1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
//===- bolt/Passes/FrameAnalysis.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the FrameAnalysis class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/FrameAnalysis.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Passes/CallGraphWalker.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Timer.h"
#include <fstream>
#include <stack>
#define DEBUG_TYPE "fa"
using namespace llvm;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<unsigned> Verbosity;
static cl::list<std::string>
FrameOptFunctionNames("funcs-fop", cl::CommaSeparated,
cl::desc("list of functions to apply frame opts"),
cl::value_desc("func1,func2,func3,..."));
static cl::opt<std::string> FrameOptFunctionNamesFile(
"funcs-file-fop",
cl::desc("file with list of functions to frame optimize"));
static cl::opt<bool> TimeFA("time-fa", cl::desc("time frame analysis steps"),
cl::ReallyHidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
ExperimentalSW("experimental-shrink-wrapping",
cl::desc("process functions with stack pointer arithmetic"),
cl::ReallyHidden, cl::ZeroOrMore, cl::cat(BoltOptCategory));
bool shouldFrameOptimize(const llvm::bolt::BinaryFunction &Function) {
if (Function.hasUnknownControlFlow())
return false;
if (!FrameOptFunctionNamesFile.empty()) {
assert(!FrameOptFunctionNamesFile.empty() && "unexpected empty file name");
std::ifstream FuncsFile(FrameOptFunctionNamesFile, std::ios::in);
std::string FuncName;
while (std::getline(FuncsFile, FuncName))
FrameOptFunctionNames.push_back(FuncName);
FrameOptFunctionNamesFile = "";
}
if (FrameOptFunctionNames.empty())
return true;
return llvm::any_of(FrameOptFunctionNames, [&](std::string &Name) {
return Function.hasName(Name);
});
}
} // namespace opts
namespace llvm {
namespace bolt {
raw_ostream &operator<<(raw_ostream &OS, const FrameIndexEntry &FIE) {
OS << "FrameIndexEntry<IsLoad: " << FIE.IsLoad << ", IsStore: " << FIE.IsStore
<< ", IsStoreFromReg: " << FIE.IsStoreFromReg
<< ", RegOrImm: " << FIE.RegOrImm << ", StackOffset: ";
if (FIE.StackOffset < 0)
OS << "-" << Twine::utohexstr(-FIE.StackOffset);
else
OS << "+" << Twine::utohexstr(FIE.StackOffset);
OS << ", Size: " << static_cast<int>(FIE.Size)
<< ", IsSimple: " << FIE.IsSimple << ">";
return OS;
}
namespace {
/// This class should be used to iterate through basic blocks in layout order
/// to analyze instructions for frame accesses. The user should call
/// enterNewBB() whenever starting analyzing a new BB and doNext() for each
/// instruction. After doNext(), if isValidAccess() returns true, it means the
/// current instruction accesses the frame and getFIE() may be used to obtain
/// details about this access.
class FrameAccessAnalysis {
/// We depend on Stack Pointer Tracking to figure out the current SP offset
/// value at a given program point
StackPointerTracking &SPT;
/// Context vars
const BinaryContext &BC;
const BinaryFunction &BF;
// Vars used for storing useful CFI info to give us a hint about how the stack
// is used in this function
int SPOffset{0};
int FPOffset{0};
int64_t CfaOffset{-8};
uint16_t CfaReg{7};
std::stack<std::pair<int64_t, uint16_t>> CFIStack;
/// Our pointer to access SPT info
const MCInst *Prev{nullptr};
/// Info about the last frame access
bool IsValidAccess{false};
bool EscapesStackAddress{false};
FrameIndexEntry FIE;
bool decodeFrameAccess(const MCInst &Inst) {
int32_t SrcImm = 0;
MCPhysReg Reg = 0;
int64_t StackOffset = 0;
bool IsIndexed = false;
if (!BC.MIB->isStackAccess(
Inst, FIE.IsLoad, FIE.IsStore, FIE.IsStoreFromReg, Reg, SrcImm,
FIE.StackPtrReg, StackOffset, FIE.Size, FIE.IsSimple, IsIndexed)) {
return true;
}
if (IsIndexed || (!FIE.Size && (FIE.IsLoad || FIE.IsStore))) {
LLVM_DEBUG(dbgs() << "Giving up on indexed memory access/unknown size\n");
LLVM_DEBUG(dbgs() << "Blame insn: ");
LLVM_DEBUG(BC.printInstruction(outs(), Inst, 0, &BF, true, false, false));
LLVM_DEBUG(Inst.dump());
return false;
}
assert(FIE.Size != 0 || (!FIE.IsLoad && !FIE.IsStore));
FIE.RegOrImm = SrcImm;
if (FIE.IsLoad || FIE.IsStoreFromReg)
FIE.RegOrImm = Reg;
if (FIE.StackPtrReg == BC.MIB->getStackPointer() && SPOffset != SPT.EMPTY &&
SPOffset != SPT.SUPERPOSITION) {
LLVM_DEBUG(
dbgs() << "Adding access via SP while CFA reg is another one\n");
FIE.StackOffset = SPOffset + StackOffset;
} else if (FIE.StackPtrReg == BC.MIB->getFramePointer() &&
FPOffset != SPT.EMPTY && FPOffset != SPT.SUPERPOSITION) {
LLVM_DEBUG(
dbgs() << "Adding access via FP while CFA reg is another one\n");
FIE.StackOffset = FPOffset + StackOffset;
} else if (FIE.StackPtrReg ==
*BC.MRI->getLLVMRegNum(CfaReg, /*isEH=*/false)) {
FIE.StackOffset = CfaOffset + StackOffset;
} else {
LLVM_DEBUG(
dbgs() << "Found stack access with reg different than cfa reg.\n");
LLVM_DEBUG(dbgs() << "\tCurrent CFA reg: " << CfaReg
<< "\n\tStack access reg: " << FIE.StackPtrReg << "\n");
LLVM_DEBUG(dbgs() << "Blame insn: ");
LLVM_DEBUG(Inst.dump());
return false;
}
IsValidAccess = true;
return true;
}
public:
FrameAccessAnalysis(BinaryFunction &BF, StackPointerTracking &SPT)
: SPT(SPT), BC(BF.getBinaryContext()), BF(BF) {}
void enterNewBB() { Prev = nullptr; }
const FrameIndexEntry &getFIE() const { return FIE; }
int getSPOffset() const { return SPOffset; }
bool isValidAccess() const { return IsValidAccess; }
bool doesEscapeStackAddress() const { return EscapesStackAddress; }
bool doNext(const BinaryBasicBlock &BB, const MCInst &Inst) {
IsValidAccess = false;
EscapesStackAddress = false;
std::tie(SPOffset, FPOffset) =
Prev ? *SPT.getStateAt(*Prev) : *SPT.getStateAt(BB);
Prev = &Inst;
// Use CFI information to keep track of which register is being used to
// access the frame
if (BC.MIB->isCFI(Inst)) {
const MCCFIInstruction *CFI = BF.getCFIFor(Inst);
switch (CFI->getOperation()) {
case MCCFIInstruction::OpDefCfa:
CfaOffset = CFI->getOffset();
[[fallthrough]];
case MCCFIInstruction::OpDefCfaRegister:
CfaReg = CFI->getRegister();
break;
case MCCFIInstruction::OpDefCfaOffset:
CfaOffset = CFI->getOffset();
break;
case MCCFIInstruction::OpRememberState:
CFIStack.push(std::make_pair(CfaOffset, CfaReg));
break;
case MCCFIInstruction::OpRestoreState: {
if (CFIStack.empty())
dbgs() << "Assertion is about to fail: " << BF.getPrintName() << "\n";
assert(!CFIStack.empty() && "Corrupt CFI stack");
std::pair<int64_t, uint16_t> &Elem = CFIStack.top();
CFIStack.pop();
CfaOffset = Elem.first;
CfaReg = Elem.second;
break;
}
case MCCFIInstruction::OpAdjustCfaOffset:
llvm_unreachable("Unhandled AdjustCfaOffset");
break;
default:
break;
}
return true;
}
if (BC.MIB->escapesVariable(Inst, SPT.HasFramePointer)) {
EscapesStackAddress = true;
if (!opts::ExperimentalSW) {
LLVM_DEBUG(
dbgs() << "Leaked stack address, giving up on this function.\n");
LLVM_DEBUG(dbgs() << "Blame insn: ");
LLVM_DEBUG(Inst.dump());
return false;
}
}
return decodeFrameAccess(Inst);
}
};
} // end anonymous namespace
void FrameAnalysis::addArgAccessesFor(MCInst &Inst, ArgAccesses &&AA) {
if (ErrorOr<ArgAccesses &> OldAA = getArgAccessesFor(Inst)) {
if (OldAA->AssumeEverything)
return;
*OldAA = std::move(AA);
return;
}
if (AA.AssumeEverything) {
// Index 0 in ArgAccessesVector represents an "assumeeverything" entry
BC.MIB->addAnnotation(Inst, "ArgAccessEntry", 0U);
return;
}
BC.MIB->addAnnotation(Inst, "ArgAccessEntry",
(unsigned)ArgAccessesVector.size());
ArgAccessesVector.emplace_back(std::move(AA));
}
void FrameAnalysis::addArgInStackAccessFor(MCInst &Inst,
const ArgInStackAccess &Arg) {
ErrorOr<ArgAccesses &> AA = getArgAccessesFor(Inst);
if (!AA) {
addArgAccessesFor(Inst, ArgAccesses(false));
AA = getArgAccessesFor(Inst);
assert(AA && "Object setup failed");
}
std::set<ArgInStackAccess> &Set = AA->Set;
assert(!AA->AssumeEverything && "Adding arg to AssumeEverything set");
Set.emplace(Arg);
}
void FrameAnalysis::addFIEFor(MCInst &Inst, const FrameIndexEntry &FIE) {
BC.MIB->addAnnotation(Inst, "FrameAccessEntry", (unsigned)FIEVector.size());
FIEVector.emplace_back(FIE);
}
ErrorOr<ArgAccesses &> FrameAnalysis::getArgAccessesFor(const MCInst &Inst) {
if (auto Idx = BC.MIB->tryGetAnnotationAs<unsigned>(Inst, "ArgAccessEntry")) {
assert(ArgAccessesVector.size() > *Idx && "Out of bounds");
return ArgAccessesVector[*Idx];
}
return make_error_code(errc::result_out_of_range);
}
ErrorOr<const ArgAccesses &>
FrameAnalysis::getArgAccessesFor(const MCInst &Inst) const {
if (auto Idx = BC.MIB->tryGetAnnotationAs<unsigned>(Inst, "ArgAccessEntry")) {
assert(ArgAccessesVector.size() > *Idx && "Out of bounds");
return ArgAccessesVector[*Idx];
}
return make_error_code(errc::result_out_of_range);
}
ErrorOr<const FrameIndexEntry &>
FrameAnalysis::getFIEFor(const MCInst &Inst) const {
if (auto Idx =
BC.MIB->tryGetAnnotationAs<unsigned>(Inst, "FrameAccessEntry")) {
assert(FIEVector.size() > *Idx && "Out of bounds");
return FIEVector[*Idx];
}
return make_error_code(errc::result_out_of_range);
}
void FrameAnalysis::traverseCG(BinaryFunctionCallGraph &CG) {
CallGraphWalker CGWalker(CG);
CGWalker.registerVisitor(
[&](BinaryFunction *Func) -> bool { return computeArgsAccessed(*Func); });
CGWalker.walk();
DEBUG_WITH_TYPE("ra", {
for (auto &MapEntry : ArgsTouchedMap) {
const BinaryFunction *Func = MapEntry.first;
const auto &Set = MapEntry.second;
dbgs() << "Args accessed for " << Func->getPrintName() << ": ";
if (!Set.empty() && Set.count(std::make_pair(-1, 0)))
dbgs() << "assume everything";
else
for (const std::pair<int64_t, uint8_t> &Entry : Set)
dbgs() << "[" << Entry.first << ", " << (int)Entry.second << "] ";
dbgs() << "\n";
}
});
}
bool FrameAnalysis::updateArgsTouchedFor(const BinaryFunction &BF, MCInst &Inst,
int CurOffset) {
if (!BC.MIB->isCall(Inst))
return false;
std::set<int64_t> Res;
const MCSymbol *TargetSymbol = BC.MIB->getTargetSymbol(Inst);
// If indirect call, we conservatively assume it accesses all stack positions
if (TargetSymbol == nullptr) {
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
if (!FunctionsRequireAlignment.count(&BF)) {
FunctionsRequireAlignment.insert(&BF);
return true;
}
return false;
}
const BinaryFunction *Function = BC.getFunctionForSymbol(TargetSymbol);
// Call to a function without a BinaryFunction object. Conservatively assume
// it accesses all stack positions
if (Function == nullptr) {
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
if (!FunctionsRequireAlignment.count(&BF)) {
FunctionsRequireAlignment.insert(&BF);
return true;
}
return false;
}
auto Iter = ArgsTouchedMap.find(Function);
bool Changed = false;
if (BC.MIB->isTailCall(Inst) && Iter != ArgsTouchedMap.end()) {
// Ignore checking CurOffset because we can't always reliably determine the
// offset specially after an epilogue, where tailcalls happen. It should be
// -8.
for (std::pair<int64_t, uint8_t> Elem : Iter->second) {
if (!llvm::is_contained(ArgsTouchedMap[&BF], Elem)) {
ArgsTouchedMap[&BF].emplace(Elem);
Changed = true;
}
}
}
if (FunctionsRequireAlignment.count(Function) &&
!FunctionsRequireAlignment.count(&BF)) {
Changed = true;
FunctionsRequireAlignment.insert(&BF);
}
if (Iter == ArgsTouchedMap.end())
return Changed;
if (CurOffset == StackPointerTracking::EMPTY ||
CurOffset == StackPointerTracking::SUPERPOSITION) {
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
return Changed;
}
for (std::pair<int64_t, uint8_t> Elem : Iter->second) {
if (Elem.first == -1) {
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
break;
}
LLVM_DEBUG(dbgs() << "Added arg in stack access annotation "
<< CurOffset + Elem.first << "\n");
addArgInStackAccessFor(
Inst, ArgInStackAccess{/*StackOffset=*/CurOffset + Elem.first,
/*Size=*/Elem.second});
}
return Changed;
}
bool FrameAnalysis::computeArgsAccessed(BinaryFunction &BF) {
if (!BF.isSimple() || !BF.hasCFG()) {
LLVM_DEBUG(dbgs() << "Treating " << BF.getPrintName()
<< " conservatively.\n");
ArgsTouchedMap[&BF].emplace(std::make_pair(-1, 0));
if (!FunctionsRequireAlignment.count(&BF)) {
FunctionsRequireAlignment.insert(&BF);
return true;
}
return false;
}
LLVM_DEBUG(dbgs() << "Now computing args accessed for: " << BF.getPrintName()
<< "\n");
bool UpdatedArgsTouched = false;
bool NoInfo = false;
FrameAccessAnalysis FAA(BF, getSPT(BF));
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
FAA.enterNewBB();
for (MCInst &Inst : *BB) {
if (!FAA.doNext(*BB, Inst) || FAA.doesEscapeStackAddress()) {
ArgsTouchedMap[&BF].emplace(std::make_pair(-1, 0));
NoInfo = true;
break;
}
// Check for calls -- attach stack accessing info to them regarding their
// target
if (updateArgsTouchedFor(BF, Inst, FAA.getSPOffset()))
UpdatedArgsTouched = true;
// Check for stack accesses that affect callers
if (!FAA.isValidAccess())
continue;
const FrameIndexEntry &FIE = FAA.getFIE();
if (FIE.StackOffset < 0)
continue;
if (ArgsTouchedMap[&BF].find(std::make_pair(FIE.StackOffset, FIE.Size)) !=
ArgsTouchedMap[&BF].end())
continue;
// Record accesses to the previous stack frame
ArgsTouchedMap[&BF].emplace(std::make_pair(FIE.StackOffset, FIE.Size));
UpdatedArgsTouched = true;
LLVM_DEBUG({
dbgs() << "Arg access offset " << FIE.StackOffset << " added to:\n";
BC.printInstruction(dbgs(), Inst, 0, &BF, true);
});
}
if (NoInfo)
break;
}
if (FunctionsRequireAlignment.count(&BF))
return UpdatedArgsTouched;
if (NoInfo) {
FunctionsRequireAlignment.insert(&BF);
return true;
}
for (BinaryBasicBlock &BB : BF) {
for (MCInst &Inst : BB) {
if (BC.MIB->requiresAlignedAddress(Inst)) {
FunctionsRequireAlignment.insert(&BF);
return true;
}
}
}
return UpdatedArgsTouched;
}
bool FrameAnalysis::restoreFrameIndex(BinaryFunction &BF) {
FrameAccessAnalysis FAA(BF, getSPT(BF));
LLVM_DEBUG(dbgs() << "Restoring frame indices for \"" << BF.getPrintName()
<< "\"\n");
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
LLVM_DEBUG(dbgs() << "\tNow at BB " << BB->getName() << "\n");
FAA.enterNewBB();
for (MCInst &Inst : *BB) {
if (!FAA.doNext(*BB, Inst))
return false;
LLVM_DEBUG({
dbgs() << "\t\tNow at ";
Inst.dump();
dbgs() << "\t\t\tSP offset is " << FAA.getSPOffset() << "\n";
});
if (FAA.doesEscapeStackAddress()) {
if (!FunctionsWithStackArithmetic.count(&BF))
FunctionsWithStackArithmetic.insert(&BF);
continue;
}
if (!FAA.isValidAccess())
continue;
const FrameIndexEntry &FIE = FAA.getFIE();
addFIEFor(Inst, FIE);
LLVM_DEBUG({
dbgs() << "Frame index annotation " << FIE << " added to:\n";
BC.printInstruction(dbgs(), Inst, 0, &BF, true);
});
}
}
return true;
}
void FrameAnalysis::cleanAnnotations() {
NamedRegionTimer T("cleanannotations", "clean annotations", "FA",
"FA breakdown", opts::TimeFA);
ParallelUtilities::WorkFuncTy CleanFunction = [&](BinaryFunction &BF) {
for (BinaryBasicBlock &BB : BF) {
for (MCInst &Inst : BB) {
BC.MIB->removeAnnotation(Inst, "ArgAccessEntry");
BC.MIB->removeAnnotation(Inst, "FrameAccessEntry");
}
}
};
ParallelUtilities::runOnEachFunction(
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, CleanFunction,
ParallelUtilities::PredicateTy(nullptr), "cleanAnnotations");
}
FrameAnalysis::FrameAnalysis(BinaryContext &BC, BinaryFunctionCallGraph &CG)
: BC(BC) {
// Position 0 of the vector should be always associated with "assume access
// everything".
ArgAccessesVector.emplace_back(ArgAccesses(/*AssumeEverything*/ true));
if (!opts::NoThreads) {
NamedRegionTimer T1("precomputespt", "pre-compute spt", "FA",
"FA breakdown", opts::TimeFA);
preComputeSPT();
}
{
NamedRegionTimer T1("traversecg", "traverse call graph", "FA",
"FA breakdown", opts::TimeFA);
traverseCG(CG);
}
for (auto &I : BC.getBinaryFunctions()) {
CountDenominator += I.second.getFunctionScore();
// "shouldOptimize" for passes that run after finalize
if (!(I.second.isSimple() && I.second.hasCFG() && !I.second.isIgnored()) ||
!opts::shouldFrameOptimize(I.second)) {
++NumFunctionsNotOptimized;
continue;
}
{
NamedRegionTimer T1("restorefi", "restore frame index", "FA",
"FA breakdown", opts::TimeFA);
if (!restoreFrameIndex(I.second)) {
++NumFunctionsFailedRestoreFI;
CountFunctionsFailedRestoreFI += I.second.getFunctionScore();
continue;
}
}
AnalyzedFunctions.insert(&I.second);
}
{
NamedRegionTimer T1("clearspt", "clear spt", "FA", "FA breakdown",
opts::TimeFA);
clearSPTMap();
// Clean up memory allocated for annotation values
if (!opts::NoThreads)
for (MCPlusBuilder::AllocatorIdTy Id : SPTAllocatorsId)
BC.MIB->freeValuesAllocator(Id);
}
}
void FrameAnalysis::printStats() {
outs() << "BOLT-INFO: FRAME ANALYSIS: " << NumFunctionsNotOptimized
<< " function(s) were not optimized.\n"
<< "BOLT-INFO: FRAME ANALYSIS: " << NumFunctionsFailedRestoreFI
<< " function(s) "
<< format("(%.1lf%% dyn cov)",
(100.0 * CountFunctionsFailedRestoreFI / CountDenominator))
<< " could not have its frame indices restored.\n";
}
void FrameAnalysis::clearSPTMap() {
if (opts::NoThreads) {
SPTMap.clear();
return;
}
ParallelUtilities::WorkFuncTy ClearFunctionSPT = [&](BinaryFunction &BF) {
std::unique_ptr<StackPointerTracking> &SPTPtr = SPTMap.find(&BF)->second;
SPTPtr.reset();
};
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
return !BF.isSimple() || !BF.hasCFG();
};
ParallelUtilities::runOnEachFunction(
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, ClearFunctionSPT,
SkipFunc, "clearSPTMap");
SPTMap.clear();
}
void FrameAnalysis::preComputeSPT() {
// Make sure that the SPTMap is empty
assert(SPTMap.size() == 0);
// Create map entries to allow lock-free parallel execution
for (auto &BFI : BC.getBinaryFunctions()) {
BinaryFunction &BF = BFI.second;
if (!BF.isSimple() || !BF.hasCFG())
continue;
SPTMap.emplace(&BF, std::unique_ptr<StackPointerTracking>());
}
// Create an index for the SPT annotation to allow lock-free parallel
// execution
BC.MIB->getOrCreateAnnotationIndex("StackPointerTracking");
// Run SPT in parallel
ParallelUtilities::WorkFuncWithAllocTy ProcessFunction =
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
std::unique_ptr<StackPointerTracking> &SPTPtr =
SPTMap.find(&BF)->second;
SPTPtr = std::make_unique<StackPointerTracking>(BF, AllocId);
SPTPtr->run();
};
ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
return !BF.isSimple() || !BF.hasCFG();
};
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
BC, ParallelUtilities::SchedulingPolicy::SP_BB_QUADRATIC, ProcessFunction,
SkipPredicate, "preComputeSPT");
}
} // namespace bolt
} // namespace llvm
|