1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
|
//===- bolt/Passes/TailDuplication.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TailDuplication class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/TailDuplication.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/MC/MCRegisterInfo.h"
#include <queue>
#include <numeric>
#define DEBUG_TYPE "taildup"
using namespace llvm;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> NoThreads;
cl::opt<bolt::TailDuplication::DuplicationMode> TailDuplicationMode(
"tail-duplication",
cl::desc("duplicate unconditional branches that cross a cache line"),
cl::init(bolt::TailDuplication::TD_NONE),
cl::values(clEnumValN(bolt::TailDuplication::TD_NONE, "none",
"do not apply"),
clEnumValN(bolt::TailDuplication::TD_AGGRESSIVE, "aggressive",
"aggressive strategy"),
clEnumValN(bolt::TailDuplication::TD_MODERATE, "moderate",
"moderate strategy"),
clEnumValN(bolt::TailDuplication::TD_CACHE, "cache",
"cache-aware duplication strategy")),
cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<unsigned>
TailDuplicationMinimumOffset("tail-duplication-minimum-offset",
cl::desc("minimum offset needed between block "
"and successor to allow duplication"),
cl::ReallyHidden, cl::init(64),
cl::cat(BoltOptCategory));
static cl::opt<unsigned> TailDuplicationMaximumDuplication(
"tail-duplication-maximum-duplication",
cl::desc("tail blocks whose size (in bytes) exceeds the value are never "
"duplicated"),
cl::ZeroOrMore, cl::ReallyHidden, cl::init(24), cl::cat(BoltOptCategory));
static cl::opt<unsigned> TailDuplicationMinimumDuplication(
"tail-duplication-minimum-duplication",
cl::desc("tail blocks with size (in bytes) not exceeding the value are "
"always duplicated"),
cl::ReallyHidden, cl::init(2), cl::cat(BoltOptCategory));
static cl::opt<bool> TailDuplicationConstCopyPropagation(
"tail-duplication-const-copy-propagation",
cl::desc("enable const and copy propagation after tail duplication"),
cl::ReallyHidden, cl::init(false), cl::cat(BoltOptCategory));
static cl::opt<unsigned> TailDuplicationMaxCacheDistance(
"tail-duplication-max-cache-distance",
cl::desc("The weight of backward jumps for ExtTSP value"), cl::init(256),
cl::ReallyHidden, cl::cat(BoltOptCategory));
static cl::opt<double> TailDuplicationCacheBackwardWeight(
"tail-duplication-cache-backward-weight",
cl::desc(
"The maximum distance (in bytes) of backward jumps for ExtTSP value"),
cl::init(0.5), cl::ReallyHidden, cl::cat(BoltOptCategory));
} // namespace opts
namespace llvm {
namespace bolt {
void TailDuplication::getCallerSavedRegs(const MCInst &Inst, BitVector &Regs,
BinaryContext &BC) const {
if (!BC.MIB->isCall(Inst))
return;
BitVector CallRegs = BitVector(BC.MRI->getNumRegs(), false);
BC.MIB->getCalleeSavedRegs(CallRegs);
CallRegs.flip();
Regs |= CallRegs;
}
bool TailDuplication::regIsPossiblyOverwritten(const MCInst &Inst, unsigned Reg,
BinaryContext &BC) const {
BitVector WrittenRegs = BitVector(BC.MRI->getNumRegs(), false);
BC.MIB->getWrittenRegs(Inst, WrittenRegs);
getCallerSavedRegs(Inst, WrittenRegs, BC);
if (BC.MIB->isRep(Inst))
BC.MIB->getRepRegs(WrittenRegs);
WrittenRegs &= BC.MIB->getAliases(Reg, false);
return WrittenRegs.any();
}
bool TailDuplication::regIsDefinitelyOverwritten(const MCInst &Inst,
unsigned Reg,
BinaryContext &BC) const {
BitVector WrittenRegs = BitVector(BC.MRI->getNumRegs(), false);
BC.MIB->getWrittenRegs(Inst, WrittenRegs);
getCallerSavedRegs(Inst, WrittenRegs, BC);
if (BC.MIB->isRep(Inst))
BC.MIB->getRepRegs(WrittenRegs);
return (!regIsUsed(Inst, Reg, BC) && WrittenRegs.test(Reg) &&
!BC.MIB->isConditionalMove(Inst));
}
bool TailDuplication::regIsUsed(const MCInst &Inst, unsigned Reg,
BinaryContext &BC) const {
BitVector SrcRegs = BitVector(BC.MRI->getNumRegs(), false);
BC.MIB->getSrcRegs(Inst, SrcRegs);
SrcRegs &= BC.MIB->getAliases(Reg, true);
return SrcRegs.any();
}
bool TailDuplication::isOverwrittenBeforeUsed(BinaryBasicBlock &StartBB,
unsigned Reg) const {
BinaryFunction *BF = StartBB.getFunction();
BinaryContext &BC = BF->getBinaryContext();
std::queue<BinaryBasicBlock *> Q;
for (auto Itr = StartBB.succ_begin(); Itr != StartBB.succ_end(); ++Itr) {
BinaryBasicBlock *NextBB = *Itr;
Q.push(NextBB);
}
std::set<BinaryBasicBlock *> Visited;
// Breadth first search through successive blocks and see if Reg is ever used
// before its overwritten
while (Q.size() > 0) {
BinaryBasicBlock *CurrBB = Q.front();
Q.pop();
if (Visited.count(CurrBB))
continue;
Visited.insert(CurrBB);
bool Overwritten = false;
for (auto Itr = CurrBB->begin(); Itr != CurrBB->end(); ++Itr) {
MCInst &Inst = *Itr;
if (regIsUsed(Inst, Reg, BC))
return false;
if (regIsDefinitelyOverwritten(Inst, Reg, BC)) {
Overwritten = true;
break;
}
}
if (Overwritten)
continue;
for (auto Itr = CurrBB->succ_begin(); Itr != CurrBB->succ_end(); ++Itr) {
BinaryBasicBlock *NextBB = *Itr;
Q.push(NextBB);
}
}
return true;
}
void TailDuplication::constantAndCopyPropagate(
BinaryBasicBlock &OriginalBB,
std::vector<BinaryBasicBlock *> &BlocksToPropagate) {
BinaryFunction *BF = OriginalBB.getFunction();
BinaryContext &BC = BF->getBinaryContext();
BlocksToPropagate.insert(BlocksToPropagate.begin(), &OriginalBB);
// Iterate through the original instructions to find one to propagate
for (auto Itr = OriginalBB.begin(); Itr != OriginalBB.end(); ++Itr) {
MCInst &OriginalInst = *Itr;
// It must be a non conditional
if (BC.MIB->isConditionalMove(OriginalInst))
continue;
// Move immediate or move register
if ((!BC.MII->get(OriginalInst.getOpcode()).isMoveImmediate() ||
!OriginalInst.getOperand(1).isImm()) &&
(!BC.MII->get(OriginalInst.getOpcode()).isMoveReg() ||
!OriginalInst.getOperand(1).isReg()))
continue;
// True if this is constant propagation and not copy propagation
bool ConstantProp = BC.MII->get(OriginalInst.getOpcode()).isMoveImmediate();
// The Register to replaced
unsigned Reg = OriginalInst.getOperand(0).getReg();
// True if the register to replace was replaced everywhere it was used
bool ReplacedEverywhere = true;
// True if the register was definitely overwritten
bool Overwritten = false;
// True if the register to replace and the register to replace with (for
// copy propagation) has not been overwritten and is still usable
bool RegsActive = true;
// Iterate through successor blocks and through their instructions
for (BinaryBasicBlock *NextBB : BlocksToPropagate) {
for (auto PropagateItr =
((NextBB == &OriginalBB) ? Itr + 1 : NextBB->begin());
PropagateItr < NextBB->end(); ++PropagateItr) {
MCInst &PropagateInst = *PropagateItr;
if (regIsUsed(PropagateInst, Reg, BC)) {
bool Replaced = false;
// If both registers are active for copy propagation or the register
// to replace is active for constant propagation
if (RegsActive) {
// Set Replaced and so ReplacedEverwhere to false if it cannot be
// replaced (no replacing that opcode, Register is src and dest)
if (ConstantProp)
Replaced = BC.MIB->replaceRegWithImm(
PropagateInst, Reg, OriginalInst.getOperand(1).getImm());
else
Replaced = BC.MIB->replaceRegWithReg(
PropagateInst, Reg, OriginalInst.getOperand(1).getReg());
}
ReplacedEverywhere = ReplacedEverywhere && Replaced;
}
// For copy propagation, make sure no propagation happens after the
// register to replace with is overwritten
if (!ConstantProp &&
regIsPossiblyOverwritten(PropagateInst,
OriginalInst.getOperand(1).getReg(), BC))
RegsActive = false;
// Make sure no propagation happens after the register to replace is
// overwritten
if (regIsPossiblyOverwritten(PropagateInst, Reg, BC))
RegsActive = false;
// Record if the register to replace is overwritten
if (regIsDefinitelyOverwritten(PropagateInst, Reg, BC)) {
Overwritten = true;
break;
}
}
if (Overwritten)
break;
}
// If the register was replaced everwhere and it was overwritten in either
// one of the iterated through blocks or one of the successor blocks, delete
// the original move instruction
if (ReplacedEverywhere &&
(Overwritten ||
isOverwrittenBeforeUsed(
*BlocksToPropagate[BlocksToPropagate.size() - 1], Reg))) {
// If both registers are active for copy propagation or the register
// to replace is active for constant propagation
StaticInstructionDeletionCount++;
DynamicInstructionDeletionCount += OriginalBB.getExecutionCount();
Itr = std::prev(OriginalBB.eraseInstruction(Itr));
}
}
}
bool TailDuplication::isInCacheLine(const BinaryBasicBlock &BB,
const BinaryBasicBlock &Succ) const {
if (&BB == &Succ)
return true;
uint64_t Distance = 0;
int Direction = (Succ.getLayoutIndex() > BB.getLayoutIndex()) ? 1 : -1;
for (unsigned I = BB.getLayoutIndex() + Direction; I != Succ.getLayoutIndex();
I += Direction) {
Distance += BB.getFunction()->getLayout().getBlock(I)->getOriginalSize();
if (Distance > opts::TailDuplicationMinimumOffset)
return false;
}
return true;
}
std::vector<BinaryBasicBlock *>
TailDuplication::moderateDuplicate(BinaryBasicBlock &BB,
BinaryBasicBlock &Tail) const {
std::vector<BinaryBasicBlock *> BlocksToDuplicate;
// The block must be hot
if (BB.getKnownExecutionCount() == 0)
return BlocksToDuplicate;
// and its sucessor is not already in the same cache line
if (isInCacheLine(BB, Tail))
return BlocksToDuplicate;
// and its size do not exceed the maximum allowed size
if (Tail.getOriginalSize() > opts::TailDuplicationMaximumDuplication)
return BlocksToDuplicate;
// If duplicating would introduce a new branch, don't duplicate
for (auto Itr = Tail.succ_begin(); Itr != Tail.succ_end(); ++Itr) {
if ((*Itr)->getLayoutIndex() == Tail.getLayoutIndex() + 1)
return BlocksToDuplicate;
}
BlocksToDuplicate.push_back(&Tail);
return BlocksToDuplicate;
}
std::vector<BinaryBasicBlock *>
TailDuplication::aggressiveDuplicate(BinaryBasicBlock &BB,
BinaryBasicBlock &Tail) const {
std::vector<BinaryBasicBlock *> BlocksToDuplicate;
// The block must be hot
if (BB.getKnownExecutionCount() == 0)
return BlocksToDuplicate;
// and its sucessor is not already in the same cache line
if (isInCacheLine(BB, Tail))
return BlocksToDuplicate;
BinaryBasicBlock *CurrBB = &BB;
while (CurrBB) {
LLVM_DEBUG(dbgs() << "Aggressive tail duplication: adding "
<< CurrBB->getName() << " to duplication list\n";);
BlocksToDuplicate.push_back(CurrBB);
if (CurrBB->hasJumpTable()) {
LLVM_DEBUG(dbgs() << "Aggressive tail duplication: clearing duplication "
"list due to a JT in "
<< CurrBB->getName() << '\n';);
BlocksToDuplicate.clear();
break;
}
// With no successors, we've reached the end and should duplicate all of
// BlocksToDuplicate
if (CurrBB->succ_size() == 0)
break;
// With two successors, if they're both a jump, we should duplicate all
// blocks in BlocksToDuplicate. Otherwise, we cannot find a simple stream of
// blocks to copy
if (CurrBB->succ_size() >= 2) {
if (CurrBB->getConditionalSuccessor(false)->getLayoutIndex() ==
CurrBB->getLayoutIndex() + 1 ||
CurrBB->getConditionalSuccessor(true)->getLayoutIndex() ==
CurrBB->getLayoutIndex() + 1) {
LLVM_DEBUG(dbgs() << "Aggressive tail duplication: clearing "
"duplication list, can't find a simple stream at "
<< CurrBB->getName() << '\n';);
BlocksToDuplicate.clear();
}
break;
}
// With one successor, if its a jump, we should duplicate all blocks in
// BlocksToDuplicate. Otherwise, we should keep going
BinaryBasicBlock *SuccBB = CurrBB->getSuccessor();
if (SuccBB->getLayoutIndex() != CurrBB->getLayoutIndex() + 1)
break;
CurrBB = SuccBB;
}
// Don't duplicate if its too much code
unsigned DuplicationByteCount = std::accumulate(
std::begin(BlocksToDuplicate), std::end(BlocksToDuplicate), 0,
[](int value, BinaryBasicBlock *p) {
return value + p->getOriginalSize();
});
if (DuplicationByteCount > opts::TailDuplicationMaximumDuplication) {
LLVM_DEBUG(dbgs() << "Aggressive tail duplication: duplication byte count ("
<< DuplicationByteCount << ") exceeds maximum "
<< opts::TailDuplicationMaximumDuplication << '\n';);
BlocksToDuplicate.clear();
}
LLVM_DEBUG(dbgs() << "Aggressive tail duplication: found "
<< BlocksToDuplicate.size() << " blocks to duplicate\n";);
return BlocksToDuplicate;
}
bool TailDuplication::shouldDuplicate(BinaryBasicBlock *Pred,
BinaryBasicBlock *Tail) const {
if (Pred == Tail)
return false;
// Cannot duplicate non-tail blocks
if (Tail->succ_size() != 0)
return false;
// The blocks are already in the order
if (Pred->getLayoutIndex() + 1 == Tail->getLayoutIndex())
return false;
// No tail duplication for blocks with jump tables
if (Pred->hasJumpTable())
return false;
if (Tail->hasJumpTable())
return false;
return true;
}
double TailDuplication::cacheScore(uint64_t SrcAddr, uint64_t SrcSize,
uint64_t DstAddr, uint64_t DstSize,
uint64_t Count) const {
assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
bool IsForwardJump = SrcAddr <= DstAddr;
uint64_t JumpDistance = 0;
// Computing the length of the jump so that it takes the sizes of the two
// blocks into consideration
if (IsForwardJump) {
JumpDistance = (DstAddr + DstSize) - (SrcAddr);
} else {
JumpDistance = (SrcAddr + SrcSize) - (DstAddr);
}
if (JumpDistance >= opts::TailDuplicationMaxCacheDistance)
return 0;
double Prob = 1.0 - static_cast<double>(JumpDistance) /
opts::TailDuplicationMaxCacheDistance;
return (IsForwardJump ? 1.0 : opts::TailDuplicationCacheBackwardWeight) *
Prob * Count;
}
bool TailDuplication::cacheScoreImproved(const MCCodeEmitter *Emitter,
BinaryFunction &BF,
BinaryBasicBlock *Pred,
BinaryBasicBlock *Tail) const {
// Collect (estimated) basic block sizes
DenseMap<const BinaryBasicBlock *, uint64_t> BBSize;
for (const BinaryBasicBlock &BB : BF) {
BBSize[&BB] = std::max<uint64_t>(BB.estimateSize(Emitter), 1);
}
// Build current addresses of basic blocks starting at the entry block
DenseMap<BinaryBasicBlock *, uint64_t> CurAddr;
uint64_t Addr = 0;
for (BinaryBasicBlock *SrcBB : BF.getLayout().blocks()) {
CurAddr[SrcBB] = Addr;
Addr += BBSize[SrcBB];
}
// Build new addresses (after duplication) starting at the entry block
DenseMap<BinaryBasicBlock *, uint64_t> NewAddr;
Addr = 0;
for (BinaryBasicBlock *SrcBB : BF.getLayout().blocks()) {
NewAddr[SrcBB] = Addr;
Addr += BBSize[SrcBB];
if (SrcBB == Pred)
Addr += BBSize[Tail];
}
// Compute the cache score for the existing layout of basic blocks
double CurScore = 0;
for (BinaryBasicBlock *SrcBB : BF.getLayout().blocks()) {
auto BI = SrcBB->branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
if (SrcBB != DstBB) {
CurScore += cacheScore(CurAddr[SrcBB], BBSize[SrcBB], CurAddr[DstBB],
BBSize[DstBB], BI->Count);
}
++BI;
}
}
// Compute the cache score for the layout of blocks after tail duplication
double NewScore = 0;
for (BinaryBasicBlock *SrcBB : BF.getLayout().blocks()) {
auto BI = SrcBB->branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
if (SrcBB != DstBB) {
if (SrcBB == Pred && DstBB == Tail) {
NewScore += cacheScore(NewAddr[SrcBB], BBSize[SrcBB],
NewAddr[SrcBB] + BBSize[SrcBB], BBSize[DstBB],
BI->Count);
} else {
NewScore += cacheScore(NewAddr[SrcBB], BBSize[SrcBB], NewAddr[DstBB],
BBSize[DstBB], BI->Count);
}
}
++BI;
}
}
return NewScore > CurScore;
}
std::vector<BinaryBasicBlock *>
TailDuplication::cacheDuplicate(const MCCodeEmitter *Emitter,
BinaryFunction &BF, BinaryBasicBlock *Pred,
BinaryBasicBlock *Tail) const {
std::vector<BinaryBasicBlock *> BlocksToDuplicate;
// No need to duplicate cold basic blocks
if (Pred->isCold() || Tail->isCold()) {
return BlocksToDuplicate;
}
// Always duplicate "small" tail basic blocks, which might be beneficial for
// code size, since a jump instruction is eliminated
if (Tail->estimateSize(Emitter) <= opts::TailDuplicationMinimumDuplication) {
BlocksToDuplicate.push_back(Tail);
return BlocksToDuplicate;
}
// Never duplicate "large" tail basic blocks
if (Tail->estimateSize(Emitter) > opts::TailDuplicationMaximumDuplication) {
return BlocksToDuplicate;
}
// Do not append basic blocks after the last hot block in the current layout
auto NextBlock = BF.getLayout().getBasicBlockAfter(Pred);
if (NextBlock == nullptr || (!Pred->isCold() && NextBlock->isCold())) {
return BlocksToDuplicate;
}
// Duplicate the tail only if it improves the cache score
if (cacheScoreImproved(Emitter, BF, Pred, Tail)) {
BlocksToDuplicate.push_back(Tail);
}
return BlocksToDuplicate;
}
std::vector<BinaryBasicBlock *> TailDuplication::duplicateBlocks(
BinaryBasicBlock &BB,
const std::vector<BinaryBasicBlock *> &BlocksToDuplicate) const {
BinaryFunction *BF = BB.getFunction();
BinaryContext &BC = BF->getBinaryContext();
// Ratio of this new branches execution count to the total size of the
// successor's execution count. Used to set this new branches execution count
// and lower the old successor's execution count
double ExecutionCountRatio =
BB.getExecutionCount() >= BB.getSuccessor()->getExecutionCount()
? 1.0
: (double)BB.getExecutionCount() /
BB.getSuccessor()->getExecutionCount();
// Use the last branch info when adding a successor to LastBB
BinaryBasicBlock::BinaryBranchInfo &LastBI =
BB.getBranchInfo(*(BB.getSuccessor()));
BinaryBasicBlock *LastOriginalBB = &BB;
BinaryBasicBlock *LastDuplicatedBB = &BB;
assert(LastDuplicatedBB->succ_size() == 1 &&
"tail duplication cannot act on a block with more than 1 successor");
LastDuplicatedBB->removeSuccessor(LastDuplicatedBB->getSuccessor());
std::vector<std::unique_ptr<BinaryBasicBlock>> DuplicatedBlocks;
std::vector<BinaryBasicBlock *> DuplicatedBlocksToReturn;
for (BinaryBasicBlock *CurBB : BlocksToDuplicate) {
DuplicatedBlocks.emplace_back(
BF->createBasicBlock((BC.Ctx)->createNamedTempSymbol("tail-dup")));
BinaryBasicBlock *NewBB = DuplicatedBlocks.back().get();
NewBB->addInstructions(CurBB->begin(), CurBB->end());
// Set execution count as if it was just a copy of the original
NewBB->setExecutionCount(CurBB->getExecutionCount());
NewBB->setIsCold(CurBB->isCold());
LastDuplicatedBB->addSuccessor(NewBB, LastBI);
DuplicatedBlocksToReturn.push_back(NewBB);
// As long as its not the first block, adjust both original and duplicated
// to what they should be
if (LastDuplicatedBB != &BB) {
LastOriginalBB->adjustExecutionCount(1.0 - ExecutionCountRatio);
LastDuplicatedBB->adjustExecutionCount(ExecutionCountRatio);
}
if (CurBB->succ_size() == 1)
LastBI = CurBB->getBranchInfo(*(CurBB->getSuccessor()));
LastOriginalBB = CurBB;
LastDuplicatedBB = NewBB;
}
LastDuplicatedBB->addSuccessors(
LastOriginalBB->succ_begin(), LastOriginalBB->succ_end(),
LastOriginalBB->branch_info_begin(), LastOriginalBB->branch_info_end());
LastOriginalBB->adjustExecutionCount(1.0 - ExecutionCountRatio);
LastDuplicatedBB->adjustExecutionCount(ExecutionCountRatio);
BF->insertBasicBlocks(&BB, std::move(DuplicatedBlocks));
return DuplicatedBlocksToReturn;
}
void TailDuplication::runOnFunction(BinaryFunction &Function) {
// Create a separate MCCodeEmitter to allow lock-free execution
BinaryContext::IndependentCodeEmitter Emitter;
if (!opts::NoThreads) {
Emitter = Function.getBinaryContext().createIndependentMCCodeEmitter();
}
Function.getLayout().updateLayoutIndices();
// New blocks will be added and layout will change,
// so make a copy here to iterate over the original layout
BinaryFunction::BasicBlockOrderType BlockLayout(
Function.getLayout().block_begin(), Function.getLayout().block_end());
bool ModifiedFunction = false;
for (BinaryBasicBlock *BB : BlockLayout) {
AllDynamicCount += BB->getKnownExecutionCount();
// The block must be with one successor
if (BB->succ_size() != 1)
continue;
BinaryBasicBlock *Tail = BB->getSuccessor();
// Verify that the tail should be duplicated
if (!shouldDuplicate(BB, Tail))
continue;
std::vector<BinaryBasicBlock *> BlocksToDuplicate;
if (opts::TailDuplicationMode == TailDuplication::TD_AGGRESSIVE) {
BlocksToDuplicate = aggressiveDuplicate(*BB, *Tail);
} else if (opts::TailDuplicationMode == TailDuplication::TD_MODERATE) {
BlocksToDuplicate = moderateDuplicate(*BB, *Tail);
} else if (opts::TailDuplicationMode == TailDuplication::TD_CACHE) {
BlocksToDuplicate = cacheDuplicate(Emitter.MCE.get(), Function, BB, Tail);
} else {
llvm_unreachable("unknown tail duplication mode");
}
if (BlocksToDuplicate.empty())
continue;
// Apply the the duplication
ModifiedFunction = true;
DuplicationsDynamicCount += BB->getExecutionCount();
auto DuplicatedBlocks = duplicateBlocks(*BB, BlocksToDuplicate);
for (BinaryBasicBlock *BB : DuplicatedBlocks) {
DuplicatedBlockCount++;
DuplicatedByteCount += BB->estimateSize(Emitter.MCE.get());
}
if (opts::TailDuplicationConstCopyPropagation) {
constantAndCopyPropagate(*BB, DuplicatedBlocks);
BinaryBasicBlock *FirstBB = BlocksToDuplicate[0];
if (FirstBB->pred_size() == 1) {
BinaryBasicBlock *PredBB = *FirstBB->pred_begin();
if (PredBB->succ_size() == 1)
constantAndCopyPropagate(*PredBB, BlocksToDuplicate);
}
}
// Layout indices might be stale after duplication
Function.getLayout().updateLayoutIndices();
}
if (ModifiedFunction)
ModifiedFunctions++;
}
void TailDuplication::runOnFunctions(BinaryContext &BC) {
if (opts::TailDuplicationMode == TailDuplication::TD_NONE)
return;
for (auto &It : BC.getBinaryFunctions()) {
BinaryFunction &Function = It.second;
if (!shouldOptimize(Function))
continue;
runOnFunction(Function);
}
outs() << "BOLT-INFO: tail duplication"
<< format(" modified %zu (%.2f%%) functions;", ModifiedFunctions,
100.0 * ModifiedFunctions / BC.getBinaryFunctions().size())
<< format(" duplicated %zu blocks (%zu bytes) responsible for",
DuplicatedBlockCount, DuplicatedByteCount)
<< format(" %zu dynamic executions (%.2f%% of all block executions)",
DuplicationsDynamicCount,
100.0 * DuplicationsDynamicCount / AllDynamicCount)
<< "\n";
if (opts::TailDuplicationConstCopyPropagation) {
outs() << "BOLT-INFO: tail duplication "
<< format("applied %zu static and %zu dynamic propagation deletions",
StaticInstructionDeletionCount,
DynamicInstructionDeletionCount)
<< "\n";
}
}
} // end namespace bolt
} // end namespace llvm
|