamer.AddComment(Inst.getComment());
Streamer.emitCFIEscape(Inst.getValues());
break;
case MCCFIInstruction::OpRestore:
Streamer.emitCFIRestore(Inst.getRegister());
break;
case MCCFIInstruction::OpUndefined:
Streamer.emitCFIUndefined(Inst.getRegister());
break;
}
}
// The code is based on EHStreamer::emitExceptionTable().
void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) {
const BinaryFunction::CallSitesRange Sites =
BF.getCallSites(FF.getFragmentNum());
if (Sites.empty())
return;
// Calculate callsite table size. Size of each callsite entry is:
//
// sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
//
// or
//
// sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3;
for (const auto &FragmentCallSite : Sites)
CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action);
Streamer.switchSection(BC.MOFI->getLSDASection());
const unsigned TTypeEncoding = BF.getLSDATypeEncoding();
const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
const uint16_t TTypeAlignment = 4;
// Type tables have to be aligned at 4 bytes.
Streamer.emitValueToAlignment(Align(TTypeAlignment));
// Emit the LSDA label.
MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum());
assert(LSDASymbol && "no LSDA symbol set");
Streamer.emitLabel(LSDASymbol);
// Corresponding FDE start.
const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum());
// Emit the LSDA header.
// If LPStart is omitted, then the start of the FDE is used as a base for
// landing pad displacements. Then if a cold fragment starts with
// a landing pad, this means that the first landing pad offset will be 0.
// As a result, the exception handling runtime will ignore this landing pad
// because zero offset denotes the absence of a landing pad.
// For this reason, when the binary has fixed starting address we emit LPStart
// as 0 and output the absolute value of the landing pad in the table.
//
// If the base address can change, we cannot use absolute addresses for
// landing pads (at least not without runtime relocations). Hence, we fall
// back to emitting landing pads relative to the FDE start.
// As we are emitting label differences, we have to guarantee both labels are
// defined in the same section and hence cannot place the landing pad into a
// cold fragment when the corresponding call site is in the hot fragment.
// Because of this issue and the previously described issue of possible
// zero-offset landing pad we have to place landing pads in the same section
// as the corresponding invokes for shared objects.
std::function<void(const MCSymbol *)> emitLandingPad;
if (BC.HasFixedLoadAddress) {
Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
Streamer.emitIntValue(0, 4); // LPStart
emitLandingPad = [&](const MCSymbol *LPSymbol) {
if (!LPSymbol)
Streamer.emitIntValue(0, 4);
else
Streamer.emitSymbolValue(LPSymbol, 4);
};
} else {
Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
emitLandingPad = [&](const MCSymbol *LPSymbol) {
if (!LPSymbol)
Streamer.emitIntValue(0, 4);
else
Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
};
}
Streamer.emitIntValue(TTypeEncoding, 1); // TType format
// See the comment in EHStreamer::emitExceptionTable() on to use
// uleb128 encoding (which can use variable number of bytes to encode the same
// value) to ensure type info table is properly aligned at 4 bytes without
// iteratively fixing sizes of the tables.
unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
unsigned TTypeBaseOffset =
sizeof(int8_t) + // Call site format
CallSiteTableLengthSize + // Call site table length size
CallSiteTableLength + // Call site table length
BF.getLSDAActionTable().size() + // Actions table size
BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
unsigned TotalSize = sizeof(int8_t) + // LPStart format
sizeof(int8_t) + // TType format
TTypeBaseOffsetSize + // TType base offset size
TTypeBaseOffset; // TType base offset
unsigned SizeAlign = (4 - TotalSize) & 3;
if (TTypeEncoding != dwarf::DW_EH_PE_omit)
// Account for any extra padding that will be added to the call site table
// length.
Streamer.emitULEB128IntValue(TTypeBaseOffset,
/*PadTo=*/TTypeBaseOffsetSize + SizeAlign);
// Emit the landing pad call site table. We use signed data4 since we can emit
// a landing pad in a different part of the split function that could appear
// earlier in the address space than LPStart.
Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
Streamer.emitULEB128IntValue(CallSiteTableLength);
for (const auto &FragmentCallSite : Sites) {
const BinaryFunction::CallSite &CallSite = FragmentCallSite.second;
const MCSymbol *BeginLabel = CallSite.Start;
const MCSymbol *EndLabel = CallSite.End;
assert(BeginLabel && "start EH label expected");
assert(EndLabel && "end EH label expected");
// Start of the range is emitted relative to the start of current
// function split part.
Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
emitLandingPad(CallSite.LP);
Streamer.emitULEB128IntValue(CallSite.Action);
}
// Write out action, type, and type index tables at the end.
//
// For action and type index tables there's no need to change the original
// table format unless we are doing function splitting, in which case we can
// split and optimize the tables.
//
// For type table we (re-)encode the table using TTypeEncoding matching
// the current assembler mode.
for (uint8_t const &Byte : BF.getLSDAActionTable())
Streamer.emitIntValue(Byte, 1);
const BinaryFunction::LSDATypeTableTy &TypeTable =
(TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
: BF.getLSDATypeTable();
assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
"indirect type table size mismatch");
for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
const uint64_t TypeAddress = TypeTable[Index];
switch (TTypeEncoding & 0x70) {
default:
llvm_unreachable("unsupported TTypeEncoding");
case dwarf::DW_EH_PE_absptr:
Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
break;
case dwarf::DW_EH_PE_pcrel: {
if (TypeAddress) {
const MCSymbol *TypeSymbol =
BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
Streamer.emitLabel(DotSymbol);
const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
} else {
Streamer.emitIntValue(0, TTypeEncodingSize);
}
break;
}
}
}
for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
Streamer.emitIntValue(Byte, 1);
}
void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
// If a function is in a CU containing at least one processed function, we
// have to rewrite the whole line table for that CU. For unprocessed functions
// we use data from the input line table.
for (auto &It : BC.getBinaryFunctions()) {
const BinaryFunction &Function = It.second;
// If the function was emitted, its line info was emitted with it.
if (Function.isEmitted())
continue;
const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
if (!LineTable)
continue; // nothing to update for this function
const uint64_t Address = Function.getAddress();
std::vector<uint32_t> Results;
if (!LineTable->lookupAddressRange(
{Address, object::SectionedAddress::UndefSection},
Function.getSize(), Results))
continue;
if (Results.empty())
continue;
// The first row returned could be the last row matching the start address.
// Find the first row with the same address that is not the end of the
// sequence.
uint64_t FirstRow = Results.front();
while (FirstRow > 0) {
const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
break;
--FirstRow;
}
const uint64_t EndOfSequenceAddress =
Function.getAddress() + Function.getMaxSize();
BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
.addLineTableSequence(LineTable, FirstRow, Results.back(),
EndOfSequenceAddress);
}
// For units that are completely unprocessed, use original debug line contents
// eliminating the need to regenerate line info program.
emitDebugLineInfoForUnprocessedCUs();
}
void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
// Sorted list of section offsets provides boundaries for section fragments,
// where each fragment is the unit's contribution to debug line section.
std::vector<uint64_t> StmtListOffsets;
StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
DWARFDie CUDie = CU->getUnitDIE();
auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
if (!StmtList)
continue;
StmtListOffsets.push_back(*StmtList);
}
llvm::sort(StmtListOffsets);
// For each CU that was not processed, emit its line info as a binary blob.
for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
if (BC.ProcessedCUs.count(CU.get()))
continue;
DWARFDie CUDie = CU->getUnitDIE();
auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
if (!StmtList)
continue;
StringRef DebugLineContents = CU->getLineSection().Data;
const uint64_t Begin = *StmtList;
// Statement list ends where the next unit contribution begins, or at the
// end of the section.
auto It = llvm::upper_bound(StmtListOffsets, Begin);
const uint64_t End =
It == StmtListOffsets.end() ? DebugLineContents.size() : *It;
BC.getDwarfLineTable(CU->getOffset())
.addRawContents(DebugLineContents.slice(Begin, End));
}
}
void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
for (BinarySection &Section : BC.sections()) {
if (!Section.hasRelocations())
continue;
StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : "";
Section.emitAsData(Streamer, Prefix + Section.getName());
Section.clearRelocations();
}
}
namespace llvm {
namespace bolt {
void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
StringRef OrgSecPrefix) {
BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
}
void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
FunctionFragment &FF, bool EmitCodeOnly) {
BinaryEmitter(Streamer, BF.getBinaryContext())
.emitFunctionBody(BF, FF, EmitCodeOnly);
}
} // namespace bolt
} // namespace llvm
|