1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
//===- bolt/Passes/SplitFunctions.cpp - Pass for splitting function code --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SplitFunctions pass.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/SplitFunctions.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/FunctionLayout.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <numeric>
#include <random>
#include <vector>
#define DEBUG_TYPE "bolt-opts"
using namespace llvm;
using namespace bolt;
namespace {
class DeprecatedSplitFunctionOptionParser : public cl::parser<bool> {
public:
explicit DeprecatedSplitFunctionOptionParser(cl::Option &O)
: cl::parser<bool>(O) {}
bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, bool &Value) {
if (Arg == "2" || Arg == "3") {
Value = true;
errs() << formatv("BOLT-WARNING: specifying non-boolean value \"{0}\" "
"for option -{1} is deprecated\n",
Arg, ArgName);
return false;
}
return cl::parser<bool>::parse(O, ArgName, Arg, Value);
}
};
} // namespace
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> SplitEH;
extern cl::opt<unsigned> ExecutionCountThreshold;
extern cl::opt<uint32_t> RandomSeed;
static cl::opt<bool> AggressiveSplitting(
"split-all-cold", cl::desc("outline as many cold basic blocks as possible"),
cl::cat(BoltOptCategory));
static cl::opt<unsigned> SplitAlignThreshold(
"split-align-threshold",
cl::desc("when deciding to split a function, apply this alignment "
"while doing the size comparison (see -split-threshold). "
"Default value: 2."),
cl::init(2),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool, false, DeprecatedSplitFunctionOptionParser>
SplitFunctions("split-functions",
cl::desc("split functions into fragments"),
cl::cat(BoltOptCategory));
static cl::opt<unsigned> SplitThreshold(
"split-threshold",
cl::desc("split function only if its main size is reduced by more than "
"given amount of bytes. Default value: 0, i.e. split iff the "
"size is reduced. Note that on some architectures the size can "
"increase after splitting."),
cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<SplitFunctionsStrategy> SplitStrategy(
"split-strategy", cl::init(SplitFunctionsStrategy::Profile2),
cl::values(clEnumValN(SplitFunctionsStrategy::Profile2, "profile2",
"split each function into a hot and cold fragment "
"using profiling information")),
cl::values(clEnumValN(
SplitFunctionsStrategy::Random2, "random2",
"split each function into a hot and cold fragment at a randomly chosen "
"split point (ignoring any available profiling information)")),
cl::values(clEnumValN(
SplitFunctionsStrategy::RandomN, "randomN",
"split each function into N fragments at a randomly chosen split "
"points (ignoring any available profiling information)")),
cl::values(clEnumValN(
SplitFunctionsStrategy::All, "all",
"split all basic blocks of each function into fragments such that each "
"fragment contains exactly a single basic block")),
cl::desc("strategy used to partition blocks into fragments"),
cl::cat(BoltOptCategory));
} // namespace opts
namespace {
bool hasFullProfile(const BinaryFunction &BF) {
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
return BB.getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE;
});
}
bool allBlocksCold(const BinaryFunction &BF) {
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
return BB.getExecutionCount() == 0;
});
}
struct SplitProfile2 final : public SplitStrategy {
bool canSplit(const BinaryFunction &BF) override {
return BF.hasValidProfile() && hasFullProfile(BF) && !allBlocksCold(BF);
}
bool keepEmpty() override { return false; }
void fragment(const BlockIt Start, const BlockIt End) override {
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End)) {
if (BB->getExecutionCount() == 0)
BB->setFragmentNum(FragmentNum::cold());
}
}
};
struct SplitRandom2 final : public SplitStrategy {
std::minstd_rand0 Gen;
SplitRandom2() : Gen(opts::RandomSeed.getValue()) {}
bool canSplit(const BinaryFunction &BF) override { return true; }
bool keepEmpty() override { return false; }
void fragment(const BlockIt Start, const BlockIt End) override {
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
const DiffT NumBlocks = End - Start;
assert(NumBlocks > 0 && "Cannot fragment empty function");
// We want to split at least one block
const auto LastSplitPoint = std::max<DiffT>(NumBlocks - 1, 1);
std::uniform_int_distribution<DiffT> Dist(1, LastSplitPoint);
const DiffT SplitPoint = Dist(Gen);
for (BinaryBasicBlock *BB : llvm::make_range(Start + SplitPoint, End))
BB->setFragmentNum(FragmentNum::cold());
LLVM_DEBUG(dbgs() << formatv("BOLT-DEBUG: randomly chose last {0} (out of "
"{1} possible) blocks to split\n",
NumBlocks - SplitPoint, End - Start));
}
};
struct SplitRandomN final : public SplitStrategy {
std::minstd_rand0 Gen;
SplitRandomN() : Gen(opts::RandomSeed.getValue()) {}
bool canSplit(const BinaryFunction &BF) override { return true; }
bool keepEmpty() override { return false; }
void fragment(const BlockIt Start, const BlockIt End) override {
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
const DiffT NumBlocks = End - Start;
assert(NumBlocks > 0 && "Cannot fragment empty function");
// With n blocks, there are n-1 places to split them.
const DiffT MaximumSplits = NumBlocks - 1;
// We want to generate at least two fragment if possible, but if there is
// only one block, no splits are possible.
const auto MinimumSplits = std::min<DiffT>(MaximumSplits, 1);
std::uniform_int_distribution<DiffT> Dist(MinimumSplits, MaximumSplits);
// Choose how many splits to perform
const DiffT NumSplits = Dist(Gen);
// Draw split points from a lottery
SmallVector<unsigned, 0> Lottery(MaximumSplits);
// Start lottery at 1, because there is no meaningful splitpoint before the
// first block.
std::iota(Lottery.begin(), Lottery.end(), 1u);
std::shuffle(Lottery.begin(), Lottery.end(), Gen);
Lottery.resize(NumSplits);
llvm::sort(Lottery);
// Add one past the end entry to lottery
Lottery.push_back(NumBlocks);
unsigned LotteryIndex = 0;
unsigned BBPos = 0;
for (BinaryBasicBlock *const BB : make_range(Start, End)) {
// Check whether to start new fragment
if (BBPos >= Lottery[LotteryIndex])
++LotteryIndex;
// Because LotteryIndex is 0 based and cold fragments are 1 based, we can
// use the index to assign fragments.
BB->setFragmentNum(FragmentNum(LotteryIndex));
++BBPos;
}
}
};
struct SplitAll final : public SplitStrategy {
bool canSplit(const BinaryFunction &BF) override { return true; }
bool keepEmpty() override {
// Keeping empty fragments allows us to test, that empty fragments do not
// generate symbols.
return true;
}
void fragment(const BlockIt Start, const BlockIt End) override {
unsigned Fragment = 0;
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End))
BB->setFragmentNum(FragmentNum(Fragment++));
}
};
} // namespace
namespace llvm {
namespace bolt {
bool SplitFunctions::shouldOptimize(const BinaryFunction &BF) const {
// Apply execution count threshold
if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold)
return false;
return BinaryFunctionPass::shouldOptimize(BF);
}
void SplitFunctions::runOnFunctions(BinaryContext &BC) {
if (!opts::SplitFunctions)
return;
std::unique_ptr<SplitStrategy> Strategy;
bool ForceSequential = false;
switch (opts::SplitStrategy) {
case SplitFunctionsStrategy::Profile2:
Strategy = std::make_unique<SplitProfile2>();
break;
case SplitFunctionsStrategy::Random2:
Strategy = std::make_unique<SplitRandom2>();
// If we split functions randomly, we need to ensure that across runs with
// the same input, we generate random numbers for each function in the same
// order.
ForceSequential = true;
break;
case SplitFunctionsStrategy::RandomN:
Strategy = std::make_unique<SplitRandomN>();
ForceSequential = true;
break;
case SplitFunctionsStrategy::All:
Strategy = std::make_unique<SplitAll>();
break;
}
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
return !shouldOptimize(BF);
};
ParallelUtilities::runOnEachFunction(
BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR,
[&](BinaryFunction &BF) { splitFunction(BF, *Strategy); }, SkipFunc,
"SplitFunctions", ForceSequential);
if (SplitBytesHot + SplitBytesCold > 0)
outs() << "BOLT-INFO: splitting separates " << SplitBytesHot
<< " hot bytes from " << SplitBytesCold << " cold bytes "
<< format("(%.2lf%% of split functions is hot).\n",
100.0 * SplitBytesHot / (SplitBytesHot + SplitBytesCold));
}
void SplitFunctions::splitFunction(BinaryFunction &BF, SplitStrategy &S) {
if (BF.empty())
return;
if (!S.canSplit(BF))
return;
FunctionLayout &Layout = BF.getLayout();
BinaryFunction::BasicBlockOrderType PreSplitLayout(Layout.block_begin(),
Layout.block_end());
BinaryContext &BC = BF.getBinaryContext();
size_t OriginalHotSize;
size_t HotSize;
size_t ColdSize;
if (BC.isX86()) {
std::tie(OriginalHotSize, ColdSize) = BC.calculateEmittedSize(BF);
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
<< " pre-split is <0x"
<< Twine::utohexstr(OriginalHotSize) << ", 0x"
<< Twine::utohexstr(ColdSize) << ">\n");
}
BinaryFunction::BasicBlockOrderType NewLayout(Layout.block_begin(),
Layout.block_end());
// Never outline the first basic block.
NewLayout.front()->setCanOutline(false);
for (BinaryBasicBlock *const BB : NewLayout) {
if (!BB->canOutline())
continue;
// Do not split extra entry points in aarch64. They can be referred by
// using ADRs and when this happens, these blocks cannot be placed far
// away due to the limited range in ADR instruction.
if (BC.isAArch64() && BB->isEntryPoint()) {
BB->setCanOutline(false);
continue;
}
if (BF.hasEHRanges() && !opts::SplitEH) {
// We cannot move landing pads (or rather entry points for landing pads).
if (BB->isLandingPad()) {
BB->setCanOutline(false);
continue;
}
// We cannot move a block that can throw since exception-handling
// runtime cannot deal with split functions. However, if we can guarantee
// that the block never throws, it is safe to move the block to
// decrease the size of the function.
for (MCInst &Instr : *BB) {
if (BC.MIB->isInvoke(Instr)) {
BB->setCanOutline(false);
break;
}
}
}
}
BF.getLayout().updateLayoutIndices();
S.fragment(NewLayout.begin(), NewLayout.end());
// Make sure all non-outlineable blocks are in the main-fragment.
for (BinaryBasicBlock *const BB : NewLayout) {
if (!BB->canOutline())
BB->setFragmentNum(FragmentNum::main());
}
if (opts::AggressiveSplitting) {
// All blocks with 0 count that we can move go to the end of the function.
// Even if they were natural to cluster formation and were seen in-between
// hot basic blocks.
llvm::stable_sort(NewLayout, [&](const BinaryBasicBlock *const A,
const BinaryBasicBlock *const B) {
return A->getFragmentNum() < B->getFragmentNum();
});
} else if (BF.hasEHRanges() && !opts::SplitEH) {
// Typically functions with exception handling have landing pads at the end.
// We cannot move beginning of landing pads, but we can move 0-count blocks
// comprising landing pads to the end and thus facilitate splitting.
auto FirstLP = NewLayout.begin();
while ((*FirstLP)->isLandingPad())
++FirstLP;
std::stable_sort(FirstLP, NewLayout.end(),
[&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
return A->getFragmentNum() < B->getFragmentNum();
});
}
// Make sure that fragments are increasing.
FragmentNum CurrentFragment = NewLayout.back()->getFragmentNum();
for (BinaryBasicBlock *const BB : reverse(NewLayout)) {
if (BB->getFragmentNum() > CurrentFragment)
BB->setFragmentNum(CurrentFragment);
CurrentFragment = BB->getFragmentNum();
}
if (!S.keepEmpty()) {
FragmentNum CurrentFragment = FragmentNum::main();
FragmentNum NewFragment = FragmentNum::main();
for (BinaryBasicBlock *const BB : NewLayout) {
if (BB->getFragmentNum() > CurrentFragment) {
CurrentFragment = BB->getFragmentNum();
NewFragment = FragmentNum(NewFragment.get() + 1);
}
BB->setFragmentNum(NewFragment);
}
}
BF.getLayout().update(NewLayout);
// For shared objects, invoke instructions and corresponding landing pads
// have to be placed in the same fragment. When we split them, create
// trampoline landing pads that will redirect the execution to real LPs.
TrampolineSetType Trampolines;
if (!BC.HasFixedLoadAddress && BF.hasEHRanges() && BF.isSplit())
Trampolines = createEHTrampolines(BF);
// Check the new size to see if it's worth splitting the function.
if (BC.isX86() && BF.isSplit()) {
std::tie(HotSize, ColdSize) = BC.calculateEmittedSize(BF);
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
<< " post-split is <0x" << Twine::utohexstr(HotSize)
<< ", 0x" << Twine::utohexstr(ColdSize) << ">\n");
if (alignTo(OriginalHotSize, opts::SplitAlignThreshold) <=
alignTo(HotSize, opts::SplitAlignThreshold) + opts::SplitThreshold) {
if (opts::Verbosity >= 2) {
outs() << "BOLT-INFO: Reversing splitting of function "
<< formatv("{0}:\n {1:x}, {2:x} -> {3:x}\n", BF, HotSize,
ColdSize, OriginalHotSize);
}
// Reverse the action of createEHTrampolines(). The trampolines will be
// placed immediately before the matching destination resulting in no
// extra code.
if (PreSplitLayout.size() != BF.size())
PreSplitLayout = mergeEHTrampolines(BF, PreSplitLayout, Trampolines);
for (BinaryBasicBlock &BB : BF)
BB.setFragmentNum(FragmentNum::main());
BF.getLayout().update(PreSplitLayout);
} else {
SplitBytesHot += HotSize;
SplitBytesCold += ColdSize;
}
}
}
SplitFunctions::TrampolineSetType
SplitFunctions::createEHTrampolines(BinaryFunction &BF) const {
const auto &MIB = BF.getBinaryContext().MIB;
// Map real landing pads to the corresponding trampolines.
TrampolineSetType LPTrampolines;
// Iterate over the copy of basic blocks since we are adding new blocks to the
// function which will invalidate its iterators.
std::vector<BinaryBasicBlock *> Blocks(BF.pbegin(), BF.pend());
for (BinaryBasicBlock *BB : Blocks) {
for (MCInst &Instr : *BB) {
const std::optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instr);
if (!EHInfo || !EHInfo->first)
continue;
const MCSymbol *LPLabel = EHInfo->first;
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(LPLabel);
if (BB->getFragmentNum() == LPBlock->getFragmentNum())
continue;
const MCSymbol *TrampolineLabel = nullptr;
const TrampolineKey Key(BB->getFragmentNum(), LPLabel);
auto Iter = LPTrampolines.find(Key);
if (Iter != LPTrampolines.end()) {
TrampolineLabel = Iter->second;
} else {
// Create a trampoline basic block in the same fragment as the thrower.
// Note: there's no need to insert the jump instruction, it will be
// added by fixBranches().
BinaryBasicBlock *TrampolineBB = BF.addBasicBlock();
TrampolineBB->setFragmentNum(BB->getFragmentNum());
TrampolineBB->setExecutionCount(LPBlock->getExecutionCount());
TrampolineBB->addSuccessor(LPBlock, TrampolineBB->getExecutionCount());
TrampolineBB->setCFIState(LPBlock->getCFIState());
TrampolineLabel = TrampolineBB->getLabel();
LPTrampolines.insert(std::make_pair(Key, TrampolineLabel));
}
// Substitute the landing pad with the trampoline.
MIB->updateEHInfo(Instr,
MCPlus::MCLandingPad(TrampolineLabel, EHInfo->second));
}
}
if (LPTrampolines.empty())
return LPTrampolines;
// All trampoline blocks were added to the end of the function. Place them at
// the end of corresponding fragments.
BinaryFunction::BasicBlockOrderType NewLayout(BF.getLayout().block_begin(),
BF.getLayout().block_end());
stable_sort(NewLayout, [&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
return A->getFragmentNum() < B->getFragmentNum();
});
BF.getLayout().update(NewLayout);
// Conservatively introduce branch instructions.
BF.fixBranches();
// Update exception-handling CFG for the function.
BF.recomputeLandingPads();
return LPTrampolines;
}
SplitFunctions::BasicBlockOrderType SplitFunctions::mergeEHTrampolines(
BinaryFunction &BF, SplitFunctions::BasicBlockOrderType &Layout,
const SplitFunctions::TrampolineSetType &Trampolines) const {
DenseMap<const MCSymbol *, SmallVector<const MCSymbol *, 0>>
IncomingTrampolines;
for (const auto &Entry : Trampolines) {
IncomingTrampolines[Entry.getFirst().Target].emplace_back(
Entry.getSecond());
}
BasicBlockOrderType MergedLayout;
for (BinaryBasicBlock *BB : Layout) {
auto Iter = IncomingTrampolines.find(BB->getLabel());
if (Iter != IncomingTrampolines.end()) {
for (const MCSymbol *const Trampoline : Iter->getSecond()) {
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(Trampoline);
assert(LPBlock && "Could not find matching landing pad block.");
MergedLayout.push_back(LPBlock);
}
}
MergedLayout.push_back(BB);
}
return MergedLayout;
}
} // namespace bolt
} // namespace llvm
|