1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
|
//===- bolt/Core/DebugData.cpp - Debugging information handling -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions and classes for handling debug info.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/DebugData.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/DIEBuilder.h"
#include "bolt/Rewrite/RewriteInstance.h"
#include "bolt/Utils/Utils.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/SHA1.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <memory>
#include <unordered_map>
#include <vector>
#define DEBUG_TYPE "bolt-debug-info"
namespace opts {
extern llvm::cl::opt<unsigned> Verbosity;
} // namespace opts
namespace llvm {
class MCSymbol;
namespace bolt {
static void replaceLocValbyForm(DIEBuilder &DIEBldr, DIE &Die, DIEValue DIEVal,
dwarf::Form Format, uint64_t NewVal) {
if (Format == dwarf::DW_FORM_loclistx)
DIEBldr.replaceValue(&Die, DIEVal.getAttribute(), Format,
DIELocList(NewVal));
else
DIEBldr.replaceValue(&Die, DIEVal.getAttribute(), Format,
DIEInteger(NewVal));
}
std::optional<AttrInfo>
findAttributeInfo(const DWARFDie DIE,
const DWARFAbbreviationDeclaration *AbbrevDecl,
uint32_t Index) {
const DWARFUnit &U = *DIE.getDwarfUnit();
uint64_t Offset =
AbbrevDecl->getAttributeOffsetFromIndex(Index, DIE.getOffset(), U);
std::optional<DWARFFormValue> Value =
AbbrevDecl->getAttributeValueFromOffset(Index, Offset, U);
if (!Value)
return std::nullopt;
// AttributeSpec
const DWARFAbbreviationDeclaration::AttributeSpec *AttrVal =
AbbrevDecl->attributes().begin() + Index;
uint32_t ValSize = 0;
std::optional<int64_t> ValSizeOpt = AttrVal->getByteSize(U);
if (ValSizeOpt) {
ValSize = static_cast<uint32_t>(*ValSizeOpt);
} else {
DWARFDataExtractor DebugInfoData = U.getDebugInfoExtractor();
uint64_t NewOffset = Offset;
DWARFFormValue::skipValue(Value->getForm(), DebugInfoData, &NewOffset,
U.getFormParams());
// This includes entire size of the entry, which might not be just the
// encoding part. For example for DW_AT_loc it will include expression
// location.
ValSize = NewOffset - Offset;
}
return AttrInfo{*Value, DIE.getAbbreviationDeclarationPtr(), Offset, ValSize};
}
std::optional<AttrInfo> findAttributeInfo(const DWARFDie DIE,
dwarf::Attribute Attr) {
if (!DIE.isValid())
return std::nullopt;
const DWARFAbbreviationDeclaration *AbbrevDecl =
DIE.getAbbreviationDeclarationPtr();
if (!AbbrevDecl)
return std::nullopt;
std::optional<uint32_t> Index = AbbrevDecl->findAttributeIndex(Attr);
if (!Index)
return std::nullopt;
return findAttributeInfo(DIE, AbbrevDecl, *Index);
}
const DebugLineTableRowRef DebugLineTableRowRef::NULL_ROW{0, 0};
LLVM_ATTRIBUTE_UNUSED
static void printLE64(const std::string &S) {
for (uint32_t I = 0, Size = S.size(); I < Size; ++I) {
errs() << Twine::utohexstr(S[I]);
errs() << Twine::utohexstr((int8_t)S[I]);
}
errs() << "\n";
}
// Writes address ranges to Writer as pairs of 64-bit (address, size).
// If RelativeRange is true, assumes the address range to be written must be of
// the form (begin address, range size), otherwise (begin address, end address).
// Terminates the list by writing a pair of two zeroes.
// Returns the number of written bytes.
static uint64_t
writeAddressRanges(raw_svector_ostream &Stream,
const DebugAddressRangesVector &AddressRanges,
const bool WriteRelativeRanges = false) {
for (const DebugAddressRange &Range : AddressRanges) {
support::endian::write(Stream, Range.LowPC, support::little);
support::endian::write(
Stream, WriteRelativeRanges ? Range.HighPC - Range.LowPC : Range.HighPC,
support::little);
}
// Finish with 0 entries.
support::endian::write(Stream, 0ULL, support::little);
support::endian::write(Stream, 0ULL, support::little);
return AddressRanges.size() * 16 + 16;
}
DebugRangesSectionWriter::DebugRangesSectionWriter() {
RangesBuffer = std::make_unique<DebugBufferVector>();
RangesStream = std::make_unique<raw_svector_ostream>(*RangesBuffer);
// Add an empty range as the first entry;
SectionOffset +=
writeAddressRanges(*RangesStream.get(), DebugAddressRangesVector{});
Kind = RangesWriterKind::DebugRangesWriter;
}
uint64_t DebugRangesSectionWriter::addRanges(
DebugAddressRangesVector &&Ranges,
std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
if (Ranges.empty())
return getEmptyRangesOffset();
const auto RI = CachedRanges.find(Ranges);
if (RI != CachedRanges.end())
return RI->second;
const uint64_t EntryOffset = addRanges(Ranges);
CachedRanges.emplace(std::move(Ranges), EntryOffset);
return EntryOffset;
}
uint64_t DebugRangesSectionWriter::addRanges(DebugAddressRangesVector &Ranges) {
if (Ranges.empty())
return getEmptyRangesOffset();
// Reading the SectionOffset and updating it should be atomic to guarantee
// unique and correct offsets in patches.
std::lock_guard<std::mutex> Lock(WriterMutex);
const uint32_t EntryOffset = SectionOffset;
SectionOffset += writeAddressRanges(*RangesStream.get(), Ranges);
return EntryOffset;
}
uint64_t DebugRangesSectionWriter::getSectionOffset() {
std::lock_guard<std::mutex> Lock(WriterMutex);
return SectionOffset;
}
DebugAddrWriter *DebugRangeListsSectionWriter::AddrWriter = nullptr;
uint64_t DebugRangeListsSectionWriter::addRanges(
DebugAddressRangesVector &&Ranges,
std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
return addRanges(Ranges);
}
struct LocListsRangelistsHeader {
UnitLengthType UnitLength; // Size of loclist entris section, not including
// size of header.
VersionType Version;
AddressSizeType AddressSize;
SegmentSelectorType SegmentSelector;
OffsetEntryCountType OffsetEntryCount;
};
static std::unique_ptr<DebugBufferVector>
getDWARF5Header(const LocListsRangelistsHeader &Header) {
std::unique_ptr<DebugBufferVector> HeaderBuffer =
std::make_unique<DebugBufferVector>();
std::unique_ptr<raw_svector_ostream> HeaderStream =
std::make_unique<raw_svector_ostream>(*HeaderBuffer);
// 7.29 length of the set of entries for this compilation unit, not including
// the length field itself
const uint32_t HeaderSize =
getDWARF5RngListLocListHeaderSize() - sizeof(UnitLengthType);
support::endian::write(*HeaderStream, Header.UnitLength + HeaderSize,
support::little);
support::endian::write(*HeaderStream, Header.Version, support::little);
support::endian::write(*HeaderStream, Header.AddressSize, support::little);
support::endian::write(*HeaderStream, Header.SegmentSelector,
support::little);
support::endian::write(*HeaderStream, Header.OffsetEntryCount,
support::little);
return HeaderBuffer;
}
struct OffsetEntry {
uint32_t Index;
uint32_t StartOffset;
uint32_t EndOffset;
};
template <typename DebugVector, typename ListEntry, typename DebugAddressEntry>
static bool emitWithBase(raw_ostream &OS, const DebugVector &Entries,
DebugAddrWriter &AddrWriter, DWARFUnit &CU,
uint32_t &Index, const ListEntry BaseAddressx,
const ListEntry OffsetPair, const ListEntry EndOfList,
const std::function<void(uint32_t)> &Func) {
if (Entries.size() < 2)
return false;
uint64_t Base = Entries[Index].LowPC;
std::vector<OffsetEntry> Offsets;
uint8_t TempBuffer[64];
while (Index < Entries.size()) {
const DebugAddressEntry &Entry = Entries[Index];
if (Entry.LowPC == 0)
break;
assert(Base <= Entry.LowPC && "Entry base is higher than low PC");
uint32_t StartOffset = Entry.LowPC - Base;
uint32_t EndOffset = Entry.HighPC - Base;
if (encodeULEB128(EndOffset, TempBuffer) > 2)
break;
Offsets.push_back({Index, StartOffset, EndOffset});
++Index;
}
if (Offsets.size() < 2) {
Index -= Offsets.size();
return false;
}
support::endian::write(OS, static_cast<uint8_t>(BaseAddressx),
support::little);
uint32_t BaseIndex = AddrWriter.getIndexFromAddress(Base, CU);
encodeULEB128(BaseIndex, OS);
for (auto &OffsetEntry : Offsets) {
support::endian::write(OS, static_cast<uint8_t>(OffsetPair),
support::little);
encodeULEB128(OffsetEntry.StartOffset, OS);
encodeULEB128(OffsetEntry.EndOffset, OS);
Func(OffsetEntry.Index);
}
support::endian::write(OS, static_cast<uint8_t>(EndOfList), support::little);
return true;
}
uint64_t
DebugRangeListsSectionWriter::addRanges(DebugAddressRangesVector &Ranges) {
std::lock_guard<std::mutex> Lock(WriterMutex);
RangeEntries.push_back(CurrentOffset);
bool WrittenStartxLength = false;
std::sort(
Ranges.begin(), Ranges.end(),
[](const DebugAddressRange &R1, const DebugAddressRange &R2) -> bool {
return R1.LowPC < R2.LowPC;
});
for (unsigned I = 0; I < Ranges.size();) {
WrittenStartxLength = false;
if (emitWithBase<DebugAddressRangesVector, dwarf::RnglistEntries,
DebugAddressRange>(
*CUBodyStream, Ranges, *AddrWriter, *CU, I,
dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
dwarf::DW_RLE_end_of_list, [](uint32_t Index) -> void {}))
continue;
const DebugAddressRange &Range = Ranges[I];
support::endian::write(*CUBodyStream,
static_cast<uint8_t>(dwarf::DW_RLE_startx_length),
support::little);
uint32_t Index = AddrWriter->getIndexFromAddress(Range.LowPC, *CU);
encodeULEB128(Index, *CUBodyStream);
encodeULEB128(Range.HighPC - Range.LowPC, *CUBodyStream);
++I;
WrittenStartxLength = true;
}
if (WrittenStartxLength)
support::endian::write(*CUBodyStream,
static_cast<uint8_t>(dwarf::DW_RLE_end_of_list),
support::little);
CurrentOffset = CUBodyBuffer->size();
return RangeEntries.size() - 1;
}
void DebugRangeListsSectionWriter::finalizeSection() {
std::unique_ptr<DebugBufferVector> CUArrayBuffer =
std::make_unique<DebugBufferVector>();
std::unique_ptr<raw_svector_ostream> CUArrayStream =
std::make_unique<raw_svector_ostream>(*CUArrayBuffer);
constexpr uint32_t SizeOfArrayEntry = 4;
const uint32_t SizeOfArraySection = RangeEntries.size() * SizeOfArrayEntry;
for (uint32_t Offset : RangeEntries)
support::endian::write(*CUArrayStream, Offset + SizeOfArraySection,
support::little);
std::unique_ptr<DebugBufferVector> Header = getDWARF5Header(
{static_cast<uint32_t>(SizeOfArraySection + CUBodyBuffer.get()->size()),
5, 8, 0, static_cast<uint32_t>(RangeEntries.size())});
*RangesStream << *Header;
*RangesStream << *CUArrayBuffer;
*RangesStream << *CUBodyBuffer;
SectionOffset = RangesBuffer->size();
}
void DebugRangeListsSectionWriter::initSection(DWARFUnit &Unit) {
CUBodyBuffer = std::make_unique<DebugBufferVector>();
CUBodyStream = std::make_unique<raw_svector_ostream>(*CUBodyBuffer);
RangeEntries.clear();
CurrentOffset = 0;
CU = &Unit;
}
void DebugARangesSectionWriter::addCURanges(uint64_t CUOffset,
DebugAddressRangesVector &&Ranges) {
std::lock_guard<std::mutex> Lock(CUAddressRangesMutex);
CUAddressRanges.emplace(CUOffset, std::move(Ranges));
}
void DebugARangesSectionWriter::writeARangesSection(
raw_svector_ostream &RangesStream, const CUOffsetMap &CUMap) const {
// For reference on the format of the .debug_aranges section, see the DWARF4
// specification, section 6.1.4 Lookup by Address
// http://www.dwarfstd.org/doc/DWARF4.pdf
for (const auto &CUOffsetAddressRangesPair : CUAddressRanges) {
const uint64_t Offset = CUOffsetAddressRangesPair.first;
const DebugAddressRangesVector &AddressRanges =
CUOffsetAddressRangesPair.second;
// Emit header.
// Size of this set: 8 (size of the header) + 4 (padding after header)
// + 2*sizeof(uint64_t) bytes for each of the ranges, plus an extra
// pair of uint64_t's for the terminating, zero-length range.
// Does not include size field itself.
uint32_t Size = 8 + 4 + 2 * sizeof(uint64_t) * (AddressRanges.size() + 1);
// Header field #1: set size.
support::endian::write(RangesStream, Size, support::little);
// Header field #2: version number, 2 as per the specification.
support::endian::write(RangesStream, static_cast<uint16_t>(2),
support::little);
assert(CUMap.count(Offset) && "Original CU offset is not found in CU Map");
// Header field #3: debug info offset of the correspondent compile unit.
support::endian::write(
RangesStream, static_cast<uint32_t>(CUMap.find(Offset)->second.Offset),
support::little);
// Header field #4: address size.
// 8 since we only write ELF64 binaries for now.
RangesStream << char(8);
// Header field #5: segment size of target architecture.
RangesStream << char(0);
// Padding before address table - 4 bytes in the 64-bit-pointer case.
support::endian::write(RangesStream, static_cast<uint32_t>(0),
support::little);
writeAddressRanges(RangesStream, AddressRanges, true);
}
}
DebugAddrWriter::DebugAddrWriter(BinaryContext *BC) : BC(BC) {
Buffer = std::make_unique<AddressSectionBuffer>();
AddressStream = std::make_unique<raw_svector_ostream>(*Buffer);
}
void DebugAddrWriter::AddressForDWOCU::dump() {
std::vector<IndexAddressPair> SortedMap(indexToAddressBegin(),
indexToAdddessEnd());
// Sorting address in increasing order of indices.
llvm::sort(SortedMap, llvm::less_first());
for (auto &Pair : SortedMap)
dbgs() << Twine::utohexstr(Pair.second) << "\t" << Pair.first << "\n";
}
uint32_t DebugAddrWriter::getIndexFromAddress(uint64_t Address, DWARFUnit &CU) {
std::lock_guard<std::mutex> Lock(WriterMutex);
const uint64_t CUID = getCUID(CU);
if (!AddressMaps.count(CUID))
AddressMaps[CUID] = AddressForDWOCU();
AddressForDWOCU &Map = AddressMaps[CUID];
auto Entry = Map.find(Address);
if (Entry == Map.end()) {
auto Index = Map.getNextIndex();
Entry = Map.insert(Address, Index).first;
}
return Entry->second;
}
// Case1) Address is not in map insert in to AddresToIndex and IndexToAddres
// Case2) Address is in the map but Index is higher or equal. Need to update
// IndexToAddrss. Case3) Address is in the map but Index is lower. Need to
// update AddressToIndex and IndexToAddress
void DebugAddrWriter::addIndexAddress(uint64_t Address, uint32_t Index,
DWARFUnit &CU) {
std::lock_guard<std::mutex> Lock(WriterMutex);
const uint64_t CUID = getCUID(CU);
AddressForDWOCU &Map = AddressMaps[CUID];
auto Entry = Map.find(Address);
if (Entry != Map.end()) {
if (Entry->second > Index)
Map.updateAddressToIndex(Address, Index);
Map.updateIndexToAddrss(Address, Index);
} else {
Map.insert(Address, Index);
}
}
static void updateAddressBase(DIEBuilder &DIEBlder, DebugAddrWriter &AddrWriter,
DWARFUnit &CU, const uint64_t Offset) {
DIE *Die = DIEBlder.getUnitDIEbyUnit(CU);
DIEValue GnuAddrBaseAttrInfo = Die->findAttribute(dwarf::DW_AT_GNU_addr_base);
DIEValue AddrBaseAttrInfo = Die->findAttribute(dwarf::DW_AT_addr_base);
dwarf::Form BaseAttrForm;
dwarf::Attribute BaseAttr;
// For cases where Skeleton CU does not have DW_AT_GNU_addr_base
if (!GnuAddrBaseAttrInfo && CU.getVersion() < 5)
return;
if (GnuAddrBaseAttrInfo) {
BaseAttrForm = GnuAddrBaseAttrInfo.getForm();
BaseAttr = GnuAddrBaseAttrInfo.getAttribute();
}
if (AddrBaseAttrInfo) {
BaseAttrForm = AddrBaseAttrInfo.getForm();
BaseAttr = AddrBaseAttrInfo.getAttribute();
}
if (GnuAddrBaseAttrInfo || AddrBaseAttrInfo) {
DIEBlder.replaceValue(Die, BaseAttr, BaseAttrForm, DIEInteger(Offset));
} else if (CU.getVersion() >= 5) {
// A case where we were not using .debug_addr section, but after update
// now using it.
DIEBlder.addValue(Die, dwarf::DW_AT_addr_base, dwarf::DW_FORM_sec_offset,
DIEInteger(Offset));
}
}
void DebugAddrWriter::update(DIEBuilder &DIEBlder, DWARFUnit &CU) {
// Handling the case wehre debug information is a mix of Debug fission and
// monolitic.
if (!CU.getDWOId())
return;
const uint64_t CUID = getCUID(CU);
auto AM = AddressMaps.find(CUID);
// Adding to map even if it did not contribute to .debug_addr.
// The Skeleton CU might still have DW_AT_GNU_addr_base.
uint64_t Offset = Buffer->size();
// If does not exist this CUs DWO section didn't contribute to .debug_addr.
if (AM == AddressMaps.end())
return;
std::vector<IndexAddressPair> SortedMap(AM->second.indexToAddressBegin(),
AM->second.indexToAdddessEnd());
// Sorting address in increasing order of indices.
llvm::sort(SortedMap, llvm::less_first());
uint8_t AddrSize = CU.getAddressByteSize();
uint32_t Counter = 0;
auto WriteAddress = [&](uint64_t Address) -> void {
++Counter;
switch (AddrSize) {
default:
assert(false && "Address Size is invalid.");
break;
case 4:
support::endian::write(*AddressStream, static_cast<uint32_t>(Address),
support::little);
break;
case 8:
support::endian::write(*AddressStream, Address, support::little);
break;
}
};
for (const IndexAddressPair &Val : SortedMap) {
while (Val.first > Counter)
WriteAddress(0);
WriteAddress(Val.second);
}
updateAddressBase(DIEBlder, *this, CU, Offset);
}
void DebugAddrWriterDwarf5::update(DIEBuilder &DIEBlder, DWARFUnit &CU) {
// Need to layout all sections within .debug_addr
// Within each section sort Address by index.
const endianness Endian =
BC->DwCtx->isLittleEndian() ? support::little : support::big;
const DWARFSection &AddrSec = BC->DwCtx->getDWARFObj().getAddrSection();
DWARFDataExtractor AddrData(BC->DwCtx->getDWARFObj(), AddrSec, Endian, 0);
DWARFDebugAddrTable AddrTable;
DIDumpOptions DumpOpts;
constexpr uint32_t HeaderSize = 8;
const uint64_t CUID = getCUID(CU);
const uint8_t AddrSize = CU.getAddressByteSize();
auto AMIter = AddressMaps.find(CUID);
// A case where CU has entry in .debug_addr, but we don't modify addresses
// for it.
if (AMIter == AddressMaps.end()) {
AMIter = AddressMaps.insert({CUID, AddressForDWOCU()}).first;
std::optional<uint64_t> BaseOffset = CU.getAddrOffsetSectionBase();
if (!BaseOffset)
return;
// Address base offset is to the first entry.
// The size of header is 8 bytes.
uint64_t Offset = *BaseOffset - HeaderSize;
auto Iter = UnmodifiedAddressOffsets.find(Offset);
if (Iter != UnmodifiedAddressOffsets.end()) {
updateAddressBase(DIEBlder, *this, CU, Iter->getSecond());
return;
}
UnmodifiedAddressOffsets[Offset] = Buffer->size() + HeaderSize;
if (Error Err = AddrTable.extract(AddrData, &Offset, 5, AddrSize,
DumpOpts.WarningHandler)) {
DumpOpts.RecoverableErrorHandler(std::move(Err));
return;
}
uint32_t Index = 0;
for (uint64_t Addr : AddrTable.getAddressEntries())
AMIter->second.insert(Addr, Index++);
}
updateAddressBase(DIEBlder, *this, CU, Buffer->size() + HeaderSize);
std::vector<IndexAddressPair> SortedMap(AMIter->second.indexToAddressBegin(),
AMIter->second.indexToAdddessEnd());
// Sorting address in increasing order of indices.
llvm::sort(SortedMap, llvm::less_first());
// Writing out Header
const uint32_t Length = SortedMap.size() * AddrSize + 4;
support::endian::write(*AddressStream, Length, Endian);
support::endian::write(*AddressStream, static_cast<uint16_t>(5), Endian);
support::endian::write(*AddressStream, static_cast<uint8_t>(AddrSize),
Endian);
support::endian::write(*AddressStream, static_cast<uint8_t>(0), Endian);
uint32_t Counter = 0;
auto writeAddress = [&](uint64_t Address) -> void {
++Counter;
switch (AddrSize) {
default:
llvm_unreachable("Address Size is invalid.");
break;
case 4:
support::endian::write(*AddressStream, static_cast<uint32_t>(Address),
Endian);
break;
case 8:
support::endian::write(*AddressStream, Address, Endian);
break;
}
};
for (const IndexAddressPair &Val : SortedMap) {
while (Val.first > Counter)
writeAddress(0);
writeAddress(Val.second);
}
}
void DebugLocWriter::init() {
LocBuffer = std::make_unique<DebugBufferVector>();
LocStream = std::make_unique<raw_svector_ostream>(*LocBuffer);
// Writing out empty location list to which all references to empty location
// lists will point.
if (!LocSectionOffset && DwarfVersion < 5) {
const char Zeroes[16] = {0};
*LocStream << StringRef(Zeroes, 16);
LocSectionOffset += 16;
}
}
uint32_t DebugLocWriter::LocSectionOffset = 0;
void DebugLocWriter::addList(DIEBuilder &DIEBldr, DIE &Die, DIEValue &AttrInfo,
DebugLocationsVector &LocList) {
if (LocList.empty()) {
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(),
DebugLocWriter::EmptyListOffset);
return;
}
// Since there is a separate DebugLocWriter for each thread,
// we don't need a lock to read the SectionOffset and update it.
const uint32_t EntryOffset = LocSectionOffset;
for (const DebugLocationEntry &Entry : LocList) {
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.LowPC),
support::little);
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.HighPC),
support::little);
support::endian::write(*LocStream, static_cast<uint16_t>(Entry.Expr.size()),
support::little);
*LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
Entry.Expr.size());
LocSectionOffset += 2 * 8 + 2 + Entry.Expr.size();
}
LocStream->write_zeros(16);
LocSectionOffset += 16;
LocListDebugInfoPatches.push_back({0xdeadbeee, EntryOffset}); // never seen
// use
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(), EntryOffset);
}
std::unique_ptr<DebugBufferVector> DebugLocWriter::getBuffer() {
return std::move(LocBuffer);
}
// DWARF 4: 2.6.2
void DebugLocWriter::finalize(DIEBuilder &DIEBldr, DIE &Die) {}
static void writeEmptyListDwarf5(raw_svector_ostream &Stream) {
support::endian::write(Stream, static_cast<uint32_t>(4), support::little);
support::endian::write(Stream, static_cast<uint8_t>(dwarf::DW_LLE_start_end),
support::little);
const char Zeroes[16] = {0};
Stream << StringRef(Zeroes, 16);
encodeULEB128(0, Stream);
support::endian::write(
Stream, static_cast<uint8_t>(dwarf::DW_LLE_end_of_list), support::little);
}
static void writeLegacyLocList(DIEValue &AttrInfo,
DebugLocationsVector &LocList,
DIEBuilder &DIEBldr, DIE &Die,
DebugAddrWriter &AddrWriter,
DebugBufferVector &LocBuffer, DWARFUnit &CU,
raw_svector_ostream &LocStream) {
if (LocList.empty()) {
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(),
DebugLocWriter::EmptyListOffset);
return;
}
const uint32_t EntryOffset = LocBuffer.size();
for (const DebugLocationEntry &Entry : LocList) {
support::endian::write(LocStream,
static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
support::little);
const uint32_t Index = AddrWriter.getIndexFromAddress(Entry.LowPC, CU);
encodeULEB128(Index, LocStream);
support::endian::write(LocStream,
static_cast<uint32_t>(Entry.HighPC - Entry.LowPC),
support::little);
support::endian::write(LocStream, static_cast<uint16_t>(Entry.Expr.size()),
support::little);
LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
Entry.Expr.size());
}
support::endian::write(LocStream,
static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
support::little);
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(), EntryOffset);
}
static void writeDWARF5LocList(uint32_t &NumberOfEntries, DIEValue &AttrInfo,
DebugLocationsVector &LocList, DIE &Die,
DIEBuilder &DIEBldr, DebugAddrWriter &AddrWriter,
DebugBufferVector &LocBodyBuffer,
std::vector<uint32_t> &RelativeLocListOffsets,
DWARFUnit &CU,
raw_svector_ostream &LocBodyStream) {
replaceLocValbyForm(DIEBldr, Die, AttrInfo, dwarf::DW_FORM_loclistx,
NumberOfEntries);
RelativeLocListOffsets.push_back(LocBodyBuffer.size());
++NumberOfEntries;
if (LocList.empty()) {
writeEmptyListDwarf5(LocBodyStream);
return;
}
std::vector<uint64_t> OffsetsArray;
bool WrittenStartxLength = false;
auto writeExpression = [&](uint32_t Index) -> void {
const DebugLocationEntry &Entry = LocList[Index];
encodeULEB128(Entry.Expr.size(), LocBodyStream);
LocBodyStream << StringRef(
reinterpret_cast<const char *>(Entry.Expr.data()), Entry.Expr.size());
};
for (unsigned I = 0; I < LocList.size();) {
WrittenStartxLength = false;
if (emitWithBase<DebugLocationsVector, dwarf::LoclistEntries,
DebugLocationEntry>(
LocBodyStream, LocList, AddrWriter, CU, I,
dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair,
dwarf::DW_LLE_end_of_list, writeExpression))
continue;
const DebugLocationEntry &Entry = LocList[I];
support::endian::write(LocBodyStream,
static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
support::little);
const uint32_t Index = AddrWriter.getIndexFromAddress(Entry.LowPC, CU);
encodeULEB128(Index, LocBodyStream);
encodeULEB128(Entry.HighPC - Entry.LowPC, LocBodyStream);
writeExpression(I);
++I;
WrittenStartxLength = true;
}
if (WrittenStartxLength)
support::endian::write(LocBodyStream,
static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
support::little);
}
void DebugLoclistWriter::addList(DIEBuilder &DIEBldr, DIE &Die,
DIEValue &AttrInfo,
DebugLocationsVector &LocList) {
if (DwarfVersion < 5)
writeLegacyLocList(AttrInfo, LocList, DIEBldr, Die, *AddrWriter, *LocBuffer,
CU, *LocStream);
else
writeDWARF5LocList(NumberOfEntries, AttrInfo, LocList, Die, DIEBldr,
*AddrWriter, *LocBodyBuffer, RelativeLocListOffsets, CU,
*LocBodyStream);
}
uint32_t DebugLoclistWriter::LoclistBaseOffset = 0;
void DebugLoclistWriter::finalizeDWARF5(DIEBuilder &DIEBldr, DIE &Die) {
if (LocBodyBuffer->empty()) {
DIEValue LocListBaseAttrInfo =
Die.findAttribute(dwarf::DW_AT_loclists_base);
// Pointing to first one, because it doesn't matter. There are no uses of it
// in this CU.
if (!isSplitDwarf() && LocListBaseAttrInfo.getType())
DIEBldr.replaceValue(&Die, dwarf::DW_AT_loclists_base,
LocListBaseAttrInfo.getForm(),
DIEInteger(getDWARF5RngListLocListHeaderSize()));
return;
}
std::unique_ptr<DebugBufferVector> LocArrayBuffer =
std::make_unique<DebugBufferVector>();
std::unique_ptr<raw_svector_ostream> LocArrayStream =
std::make_unique<raw_svector_ostream>(*LocArrayBuffer);
const uint32_t SizeOfArraySection = NumberOfEntries * sizeof(uint32_t);
// Write out IndexArray
for (uint32_t RelativeOffset : RelativeLocListOffsets)
support::endian::write(
*LocArrayStream,
static_cast<uint32_t>(SizeOfArraySection + RelativeOffset),
support::little);
std::unique_ptr<DebugBufferVector> Header = getDWARF5Header(
{static_cast<uint32_t>(SizeOfArraySection + LocBodyBuffer.get()->size()),
5, 8, 0, NumberOfEntries});
*LocStream << *Header;
*LocStream << *LocArrayBuffer;
*LocStream << *LocBodyBuffer;
if (!isSplitDwarf()) {
DIEValue LocListBaseAttrInfo =
Die.findAttribute(dwarf::DW_AT_loclists_base);
if (LocListBaseAttrInfo.getType()) {
DIEBldr.replaceValue(
&Die, dwarf::DW_AT_loclists_base, LocListBaseAttrInfo.getForm(),
DIEInteger(LoclistBaseOffset + getDWARF5RngListLocListHeaderSize()));
} else {
DIEBldr.addValue(&Die, dwarf::DW_AT_loclists_base,
dwarf::DW_FORM_sec_offset,
DIEInteger(LoclistBaseOffset + Header->size()));
}
LoclistBaseOffset += LocBuffer->size();
}
clearList(RelativeLocListOffsets);
clearList(*LocArrayBuffer);
clearList(*LocBodyBuffer);
}
void DebugLoclistWriter::finalize(DIEBuilder &DIEBldr, DIE &Die) {
if (DwarfVersion >= 5)
finalizeDWARF5(DIEBldr, Die);
}
DebugAddrWriter *DebugLoclistWriter::AddrWriter = nullptr;
static std::string encodeLE(size_t ByteSize, uint64_t NewValue) {
std::string LE64(ByteSize, 0);
for (size_t I = 0; I < ByteSize; ++I) {
LE64[I] = NewValue & 0xff;
NewValue >>= 8;
}
return LE64;
}
void SimpleBinaryPatcher::addBinaryPatch(uint64_t Offset,
std::string &&NewValue,
uint32_t OldValueSize) {
Patches.emplace_back(Offset, std::move(NewValue));
}
void SimpleBinaryPatcher::addBytePatch(uint64_t Offset, uint8_t Value) {
auto Str = std::string(1, Value);
Patches.emplace_back(Offset, std::move(Str));
}
void SimpleBinaryPatcher::addLEPatch(uint64_t Offset, uint64_t NewValue,
size_t ByteSize) {
Patches.emplace_back(Offset, encodeLE(ByteSize, NewValue));
}
void SimpleBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t Value,
uint32_t OldValueSize) {
std::string Buff;
raw_string_ostream OS(Buff);
encodeULEB128(Value, OS, OldValueSize);
Patches.emplace_back(Offset, std::move(Buff));
}
void SimpleBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
addLEPatch(Offset, NewValue, 8);
}
void SimpleBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
uint32_t OldValueSize) {
addLEPatch(Offset, NewValue, 4);
}
std::string SimpleBinaryPatcher::patchBinary(StringRef BinaryContents) {
std::string BinaryContentsStr = std::string(BinaryContents);
for (const auto &Patch : Patches) {
uint32_t Offset = Patch.first;
const std::string &ByteSequence = Patch.second;
assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
"Applied patch runs over binary size.");
for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I) {
BinaryContentsStr[Offset + I] = ByteSequence[I];
}
}
return BinaryContentsStr;
}
void DebugStrOffsetsWriter::initialize(
const DWARFSection &StrOffsetsSection,
const std::optional<StrOffsetsContributionDescriptor> Contr) {
if (!Contr)
return;
const uint8_t DwarfOffsetByteSize = Contr->getDwarfOffsetByteSize();
assert(DwarfOffsetByteSize == 4 &&
"Dwarf String Offsets Byte Size is not supported.");
uint32_t Index = 0;
for (uint64_t Offset = 0; Offset < Contr->Size; Offset += DwarfOffsetByteSize)
IndexToAddressMap[Index++] = support::endian::read32le(
StrOffsetsSection.Data.data() + Contr->Base + Offset);
}
void DebugStrOffsetsWriter::updateAddressMap(uint32_t Index, uint32_t Address) {
assert(IndexToAddressMap.count(Index) > 0 && "Index is not found.");
IndexToAddressMap[Index] = Address;
StrOffsetSectionWasModified = true;
}
void DebugStrOffsetsWriter::finalizeSection(DWARFUnit &Unit,
DIEBuilder &DIEBldr) {
if (IndexToAddressMap.empty())
return;
std::optional<AttrInfo> AttrVal =
findAttributeInfo(Unit.getUnitDIE(), dwarf::DW_AT_str_offsets_base);
assert(AttrVal && "DW_AT_str_offsets_base not present.");
std::optional<uint64_t> Val = AttrVal->V.getAsSectionOffset();
assert(Val && "DW_AT_str_offsets_base Value not present.");
DIE &Die = *DIEBldr.getUnitDIEbyUnit(Unit);
DIEValue StrListBaseAttrInfo =
Die.findAttribute(dwarf::DW_AT_str_offsets_base);
auto RetVal = ProcessedBaseOffsets.find(*Val);
// Handling re-use of str-offsets section.
if (RetVal == ProcessedBaseOffsets.end() || StrOffsetSectionWasModified) {
// Writing out the header for each section.
support::endian::write(*StrOffsetsStream, CurrentSectionSize + 4,
support::little);
support::endian::write(*StrOffsetsStream, static_cast<uint16_t>(5),
support::little);
support::endian::write(*StrOffsetsStream, static_cast<uint16_t>(0),
support::little);
uint64_t BaseOffset = StrOffsetsBuffer->size();
ProcessedBaseOffsets[*Val] = BaseOffset;
if (StrListBaseAttrInfo.getType())
DIEBldr.replaceValue(&Die, dwarf::DW_AT_str_offsets_base,
StrListBaseAttrInfo.getForm(),
DIEInteger(BaseOffset));
for (const auto &Entry : IndexToAddressMap)
support::endian::write(*StrOffsetsStream, Entry.second, support::little);
} else {
DIEBldr.replaceValue(&Die, dwarf::DW_AT_str_offsets_base,
StrListBaseAttrInfo.getForm(),
DIEInteger(RetVal->second));
}
StrOffsetSectionWasModified = false;
IndexToAddressMap.clear();
}
void DebugStrWriter::create() {
StrBuffer = std::make_unique<DebugStrBufferVector>();
StrStream = std::make_unique<raw_svector_ostream>(*StrBuffer);
}
void DebugStrWriter::initialize() {
auto StrSection = BC.DwCtx->getDWARFObj().getStrSection();
(*StrStream) << StrSection;
}
uint32_t DebugStrWriter::addString(StringRef Str) {
std::lock_guard<std::mutex> Lock(WriterMutex);
if (StrBuffer->empty())
initialize();
auto Offset = StrBuffer->size();
(*StrStream) << Str;
StrStream->write_zeros(1);
return Offset;
}
static void emitDwarfSetLineAddrAbs(MCStreamer &OS,
MCDwarfLineTableParams Params,
int64_t LineDelta, uint64_t Address,
int PointerSize) {
// emit the sequence to set the address
OS.emitIntValue(dwarf::DW_LNS_extended_op, 1);
OS.emitULEB128IntValue(PointerSize + 1);
OS.emitIntValue(dwarf::DW_LNE_set_address, 1);
OS.emitIntValue(Address, PointerSize);
// emit the sequence for the LineDelta (from 1) and a zero address delta.
MCDwarfLineAddr::Emit(&OS, Params, LineDelta, 0);
}
static inline void emitBinaryDwarfLineTable(
MCStreamer *MCOS, MCDwarfLineTableParams Params,
const DWARFDebugLine::LineTable *Table,
const std::vector<DwarfLineTable::RowSequence> &InputSequences) {
if (InputSequences.empty())
return;
constexpr uint64_t InvalidAddress = UINT64_MAX;
unsigned FileNum = 1;
unsigned LastLine = 1;
unsigned Column = 0;
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
unsigned Isa = 0;
unsigned Discriminator = 0;
uint64_t LastAddress = InvalidAddress;
uint64_t PrevEndOfSequence = InvalidAddress;
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
auto emitEndOfSequence = [&](uint64_t Address) {
MCDwarfLineAddr::Emit(MCOS, Params, INT64_MAX, Address - LastAddress);
FileNum = 1;
LastLine = 1;
Column = 0;
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
Isa = 0;
Discriminator = 0;
LastAddress = InvalidAddress;
};
for (const DwarfLineTable::RowSequence &Sequence : InputSequences) {
const uint64_t SequenceStart =
Table->Rows[Sequence.FirstIndex].Address.Address;
// Check if we need to mark the end of the sequence.
if (PrevEndOfSequence != InvalidAddress && LastAddress != InvalidAddress &&
PrevEndOfSequence != SequenceStart) {
emitEndOfSequence(PrevEndOfSequence);
}
for (uint32_t RowIndex = Sequence.FirstIndex;
RowIndex <= Sequence.LastIndex; ++RowIndex) {
const DWARFDebugLine::Row &Row = Table->Rows[RowIndex];
int64_t LineDelta = static_cast<int64_t>(Row.Line) - LastLine;
const uint64_t Address = Row.Address.Address;
if (FileNum != Row.File) {
FileNum = Row.File;
MCOS->emitInt8(dwarf::DW_LNS_set_file);
MCOS->emitULEB128IntValue(FileNum);
}
if (Column != Row.Column) {
Column = Row.Column;
MCOS->emitInt8(dwarf::DW_LNS_set_column);
MCOS->emitULEB128IntValue(Column);
}
if (Discriminator != Row.Discriminator &&
MCOS->getContext().getDwarfVersion() >= 4) {
Discriminator = Row.Discriminator;
unsigned Size = getULEB128Size(Discriminator);
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
MCOS->emitULEB128IntValue(Size + 1);
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
MCOS->emitULEB128IntValue(Discriminator);
}
if (Isa != Row.Isa) {
Isa = Row.Isa;
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
MCOS->emitULEB128IntValue(Isa);
}
if (Row.IsStmt != Flags) {
Flags = Row.IsStmt;
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
}
if (Row.BasicBlock)
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
if (Row.PrologueEnd)
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
if (Row.EpilogueBegin)
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
// The end of the sequence is not normal in the middle of the input
// sequence, but could happen, e.g. for assembly code.
if (Row.EndSequence) {
emitEndOfSequence(Address);
} else {
if (LastAddress == InvalidAddress)
emitDwarfSetLineAddrAbs(*MCOS, Params, LineDelta, Address,
AsmInfo->getCodePointerSize());
else
MCDwarfLineAddr::Emit(MCOS, Params, LineDelta, Address - LastAddress);
LastAddress = Address;
LastLine = Row.Line;
}
Discriminator = 0;
}
PrevEndOfSequence = Sequence.EndAddress;
}
// Finish with the end of the sequence.
if (LastAddress != InvalidAddress)
emitEndOfSequence(PrevEndOfSequence);
}
// This function is similar to the one from MCDwarfLineTable, except it handles
// end-of-sequence entries differently by utilizing line entries with
// DWARF2_FLAG_END_SEQUENCE flag.
static inline void emitDwarfLineTable(
MCStreamer *MCOS, MCSection *Section,
const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
unsigned FileNum = 1;
unsigned LastLine = 1;
unsigned Column = 0;
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
unsigned Isa = 0;
unsigned Discriminator = 0;
MCSymbol *LastLabel = nullptr;
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
// Loop through each MCDwarfLineEntry and encode the dwarf line number table.
for (const MCDwarfLineEntry &LineEntry : LineEntries) {
if (LineEntry.getFlags() & DWARF2_FLAG_END_SEQUENCE) {
MCOS->emitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, LineEntry.getLabel(),
AsmInfo->getCodePointerSize());
FileNum = 1;
LastLine = 1;
Column = 0;
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
Isa = 0;
Discriminator = 0;
LastLabel = nullptr;
continue;
}
int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;
if (FileNum != LineEntry.getFileNum()) {
FileNum = LineEntry.getFileNum();
MCOS->emitInt8(dwarf::DW_LNS_set_file);
MCOS->emitULEB128IntValue(FileNum);
}
if (Column != LineEntry.getColumn()) {
Column = LineEntry.getColumn();
MCOS->emitInt8(dwarf::DW_LNS_set_column);
MCOS->emitULEB128IntValue(Column);
}
if (Discriminator != LineEntry.getDiscriminator() &&
MCOS->getContext().getDwarfVersion() >= 2) {
Discriminator = LineEntry.getDiscriminator();
unsigned Size = getULEB128Size(Discriminator);
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
MCOS->emitULEB128IntValue(Size + 1);
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
MCOS->emitULEB128IntValue(Discriminator);
}
if (Isa != LineEntry.getIsa()) {
Isa = LineEntry.getIsa();
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
MCOS->emitULEB128IntValue(Isa);
}
if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) {
Flags = LineEntry.getFlags();
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
}
if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK)
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END)
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN)
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
MCSymbol *Label = LineEntry.getLabel();
// At this point we want to emit/create the sequence to encode the delta
// in line numbers and the increment of the address from the previous
// Label and the current Label.
MCOS->emitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
AsmInfo->getCodePointerSize());
Discriminator = 0;
LastLine = LineEntry.getLine();
LastLabel = Label;
}
assert(LastLabel == nullptr && "end of sequence expected");
}
void DwarfLineTable::emitCU(MCStreamer *MCOS, MCDwarfLineTableParams Params,
std::optional<MCDwarfLineStr> &LineStr,
BinaryContext &BC) const {
if (!RawData.empty()) {
assert(MCLineSections.getMCLineEntries().empty() &&
InputSequences.empty() &&
"cannot combine raw data with new line entries");
MCOS->emitLabel(getLabel());
MCOS->emitBytes(RawData);
return;
}
MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;
// Put out the line tables.
for (const auto &LineSec : MCLineSections.getMCLineEntries())
emitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
// Emit line tables for the original code.
emitBinaryDwarfLineTable(MCOS, Params, InputTable, InputSequences);
// This is the end of the section, so set the value of the symbol at the end
// of this section (that was used in a previous expression).
MCOS->emitLabel(LineEndSym);
}
// Helper function to parse .debug_line_str, and populate one we are using.
// For functions that we do not modify we output them as raw data.
// Re-constructing .debug_line_str so that offsets are correct for those
// debug line tables.
// Bonus is that when we output a final binary we can re-use .debug_line_str
// section. So we don't have to do the SHF_ALLOC trick we did with
// .debug_line.
static void parseAndPopulateDebugLineStr(BinarySection &LineStrSection,
MCDwarfLineStr &LineStr,
BinaryContext &BC) {
DataExtractor StrData(LineStrSection.getContents(),
BC.DwCtx->isLittleEndian(), 0);
uint64_t Offset = 0;
while (StrData.isValidOffset(Offset)) {
const uint64_t StrOffset = Offset;
Error Err = Error::success();
const char *CStr = StrData.getCStr(&Offset, &Err);
if (Err) {
errs() << "BOLT-ERROR: could not extract string from .debug_line_str";
continue;
}
const size_t NewOffset = LineStr.addString(CStr);
assert(StrOffset == NewOffset &&
"New offset in .debug_line_str doesn't match original offset");
(void)StrOffset;
(void)NewOffset;
}
}
void DwarfLineTable::emit(BinaryContext &BC, MCStreamer &Streamer) {
MCAssembler &Assembler =
static_cast<MCObjectStreamer *>(&Streamer)->getAssembler();
MCDwarfLineTableParams Params = Assembler.getDWARFLinetableParams();
auto &LineTables = BC.getDwarfLineTables();
// Bail out early so we don't switch to the debug_line section needlessly and
// in doing so create an unnecessary (if empty) section.
if (LineTables.empty())
return;
// In a v5 non-split line table, put the strings in a separate section.
std::optional<MCDwarfLineStr> LineStr;
ErrorOr<BinarySection &> LineStrSection =
BC.getUniqueSectionByName(".debug_line_str");
// Some versions of GCC output DWARF5 .debug_info, but DWARF4 or lower
// .debug_line, so need to check if section exists.
if (LineStrSection) {
LineStr.emplace(*BC.Ctx);
parseAndPopulateDebugLineStr(*LineStrSection, *LineStr, BC);
}
// Switch to the section where the table will be emitted into.
Streamer.switchSection(BC.MOFI->getDwarfLineSection());
const uint16_t DwarfVersion = BC.Ctx->getDwarfVersion();
// Handle the rest of the Compile Units.
for (auto &CUIDTablePair : LineTables) {
Streamer.getContext().setDwarfVersion(
CUIDTablePair.second.getDwarfVersion());
CUIDTablePair.second.emitCU(&Streamer, Params, LineStr, BC);
}
// Resetting DWARF version for rest of the flow.
BC.Ctx->setDwarfVersion(DwarfVersion);
// Still need to write the section out for the ExecutionEngine, and temp in
// memory object we are constructing.
if (LineStr)
LineStr->emitSection(&Streamer);
}
} // namespace bolt
} // namespace llvm
|