1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
//===- bolt/Passes/ThreeWayBranch.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ThreeWayBranch class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/ThreeWayBranch.h"
using namespace llvm;
namespace llvm {
namespace bolt {
bool ThreeWayBranch::shouldRunOnFunction(BinaryFunction &Function) {
BinaryContext &BC = Function.getBinaryContext();
for (const BinaryBasicBlock &BB : Function)
for (const MCInst &Inst : BB)
if (BC.MIB->isPacked(Inst))
return false;
return true;
}
void ThreeWayBranch::runOnFunction(BinaryFunction &Function) {
BinaryContext &BC = Function.getBinaryContext();
MCContext *Ctx = BC.Ctx.get();
// New blocks will be added and layout will change,
// so make a copy here to iterate over the original layout
BinaryFunction::BasicBlockOrderType BlockLayout(
Function.getLayout().block_begin(), Function.getLayout().block_end());
for (BinaryBasicBlock *BB : BlockLayout) {
// The block must be hot
if (BB->getExecutionCount() == 0 ||
BB->getExecutionCount() == BinaryBasicBlock::COUNT_NO_PROFILE)
continue;
// with two successors
if (BB->succ_size() != 2)
continue;
// no jump table
if (BB->hasJumpTable())
continue;
BinaryBasicBlock *FalseSucc = BB->getConditionalSuccessor(false);
BinaryBasicBlock *TrueSucc = BB->getConditionalSuccessor(true);
// One of BB's successors must have only one instruction that is a
// conditional jump
if ((FalseSucc->succ_size() != 2 || FalseSucc->size() != 1) &&
(TrueSucc->succ_size() != 2 || TrueSucc->size() != 1))
continue;
// SecondBranch has the second conditional jump
BinaryBasicBlock *SecondBranch = FalseSucc;
BinaryBasicBlock *FirstEndpoint = TrueSucc;
if (FalseSucc->succ_size() != 2) {
SecondBranch = TrueSucc;
FirstEndpoint = FalseSucc;
}
BinaryBasicBlock *SecondEndpoint =
SecondBranch->getConditionalSuccessor(false);
BinaryBasicBlock *ThirdEndpoint =
SecondBranch->getConditionalSuccessor(true);
// Make sure we can modify the jump in SecondBranch without disturbing any
// other paths
if (SecondBranch->pred_size() != 1)
continue;
// Get Jump Instructions
MCInst *FirstJump = BB->getLastNonPseudoInstr();
MCInst *SecondJump = SecondBranch->getLastNonPseudoInstr();
// Get condition codes
unsigned FirstCC = BC.MIB->getCondCode(*FirstJump);
if (SecondBranch != FalseSucc)
FirstCC = BC.MIB->getInvertedCondCode(FirstCC);
// ThirdCC = ThirdCond && !FirstCC = !(!ThirdCond ||
// !(!FirstCC)) = !(!ThirdCond || FirstCC)
unsigned ThirdCC =
BC.MIB->getInvertedCondCode(BC.MIB->getCondCodesLogicalOr(
BC.MIB->getInvertedCondCode(BC.MIB->getCondCode(*SecondJump)),
FirstCC));
// SecondCC = !ThirdCond && !FirstCC = !(!(!ThirdCond) ||
// !(!FirstCC)) = !(ThirdCond || FirstCC)
unsigned SecondCC =
BC.MIB->getInvertedCondCode(BC.MIB->getCondCodesLogicalOr(
BC.MIB->getCondCode(*SecondJump), FirstCC));
if (!BC.MIB->isValidCondCode(FirstCC) ||
!BC.MIB->isValidCondCode(ThirdCC) || !BC.MIB->isValidCondCode(SecondCC))
continue;
std::vector<std::pair<BinaryBasicBlock *, unsigned>> Blocks;
Blocks.push_back(std::make_pair(FirstEndpoint, FirstCC));
Blocks.push_back(std::make_pair(SecondEndpoint, SecondCC));
Blocks.push_back(std::make_pair(ThirdEndpoint, ThirdCC));
llvm::sort(Blocks, [&](const std::pair<BinaryBasicBlock *, unsigned> A,
const std::pair<BinaryBasicBlock *, unsigned> B) {
return A.first->getExecutionCount() < B.first->getExecutionCount();
});
uint64_t NewSecondBranchCount = Blocks[1].first->getExecutionCount() +
Blocks[0].first->getExecutionCount();
bool SecondBranchBigger =
NewSecondBranchCount > Blocks[2].first->getExecutionCount();
BB->removeAllSuccessors();
if (SecondBranchBigger) {
BB->addSuccessor(Blocks[2].first, Blocks[2].first->getExecutionCount());
BB->addSuccessor(SecondBranch, NewSecondBranchCount);
} else {
BB->addSuccessor(SecondBranch, NewSecondBranchCount);
BB->addSuccessor(Blocks[2].first, Blocks[2].first->getExecutionCount());
}
// Remove and add so there is no duplicate successors
SecondBranch->removeAllSuccessors();
SecondBranch->addSuccessor(Blocks[0].first,
Blocks[0].first->getExecutionCount());
SecondBranch->addSuccessor(Blocks[1].first,
Blocks[1].first->getExecutionCount());
SecondBranch->setExecutionCount(NewSecondBranchCount);
// Replace the branch condition to fallthrough for the most common block
if (SecondBranchBigger)
BC.MIB->replaceBranchCondition(*FirstJump, Blocks[2].first->getLabel(),
Ctx, Blocks[2].second);
else
BC.MIB->replaceBranchCondition(
*FirstJump, SecondBranch->getLabel(), Ctx,
BC.MIB->getInvertedCondCode(Blocks[2].second));
// Replace the branch condition to fallthrough for the second most common
// block
BC.MIB->replaceBranchCondition(*SecondJump, Blocks[0].first->getLabel(),
Ctx, Blocks[0].second);
++BranchesAltered;
}
}
void ThreeWayBranch::runOnFunctions(BinaryContext &BC) {
for (auto &It : BC.getBinaryFunctions()) {
BinaryFunction &Function = It.second;
if (!shouldRunOnFunction(Function))
continue;
runOnFunction(Function);
}
outs() << "BOLT-INFO: number of three way branches order changed: "
<< BranchesAltered << "\n";
}
} // end namespace bolt
} // end namespace llvm
|