1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
//===- bolt/Passes/ValidateInternalCalls.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ValidateInternalCalls class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/ValidateInternalCalls.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Passes/DataflowInfoManager.h"
#include "bolt/Passes/FrameAnalysis.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCInstPrinter.h"
#include <optional>
#include <queue>
#define DEBUG_TYPE "bolt-internalcalls"
namespace llvm {
namespace bolt {
namespace {
// Helper used to extract the target basic block used in an internal call.
// Return nullptr if this is not an internal call target.
BinaryBasicBlock *getInternalCallTarget(BinaryFunction &Function,
const MCInst &Inst) {
const BinaryContext &BC = Function.getBinaryContext();
if (!BC.MIB->isCall(Inst) || MCPlus::getNumPrimeOperands(Inst) != 1 ||
!Inst.getOperand(0).isExpr())
return nullptr;
return Function.getBasicBlockForLabel(BC.MIB->getTargetSymbol(Inst));
}
// A special StackPointerTracking that considers internal calls
class StackPointerTrackingForInternalCalls
: public StackPointerTrackingBase<StackPointerTrackingForInternalCalls> {
friend class DataflowAnalysis<StackPointerTrackingForInternalCalls,
std::pair<int, int>>;
std::optional<unsigned> AnnotationIndex;
protected:
// We change the starting state to only consider the first block as an
// entry point, otherwise the analysis won't converge (there will be two valid
// stack offsets, one for an external call and another for an internal call).
std::pair<int, int> getStartingStateAtBB(const BinaryBasicBlock &BB) {
if (&BB == &*Func.begin())
return std::make_pair(-8, getEmpty());
return std::make_pair(getEmpty(), getEmpty());
}
// Here we decrement SP for internal calls too, in addition to the regular
// StackPointerTracking processing.
std::pair<int, int> computeNext(const MCInst &Point,
const std::pair<int, int> &Cur) {
std::pair<int, int> Res = StackPointerTrackingBase<
StackPointerTrackingForInternalCalls>::computeNext(Point, Cur);
if (Res.first == StackPointerTracking::SUPERPOSITION ||
Res.first == StackPointerTracking::EMPTY)
return Res;
if (BC.MIB->isReturn(Point)) {
Res.first += 8;
return Res;
}
BinaryBasicBlock *Target = getInternalCallTarget(Func, Point);
if (!Target)
return Res;
Res.first -= 8;
return Res;
}
StringRef getAnnotationName() const {
return StringRef("StackPointerTrackingForInternalCalls");
}
public:
StackPointerTrackingForInternalCalls(BinaryFunction &BF)
: StackPointerTrackingBase<StackPointerTrackingForInternalCalls>(BF) {}
void run() {
StackPointerTrackingBase<StackPointerTrackingForInternalCalls>::run();
}
};
} // end anonymous namespace
void ValidateInternalCalls::fixCFGForPIC(BinaryFunction &Function) const {
std::queue<BinaryBasicBlock *> Work;
for (BinaryBasicBlock &BB : Function)
Work.emplace(&BB);
while (!Work.empty()) {
BinaryBasicBlock &BB = *Work.front();
Work.pop();
// Search for the next internal call.
const BinaryBasicBlock::iterator InternalCall =
llvm::find_if(BB, [&](const MCInst &Inst) {
return getInternalCallTarget(Function, Inst) != nullptr;
});
// No internal call? Done with this block.
if (InternalCall == BB.end())
continue;
BinaryBasicBlock *Target = getInternalCallTarget(Function, *InternalCall);
InstructionListType MovedInsts = BB.splitInstructions(&*InternalCall);
if (!MovedInsts.empty()) {
// Split this block at the call instruction.
std::unique_ptr<BinaryBasicBlock> NewBB = Function.createBasicBlock();
NewBB->addInstructions(MovedInsts.begin(), MovedInsts.end());
BB.moveAllSuccessorsTo(NewBB.get());
Work.emplace(NewBB.get());
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
NewBBs.emplace_back(std::move(NewBB));
Function.insertBasicBlocks(&BB, std::move(NewBBs));
}
// Update successors
BB.removeAllSuccessors();
BB.addSuccessor(Target, BB.getExecutionCount(), 0ULL);
}
}
bool ValidateInternalCalls::fixCFGForIC(BinaryFunction &Function) const {
const BinaryContext &BC = Function.getBinaryContext();
// Track SP value
StackPointerTrackingForInternalCalls SPTIC(Function);
SPTIC.run();
// Track instructions reaching a given point of the CFG to answer
// "There is a path from entry to point A that contains instruction B"
ReachingInsns<false> RI(Function);
RI.run();
// We use the InsnToBB map that DataflowInfoManager provides us
DataflowInfoManager Info(Function, nullptr, nullptr);
bool Updated = false;
auto processReturns = [&](BinaryBasicBlock &BB, MCInst &Return) {
// Check all reaching internal calls
for (auto I = RI.expr_begin(Return), E = RI.expr_end(); I != E; ++I) {
MCInst &ReachingInst = **I;
if (!getInternalCallTarget(Function, ReachingInst) ||
BC.MIB->hasAnnotation(ReachingInst, getProcessedICTag()))
continue;
// Stack pointer matching
int SPAtCall = SPTIC.getStateAt(ReachingInst)->first;
int SPAtRet = SPTIC.getStateAt(Return)->first;
if (SPAtCall != StackPointerTracking::SUPERPOSITION &&
SPAtRet != StackPointerTracking::SUPERPOSITION &&
SPAtCall != SPAtRet - 8)
continue;
Updated = true;
// Mark this call as processed, so we don't try to analyze it as a
// PIC-computation internal call.
BC.MIB->addAnnotation(ReachingInst, getProcessedICTag(), 0U);
// Connect this block with the returning block of the caller
BinaryBasicBlock *CallerBlock = Info.getInsnToBBMap()[&ReachingInst];
BinaryBasicBlock *ReturnDestBlock =
Function.getLayout().getBasicBlockAfter(CallerBlock);
BB.addSuccessor(ReturnDestBlock, BB.getExecutionCount(), 0);
}
};
// This will connect blocks terminated with RETs to their respective
// internal caller return block. A note here: this is overly conservative
// because in nested calls, or unrelated calls, it will create edges
// connecting RETs to potentially unrelated internal calls. This is safe
// and if this causes a problem to recover the stack offsets properly, we
// will fail later.
for (BinaryBasicBlock &BB : Function) {
for (MCInst &Inst : BB) {
if (!BC.MIB->isReturn(Inst))
continue;
processReturns(BB, Inst);
}
}
return Updated;
}
bool ValidateInternalCalls::hasTailCallsInRange(
BinaryFunction &Function) const {
const BinaryContext &BC = Function.getBinaryContext();
for (BinaryBasicBlock &BB : Function)
for (MCInst &Inst : BB)
if (BC.MIB->isTailCall(Inst))
return true;
return false;
}
bool ValidateInternalCalls::analyzeFunction(BinaryFunction &Function) const {
fixCFGForPIC(Function);
while (fixCFGForIC(Function)) {
}
BinaryContext &BC = Function.getBinaryContext();
RegAnalysis RA = RegAnalysis(BC, nullptr, nullptr);
RA.setConservativeStrategy(RegAnalysis::ConservativeStrategy::CLOBBERS_NONE);
bool HasTailCalls = hasTailCallsInRange(Function);
for (BinaryBasicBlock &BB : Function) {
for (MCInst &Inst : BB) {
BinaryBasicBlock *Target = getInternalCallTarget(Function, Inst);
if (!Target || BC.MIB->hasAnnotation(Inst, getProcessedICTag()))
continue;
if (HasTailCalls) {
LLVM_DEBUG(dbgs() << Function
<< " has tail calls and internal calls.\n");
return false;
}
FrameIndexEntry FIE;
int32_t SrcImm = 0;
MCPhysReg Reg = 0;
int64_t StackOffset = 0;
bool IsIndexed = false;
MCInst *TargetInst = ProgramPoint::getFirstPointAt(*Target).getInst();
if (!BC.MIB->isStackAccess(*TargetInst, FIE.IsLoad, FIE.IsStore,
FIE.IsStoreFromReg, Reg, SrcImm,
FIE.StackPtrReg, StackOffset, FIE.Size,
FIE.IsSimple, IsIndexed)) {
LLVM_DEBUG({
dbgs() << "Frame analysis failed - not simple: " << Function << "\n";
Function.dump();
});
return false;
}
if (!FIE.IsLoad || FIE.StackPtrReg != BC.MIB->getStackPointer() ||
StackOffset != 0) {
LLVM_DEBUG({
dbgs() << "Target instruction does not fetch return address - not "
"simple: "
<< Function << "\n";
Function.dump();
});
return false;
}
// Now track how the return address is used by tracking uses of Reg
ReachingDefOrUse</*Def=*/false> RU =
ReachingDefOrUse<false>(RA, Function, Reg);
RU.run();
int64_t Offset = static_cast<int64_t>(Target->getInputOffset());
bool UseDetected = false;
for (auto I = RU.expr_begin(*RU.getStateBefore(*TargetInst)),
E = RU.expr_end();
I != E; ++I) {
MCInst &Use = **I;
BitVector UsedRegs = BitVector(BC.MRI->getNumRegs(), false);
BC.MIB->getTouchedRegs(Use, UsedRegs);
if (!UsedRegs[Reg])
continue;
UseDetected = true;
int64_t Output;
std::pair<MCPhysReg, int64_t> Input1 = std::make_pair(Reg, 0);
std::pair<MCPhysReg, int64_t> Input2 = std::make_pair(0, 0);
if (!BC.MIB->evaluateStackOffsetExpr(Use, Output, Input1, Input2)) {
LLVM_DEBUG(dbgs() << "Evaluate stack offset expr failed.\n");
return false;
}
if (Offset + Output < 0 ||
Offset + Output > static_cast<int64_t>(Function.getSize())) {
LLVM_DEBUG({
dbgs() << "Detected out-of-range PIC reference in " << Function
<< "\nReturn address load: ";
BC.InstPrinter->printInst(TargetInst, 0, "", *BC.STI, dbgs());
dbgs() << "\nUse: ";
BC.InstPrinter->printInst(&Use, 0, "", *BC.STI, dbgs());
dbgs() << "\n";
Function.dump();
});
return false;
}
LLVM_DEBUG({
dbgs() << "Validated access: ";
BC.InstPrinter->printInst(&Use, 0, "", *BC.STI, dbgs());
dbgs() << "\n";
});
}
if (!UseDetected) {
LLVM_DEBUG(dbgs() << "No use detected.\n");
return false;
}
}
}
return true;
}
void ValidateInternalCalls::runOnFunctions(BinaryContext &BC) {
if (!BC.isX86())
return;
// Look for functions that need validation. This should be pretty rare.
std::set<BinaryFunction *> NeedsValidation;
for (auto &BFI : BC.getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
for (BinaryBasicBlock &BB : Function) {
for (MCInst &Inst : BB) {
if (getInternalCallTarget(Function, Inst)) {
NeedsValidation.insert(&Function);
Function.setSimple(false);
break;
}
}
}
}
// Skip validation for non-relocation mode
if (!BC.HasRelocations)
return;
// Since few functions need validation, we can work with our most expensive
// algorithms here. Fix the CFG treating internal calls as unconditional
// jumps. This optimistically assumes this call is a PIC trick to get the PC
// value, so it is not really a call, but a jump. If we find that it's not the
// case, we mark this function as non-simple and stop processing it.
std::set<BinaryFunction *> Invalid;
for (BinaryFunction *Function : NeedsValidation) {
LLVM_DEBUG(dbgs() << "Validating " << *Function << "\n");
if (!analyzeFunction(*Function))
Invalid.insert(Function);
clearAnnotations(*Function);
}
if (!Invalid.empty()) {
errs() << "BOLT-WARNING: will skip the following function(s) as unsupported"
" internal calls were detected:\n";
for (BinaryFunction *Function : Invalid) {
errs() << " " << *Function << "\n";
Function->setIgnored();
}
}
}
} // namespace bolt
} // namespace llvm
|