1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
//===- bolt/Passes/CMOVConversion.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CMOV conversion pass.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/CMOVConversion.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <numeric>
#define DEBUG_TYPE "cmov"
using namespace llvm;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
static cl::opt<int> BiasThreshold(
"cmov-conversion-bias-threshold",
cl::desc("minimum condition bias (pct) to perform a CMOV conversion, "
"-1 to not account bias"),
cl::ReallyHidden, cl::init(1), cl::cat(BoltOptCategory));
static cl::opt<int> MispredictionThreshold(
"cmov-conversion-misprediction-threshold",
cl::desc("minimum misprediction rate (pct) to perform a CMOV conversion, "
"-1 to not account misprediction rate"),
cl::ReallyHidden, cl::init(5), cl::cat(BoltOptCategory));
static cl::opt<bool> ConvertStackMemOperand(
"cmov-conversion-convert-stack-mem-operand",
cl::desc("convert moves with stack memory operand (potentially unsafe)"),
cl::ReallyHidden, cl::init(false), cl::cat(BoltOptCategory));
static cl::opt<bool> ConvertBasePtrStackMemOperand(
"cmov-conversion-convert-rbp-stack-mem-operand",
cl::desc("convert moves with rbp stack memory operand (unsafe, must be off "
"for binaries compiled with -fomit-frame-pointer)"),
cl::ReallyHidden, cl::init(false), cl::cat(BoltOptCategory));
} // namespace opts
namespace llvm {
namespace bolt {
// Return true if the CFG conforms to the following subgraph:
// Predecessor
// / \
// | RHS
// \ /
// LHS
// Caller guarantees that LHS and RHS share the same predecessor.
bool isIfThenSubgraph(const BinaryBasicBlock &LHS,
const BinaryBasicBlock &RHS) {
if (LHS.pred_size() != 2 || RHS.pred_size() != 1)
return false;
// Sanity check
BinaryBasicBlock *Predecessor = *RHS.pred_begin();
assert(Predecessor && LHS.isPredecessor(Predecessor) && "invalid subgraph");
(void)Predecessor;
if (!LHS.isPredecessor(&RHS))
return false;
if (RHS.succ_size() != 1)
return false;
return true;
}
bool matchCFGSubgraph(BinaryBasicBlock &BB, BinaryBasicBlock *&ConditionalSucc,
BinaryBasicBlock *&UnconditionalSucc,
bool &IsConditionalTaken) {
BinaryBasicBlock *TakenSucc = BB.getConditionalSuccessor(true);
BinaryBasicBlock *FallthroughSucc = BB.getConditionalSuccessor(false);
bool IsIfThenTaken = isIfThenSubgraph(*FallthroughSucc, *TakenSucc);
bool IsIfThenFallthrough = isIfThenSubgraph(*TakenSucc, *FallthroughSucc);
if (!IsIfThenFallthrough && !IsIfThenTaken)
return false;
assert((!IsIfThenFallthrough || !IsIfThenTaken) && "Invalid subgraph");
// Output parameters
ConditionalSucc = IsIfThenTaken ? TakenSucc : FallthroughSucc;
UnconditionalSucc = IsIfThenTaken ? FallthroughSucc : TakenSucc;
IsConditionalTaken = IsIfThenTaken;
return true;
}
// Return true if basic block instructions can be converted into cmov(s).
bool canConvertInstructions(const BinaryContext &BC, const BinaryBasicBlock &BB,
unsigned CC) {
if (BB.empty())
return false;
const MCInst *LastInst = BB.getLastNonPseudoInstr();
// Only pseudo instructions, can't be converted into CMOV
if (LastInst == nullptr)
return false;
for (const MCInst &Inst : BB) {
if (BC.MIB->isPseudo(Inst))
continue;
// Unconditional branch as a last instruction is OK
if (&Inst == LastInst && BC.MIB->isUnconditionalBranch(Inst))
continue;
MCInst Cmov(Inst);
// GPR move is OK
if (!BC.MIB->convertMoveToConditionalMove(
Cmov, CC, opts::ConvertStackMemOperand,
opts::ConvertBasePtrStackMemOperand)) {
LLVM_DEBUG({
dbgs() << BB.getName() << ": can't convert instruction ";
BC.printInstruction(dbgs(), Cmov);
});
return false;
}
}
return true;
}
void convertMoves(const BinaryContext &BC, BinaryBasicBlock &BB, unsigned CC) {
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
if (BC.MIB->isPseudo(*II))
continue;
if (BC.MIB->isUnconditionalBranch(*II)) {
// XXX: this invalidates II but we return immediately
BB.eraseInstruction(II);
return;
}
bool Result = BC.MIB->convertMoveToConditionalMove(
*II, CC, opts::ConvertStackMemOperand,
opts::ConvertBasePtrStackMemOperand);
assert(Result && "unexpected instruction");
(void)Result;
}
}
// Returns misprediction rate if the profile data is available, -1 otherwise.
std::pair<int, uint64_t>
calculateMispredictionRate(const BinaryBasicBlock &BB) {
uint64_t TotalExecCount = 0;
uint64_t TotalMispredictionCount = 0;
for (auto BI : BB.branch_info()) {
TotalExecCount += BI.Count;
if (BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED)
TotalMispredictionCount += BI.MispredictedCount;
}
if (!TotalExecCount)
return {-1, TotalMispredictionCount};
return {100.0f * TotalMispredictionCount / TotalExecCount,
TotalMispredictionCount};
}
// Returns conditional succ bias if the profile is available, -1 otherwise.
int calculateConditionBias(const BinaryBasicBlock &BB,
const BinaryBasicBlock &ConditionalSucc) {
if (auto BranchStats = BB.getBranchStats(&ConditionalSucc))
return BranchStats->first;
return -1;
}
void CMOVConversion::Stats::dump() {
outs() << "converted static " << StaticPerformed << "/" << StaticPossible
<< formatv(" ({0:P}) ", getStaticRatio())
<< "hammock(s) into CMOV sequences, with dynamic execution count "
<< DynamicPerformed << "/" << DynamicPossible
<< formatv(" ({0:P}), ", getDynamicRatio()) << "saving " << RemovedMP
<< "/" << PossibleMP << formatv(" ({0:P}) ", getMPRatio())
<< "mispredictions\n";
}
void CMOVConversion::runOnFunction(BinaryFunction &Function) {
BinaryContext &BC = Function.getBinaryContext();
bool Modified = false;
// Function-local stats
Stats Local;
// Traverse blocks in RPO, merging block with a converted cmov with its
// successor.
for (BinaryBasicBlock *BB : post_order(&Function)) {
uint64_t BBExecCount = BB->getKnownExecutionCount();
if (BB->empty() || // The block must have instructions
BBExecCount == 0 || // must be hot
BB->succ_size() != 2 || // with two successors
BB->hasJumpTable()) // no jump table
continue;
assert(BB->isValid() && "traversal internal error");
// Check branch instruction
auto BranchInstrIter = BB->getLastNonPseudo();
if (BranchInstrIter == BB->rend() ||
!BC.MIB->isConditionalBranch(*BranchInstrIter))
continue;
// Check successors
BinaryBasicBlock *ConditionalSucc, *UnconditionalSucc;
bool IsConditionalTaken;
if (!matchCFGSubgraph(*BB, ConditionalSucc, UnconditionalSucc,
IsConditionalTaken)) {
LLVM_DEBUG(dbgs() << BB->getName() << ": couldn't match hammock\n");
continue;
}
unsigned CC = BC.MIB->getCondCode(*BranchInstrIter);
if (!IsConditionalTaken)
CC = BC.MIB->getInvertedCondCode(CC);
// Check contents of the conditional block
if (!canConvertInstructions(BC, *ConditionalSucc, CC))
continue;
int ConditionBias = calculateConditionBias(*BB, *ConditionalSucc);
int MispredictionRate = 0;
uint64_t MispredictionCount = 0;
std::tie(MispredictionRate, MispredictionCount) =
calculateMispredictionRate(*BB);
Local.StaticPossible++;
Local.DynamicPossible += BBExecCount;
Local.PossibleMP += MispredictionCount;
// If the conditional successor is never executed, don't convert it
if (ConditionBias < opts::BiasThreshold) {
LLVM_DEBUG(dbgs() << BB->getName() << "->" << ConditionalSucc->getName()
<< " bias = " << ConditionBias
<< ", less than threshold " << opts::BiasThreshold
<< '\n');
continue;
}
// Check the misprediction rate of a branch
if (MispredictionRate < opts::MispredictionThreshold) {
LLVM_DEBUG(dbgs() << BB->getName() << " misprediction rate = "
<< MispredictionRate << ", less than threshold "
<< opts::MispredictionThreshold << '\n');
continue;
}
// remove conditional branch
BB->eraseInstruction(std::prev(BranchInstrIter.base()));
BB->removeAllSuccessors();
// Convert instructions from the conditional successor into cmov's in BB.
convertMoves(BC, *ConditionalSucc, CC);
BB->addInstructions(ConditionalSucc->begin(), ConditionalSucc->end());
ConditionalSucc->markValid(false);
// RPO traversal guarantees that the successor is visited and merged if
// necessary. Merge the unconditional successor into the current block.
BB->addInstructions(UnconditionalSucc->begin(), UnconditionalSucc->end());
UnconditionalSucc->moveAllSuccessorsTo(BB);
UnconditionalSucc->markValid(false);
Local.StaticPerformed++;
Local.DynamicPerformed += BBExecCount;
Local.RemovedMP += MispredictionCount;
Modified = true;
}
if (Modified)
Function.eraseInvalidBBs();
if (opts::Verbosity > 1) {
outs() << "BOLT-INFO: CMOVConversion: " << Function << ", ";
Local.dump();
}
Global = Global + Local;
}
void CMOVConversion::runOnFunctions(BinaryContext &BC) {
for (auto &It : BC.getBinaryFunctions()) {
BinaryFunction &Function = It.second;
if (!shouldOptimize(Function))
continue;
runOnFunction(Function);
}
outs() << "BOLT-INFO: CMOVConversion total: ";
Global.dump();
}
} // end namespace bolt
} // end namespace llvm
|