1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
//===- bolt/Passes/CacheMetrics.cpp - Metrics for instruction cache -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CacheMetrics class and functions for showing metrics
// of cache lines.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/CacheMetrics.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/Support/CommandLine.h"
#include <unordered_map>
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<unsigned> ITLBPageSize;
extern cl::opt<unsigned> ITLBEntries;
} // namespace opts
namespace {
/// Initialize and return a position map for binary basic blocks
void extractBasicBlockInfo(
const std::vector<BinaryFunction *> &BinaryFunctions,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
for (BinaryFunction *BF : BinaryFunctions) {
const BinaryContext &BC = BF->getBinaryContext();
for (BinaryBasicBlock &BB : *BF) {
if (BF->isSimple() || BC.HasRelocations) {
// Use addresses/sizes as in the output binary
BBAddr[&BB] = BB.getOutputAddressRange().first;
BBSize[&BB] = BB.getOutputSize();
} else {
// Output ranges should match the input if the body hasn't changed
BBAddr[&BB] = BB.getInputAddressRange().first + BF->getAddress();
BBSize[&BB] = BB.getOriginalSize();
}
}
}
}
/// Calculate TSP metric, which quantifies the number of fallthrough jumps in
/// the ordering of basic blocks. The method returns a pair
/// (the number of fallthrough branches, the total number of branches)
std::pair<uint64_t, uint64_t>
calcTSPScore(const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
uint64_t Score = 0;
uint64_t JumpCount = 0;
for (BinaryFunction *BF : BinaryFunctions) {
if (!BF->hasProfile())
continue;
for (BinaryBasicBlock *SrcBB : BF->getLayout().blocks()) {
auto BI = SrcBB->branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
if (SrcBB != DstBB && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
JumpCount += BI->Count;
if (BBAddr.at(SrcBB) + BBSize.at(SrcBB) == BBAddr.at(DstBB))
Score += BI->Count;
}
++BI;
}
}
}
return std::make_pair(Score, JumpCount);
}
using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>;
/// Build a simplified version of the call graph: For every function, keep
/// its callers and the frequencies of the calls
std::unordered_map<const BinaryFunction *, Predecessors>
extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) {
std::unordered_map<const BinaryFunction *, Predecessors> Calls;
for (BinaryFunction *SrcFunction : BinaryFunctions) {
const BinaryContext &BC = SrcFunction->getBinaryContext();
for (const BinaryBasicBlock *BB : SrcFunction->getLayout().blocks()) {
// Find call instructions and extract target symbols from each one
for (const MCInst &Inst : *BB) {
if (!BC.MIB->isCall(Inst))
continue;
// Call info
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
uint64_t Count = BB->getKnownExecutionCount();
// Ignore calls w/o information
if (DstSym == nullptr || Count == 0)
continue;
const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
// Ignore recursive calls
if (DstFunction == nullptr || DstFunction->getLayout().block_empty() ||
DstFunction == SrcFunction)
continue;
// Record the call
Calls[DstFunction].emplace_back(SrcFunction, Count);
}
}
}
return Calls;
}
/// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg).
/// Given an assignment of functions to the i-TLB pages), we divide all
/// functions calls into two categories:
/// - 'short' ones that have a caller-callee distance less than a page;
/// - 'long' ones where the distance exceeds a page.
/// The short calls are likely to result in a i-TLB cache hit. For the long
/// ones, the hit/miss result depends on the 'hotness' of the page (i.e., how
/// often the page is accessed). Assuming that functions are sent to the i-TLB
/// cache in a random order, the probability that a page is present in the cache
/// is proportional to the number of samples corresponding to the functions on
/// the page. The following procedure detects short and long calls, and
/// estimates the expected number of cache misses for the long ones.
double expectedCacheHitRatio(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
const double PageSize = opts::ITLBPageSize;
const uint64_t CacheEntries = opts::ITLBEntries;
std::unordered_map<const BinaryFunction *, Predecessors> Calls =
extractFunctionCalls(BinaryFunctions);
// Compute 'hotness' of the functions
double TotalSamples = 0;
std::unordered_map<BinaryFunction *, double> FunctionSamples;
for (BinaryFunction *BF : BinaryFunctions) {
double Samples = 0;
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF])
Samples += Pair.second;
Samples = std::max(Samples, (double)BF->getKnownExecutionCount());
FunctionSamples[BF] = Samples;
TotalSamples += Samples;
}
// Compute 'hotness' of the pages
std::unordered_map<uint64_t, double> PageSamples;
for (BinaryFunction *BF : BinaryFunctions) {
if (BF->getLayout().block_empty())
continue;
double Page = BBAddr.at(BF->getLayout().block_front()) / PageSize;
PageSamples[Page] += FunctionSamples.at(BF);
}
// Computing the expected number of misses for every function
double Misses = 0;
for (BinaryFunction *BF : BinaryFunctions) {
// Skip the function if it has no samples
if (BF->getLayout().block_empty() || FunctionSamples.at(BF) == 0.0)
continue;
double Samples = FunctionSamples.at(BF);
double Page = BBAddr.at(BF->getLayout().block_front()) / PageSize;
// The probability that the page is not present in the cache
double MissProb = pow(1.0 - PageSamples[Page] / TotalSamples, CacheEntries);
// Processing all callers of the function
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) {
BinaryFunction *SrcFunction = Pair.first;
double SrcPage =
BBAddr.at(SrcFunction->getLayout().block_front()) / PageSize;
// Is this a 'long' or a 'short' call?
if (Page != SrcPage) {
// This is a miss
Misses += MissProb * Pair.second;
}
Samples -= Pair.second;
}
assert(Samples >= 0.0 && "Function samples computed incorrectly");
// The remaining samples likely come from the jitted code
Misses += Samples * MissProb;
}
return 100.0 * (1.0 - Misses / TotalSamples);
}
} // namespace
void CacheMetrics::printAll(const std::vector<BinaryFunction *> &BFs) {
// Stats related to hot-cold code splitting
size_t NumFunctions = 0;
size_t NumProfiledFunctions = 0;
size_t NumHotFunctions = 0;
size_t NumBlocks = 0;
size_t NumHotBlocks = 0;
size_t TotalCodeMinAddr = std::numeric_limits<size_t>::max();
size_t TotalCodeMaxAddr = 0;
size_t HotCodeMinAddr = std::numeric_limits<size_t>::max();
size_t HotCodeMaxAddr = 0;
for (BinaryFunction *BF : BFs) {
NumFunctions++;
if (BF->hasProfile())
NumProfiledFunctions++;
if (BF->hasValidIndex())
NumHotFunctions++;
for (const BinaryBasicBlock &BB : *BF) {
NumBlocks++;
size_t BBAddrMin = BB.getOutputAddressRange().first;
size_t BBAddrMax = BB.getOutputAddressRange().second;
TotalCodeMinAddr = std::min(TotalCodeMinAddr, BBAddrMin);
TotalCodeMaxAddr = std::max(TotalCodeMaxAddr, BBAddrMax);
if (BF->hasValidIndex() && !BB.isCold()) {
NumHotBlocks++;
HotCodeMinAddr = std::min(HotCodeMinAddr, BBAddrMin);
HotCodeMaxAddr = std::max(HotCodeMaxAddr, BBAddrMax);
}
}
}
outs() << format(" There are %zu functions;", NumFunctions)
<< format(" %zu (%.2lf%%) are in the hot section,", NumHotFunctions,
100.0 * NumHotFunctions / NumFunctions)
<< format(" %zu (%.2lf%%) have profile\n", NumProfiledFunctions,
100.0 * NumProfiledFunctions / NumFunctions);
outs() << format(" There are %zu basic blocks;", NumBlocks)
<< format(" %zu (%.2lf%%) are in the hot section\n", NumHotBlocks,
100.0 * NumHotBlocks / NumBlocks);
assert(TotalCodeMinAddr <= TotalCodeMaxAddr && "incorrect output addresses");
size_t HotCodeSize = HotCodeMaxAddr - HotCodeMinAddr;
size_t TotalCodeSize = TotalCodeMaxAddr - TotalCodeMinAddr;
size_t HugePage2MB = 2 << 20;
outs() << format(" Hot code takes %.2lf%% of binary (%zu bytes out of %zu, "
"%.2lf huge pages)\n",
100.0 * HotCodeSize / TotalCodeSize, HotCodeSize,
TotalCodeSize, double(HotCodeSize) / HugePage2MB);
// Stats related to expected cache performance
std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr;
std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize;
extractBasicBlockInfo(BFs, BBAddr, BBSize);
outs() << " Expected i-TLB cache hit ratio: "
<< format("%.2lf%%\n", expectedCacheHitRatio(BFs, BBAddr, BBSize));
auto Stats = calcTSPScore(BFs, BBAddr, BBSize);
outs() << " TSP score: "
<< format("%.2lf%% (%zu out of %zu)\n",
100.0 * Stats.first / std::max<uint64_t>(Stats.second, 1),
Stats.first, Stats.second);
}
|