1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
//===- bolt/Core/BinarySection.cpp - Section in a binary file -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BinarySection class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinarySection.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Utils/Utils.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::opt<bool> PrintRelocations;
extern cl::opt<bool> HotData;
} // namespace opts
uint64_t BinarySection::Count = 0;
bool BinarySection::isELF() const { return BC.isELF(); }
bool BinarySection::isMachO() const { return BC.isMachO(); }
uint64_t
BinarySection::hash(const BinaryData &BD,
std::map<const BinaryData *, uint64_t> &Cache) const {
auto Itr = Cache.find(&BD);
if (Itr != Cache.end())
return Itr->second;
hash_code Hash =
hash_combine(hash_value(BD.getSize()), hash_value(BD.getSectionName()));
Cache[&BD] = Hash;
if (!containsRange(BD.getAddress(), BD.getSize()))
return Hash;
uint64_t Offset = BD.getAddress() - getAddress();
const uint64_t EndOffset = BD.getEndAddress() - getAddress();
auto Begin = Relocations.lower_bound(Relocation{Offset, 0, 0, 0, 0});
auto End = Relocations.upper_bound(Relocation{EndOffset, 0, 0, 0, 0});
const StringRef Contents = getContents();
while (Begin != End) {
const Relocation &Rel = *Begin++;
Hash = hash_combine(
Hash, hash_value(Contents.substr(Offset, Begin->Offset - Offset)));
if (BinaryData *RelBD = BC.getBinaryDataByName(Rel.Symbol->getName()))
Hash = hash_combine(Hash, hash(*RelBD, Cache));
Offset = Rel.Offset + Rel.getSize();
}
Hash = hash_combine(Hash,
hash_value(Contents.substr(Offset, EndOffset - Offset)));
Cache[&BD] = Hash;
return Hash;
}
void BinarySection::emitAsData(MCStreamer &Streamer,
const Twine &SectionName) const {
StringRef SectionContents = getContents();
MCSectionELF *ELFSection =
BC.Ctx->getELFSection(SectionName, getELFType(), getELFFlags());
Streamer.switchSection(ELFSection);
Streamer.emitValueToAlignment(getAlign());
if (BC.HasRelocations && opts::HotData && isReordered())
Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("__hot_data_start"));
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting "
<< (isAllocatable() ? "" : "non-")
<< "allocatable data section " << SectionName << '\n');
if (!hasRelocations()) {
Streamer.emitBytes(SectionContents);
} else {
uint64_t SectionOffset = 0;
for (auto RI = Relocations.begin(), RE = Relocations.end(); RI != RE;) {
auto RelocationOffset = RI->Offset;
assert(RelocationOffset < SectionContents.size() && "overflow detected");
if (SectionOffset < RelocationOffset) {
Streamer.emitBytes(SectionContents.substr(
SectionOffset, RelocationOffset - SectionOffset));
SectionOffset = RelocationOffset;
}
// Get iterators to all relocations with the same offset. Usually, there
// is only one such relocation but there can be more for composed
// relocations.
auto ROI = RI;
auto ROE = Relocations.upper_bound(RelocationOffset);
// Start from the next offset on the next iteration.
RI = ROE;
// Skip undefined symbols.
auto HasUndefSym = [this](const auto &Relocation) {
return BC.UndefinedSymbols.count(Relocation.Symbol);
};
if (std::any_of(ROI, ROE, HasUndefSym))
continue;
#ifndef NDEBUG
for (const auto &Relocation : make_range(ROI, ROE)) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: emitting relocation for symbol "
<< (Relocation.Symbol ? Relocation.Symbol->getName()
: StringRef("<none>"))
<< " at offset 0x" << Twine::utohexstr(Relocation.Offset)
<< " with size "
<< Relocation::getSizeForType(Relocation.Type) << '\n');
}
#endif
size_t RelocationSize = Relocation::emit(ROI, ROE, &Streamer);
SectionOffset += RelocationSize;
}
assert(SectionOffset <= SectionContents.size() && "overflow error");
if (SectionOffset < SectionContents.size())
Streamer.emitBytes(SectionContents.substr(SectionOffset));
}
if (BC.HasRelocations && opts::HotData && isReordered())
Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("__hot_data_end"));
}
void BinarySection::flushPendingRelocations(raw_pwrite_stream &OS,
SymbolResolverFuncTy Resolver) {
if (PendingRelocations.empty() && Patches.empty())
return;
const uint64_t SectionAddress = getAddress();
// We apply relocations to original section contents. For allocatable sections
// this means using their input file offsets, since the output file offset
// could change (e.g. for new instance of .text). For non-allocatable
// sections, the output offset should always be a valid one.
const uint64_t SectionFileOffset =
isAllocatable() ? getInputFileOffset() : getOutputFileOffset();
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: flushing pending relocations for section "
<< getName() << '\n'
<< " address: 0x" << Twine::utohexstr(SectionAddress) << '\n'
<< " offset: 0x" << Twine::utohexstr(SectionFileOffset) << '\n');
for (BinaryPatch &Patch : Patches)
OS.pwrite(Patch.Bytes.data(), Patch.Bytes.size(),
SectionFileOffset + Patch.Offset);
for (Relocation &Reloc : PendingRelocations) {
uint64_t Value = Reloc.Addend;
if (Reloc.Symbol)
Value += Resolver(Reloc.Symbol);
Value = Relocation::encodeValue(Reloc.Type, Value,
SectionAddress + Reloc.Offset);
OS.pwrite(reinterpret_cast<const char *>(&Value),
Relocation::getSizeForType(Reloc.Type),
SectionFileOffset + Reloc.Offset);
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: writing value 0x" << Twine::utohexstr(Value)
<< " of size " << Relocation::getSizeForType(Reloc.Type)
<< " at section offset 0x" << Twine::utohexstr(Reloc.Offset)
<< " address 0x"
<< Twine::utohexstr(SectionAddress + Reloc.Offset)
<< " file offset 0x"
<< Twine::utohexstr(SectionFileOffset + Reloc.Offset) << '\n';);
}
clearList(PendingRelocations);
}
BinarySection::~BinarySection() {
if (isReordered()) {
delete[] getData();
return;
}
if (!isAllocatable() && !hasValidSectionID() &&
(!hasSectionRef() ||
OutputContents.data() != getContents(Section).data())) {
delete[] getOutputData();
}
}
void BinarySection::clearRelocations() { clearList(Relocations); }
void BinarySection::print(raw_ostream &OS) const {
OS << getName() << ", "
<< "0x" << Twine::utohexstr(getAddress()) << ", " << getSize() << " (0x"
<< Twine::utohexstr(getOutputAddress()) << ", " << getOutputSize() << ")"
<< ", data = " << getData() << ", output data = " << getOutputData();
if (isAllocatable())
OS << " (allocatable)";
if (isVirtual())
OS << " (virtual)";
if (isTLS())
OS << " (tls)";
if (opts::PrintRelocations)
for (const Relocation &R : relocations())
OS << "\n " << R;
}
BinarySection::RelocationSetType
BinarySection::reorderRelocations(bool Inplace) const {
assert(PendingRelocations.empty() &&
"reodering pending relocations not supported");
RelocationSetType NewRelocations;
for (const Relocation &Rel : relocations()) {
uint64_t RelAddr = Rel.Offset + getAddress();
BinaryData *BD = BC.getBinaryDataContainingAddress(RelAddr);
BD = BD->getAtomicRoot();
assert(BD);
if ((!BD->isMoved() && !Inplace) || BD->isJumpTable())
continue;
Relocation NewRel(Rel);
uint64_t RelOffset = RelAddr - BD->getAddress();
NewRel.Offset = BD->getOutputOffset() + RelOffset;
assert(NewRel.Offset < getSize());
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: moving " << Rel << " -> " << NewRel
<< "\n");
NewRelocations.emplace(std::move(NewRel));
}
return NewRelocations;
}
void BinarySection::reorderContents(const std::vector<BinaryData *> &Order,
bool Inplace) {
IsReordered = true;
Relocations = reorderRelocations(Inplace);
std::string Str;
raw_string_ostream OS(Str);
const char *Src = Contents.data();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: reorderContents for " << Name << "\n");
for (BinaryData *BD : Order) {
assert((BD->isMoved() || !Inplace) && !BD->isJumpTable());
assert(BD->isAtomic() && BD->isMoveable());
const uint64_t SrcOffset = BD->getAddress() - getAddress();
assert(SrcOffset < Contents.size());
assert(SrcOffset == BD->getOffset());
while (OS.tell() < BD->getOutputOffset())
OS.write((unsigned char)0);
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << BD->getName() << " @ " << OS.tell()
<< "\n");
OS.write(&Src[SrcOffset], BD->getOutputSize());
}
if (Relocations.empty()) {
// If there are no existing relocations, tack a phony one at the end
// of the reordered segment to force LLVM to recognize and map this
// section.
MCSymbol *ZeroSym = BC.registerNameAtAddress("Zero", 0, 0, 0);
addRelocation(OS.tell(), ZeroSym, Relocation::getAbs64(), 0xdeadbeef);
uint64_t Zero = 0;
OS.write(reinterpret_cast<const char *>(&Zero), sizeof(Zero));
}
auto *NewData = reinterpret_cast<char *>(copyByteArray(OS.str()));
Contents = OutputContents = StringRef(NewData, OS.str().size());
OutputSize = Contents.size();
}
std::string BinarySection::encodeELFNote(StringRef NameStr, StringRef DescStr,
uint32_t Type) {
std::string Str;
raw_string_ostream OS(Str);
const uint32_t NameSz = NameStr.size() + 1;
const uint32_t DescSz = DescStr.size();
OS.write(reinterpret_cast<const char *>(&(NameSz)), 4);
OS.write(reinterpret_cast<const char *>(&(DescSz)), 4);
OS.write(reinterpret_cast<const char *>(&(Type)), 4);
OS << NameStr << '\0';
for (uint64_t I = NameSz; I < alignTo(NameSz, 4); ++I)
OS << '\0';
OS << DescStr;
for (uint64_t I = DescStr.size(); I < alignTo(DescStr.size(), 4); ++I)
OS << '\0';
return OS.str();
}
|