1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
|
//===- bolt/Profile/StaleProfileMatching.cpp - Profile data matching ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BOLT often has to deal with profiles collected on binaries built from several
// revisions behind release. As a result, a certain percentage of functions is
// considered stale and not optimized. This file implements an ability to match
// profile to functions that are not 100% binary identical, and thus, increasing
// the optimization coverage and boost the performance of applications.
//
// The algorithm consists of two phases: matching and inference:
// - At the matching phase, we try to "guess" as many block and jump counts from
// the stale profile as possible. To this end, the content of each basic block
// is hashed and stored in the (yaml) profile. When BOLT optimizes a binary,
// it computes block hashes and identifies the corresponding entries in the
// stale profile. It yields a partial profile for every CFG in the binary.
// - At the inference phase, we employ a network flow-based algorithm (profi) to
// reconstruct "realistic" block and jump counts from the partial profile
// generated at the first stage. In practice, we don't always produce proper
// profile data but the majority (e.g., >90%) of CFGs get the correct counts.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/HashUtilities.h"
#include "bolt/Profile/YAMLProfileReader.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/SampleProfileInference.h"
#include <queue>
#undef DEBUG_TYPE
#define DEBUG_TYPE "bolt-prof"
using namespace llvm;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
cl::opt<bool>
InferStaleProfile("infer-stale-profile",
cl::desc("Infer counts from stale profile data."),
cl::init(false), cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingMaxFuncSize(
"stale-matching-max-func-size",
cl::desc("The maximum size of a function to consider for inference."),
cl::init(10000), cl::Hidden, cl::cat(BoltOptCategory));
// Parameters of the profile inference algorithm. The default values are tuned
// on several benchmarks.
cl::opt<bool> StaleMatchingEvenFlowDistribution(
"stale-matching-even-flow-distribution",
cl::desc("Try to evenly distribute flow when there are multiple equally "
"likely options."),
cl::init(true), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<bool> StaleMatchingRebalanceUnknown(
"stale-matching-rebalance-unknown",
cl::desc("Evenly re-distribute flow among unknown subgraphs."),
cl::init(false), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<bool> StaleMatchingJoinIslands(
"stale-matching-join-islands",
cl::desc("Join isolated components having positive flow."), cl::init(true),
cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostBlockInc(
"stale-matching-cost-block-inc",
cl::desc("The cost of increasing a block's count by one."), cl::init(110),
cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostBlockDec(
"stale-matching-cost-block-dec",
cl::desc("The cost of decreasing a block's count by one."), cl::init(100),
cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostBlockEntryInc(
"stale-matching-cost-block-entry-inc",
cl::desc("The cost of increasing the entry block's count by one."),
cl::init(110), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostBlockEntryDec(
"stale-matching-cost-block-entry-dec",
cl::desc("The cost of decreasing the entry block's count by one."),
cl::init(100), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostBlockZeroInc(
"stale-matching-cost-block-zero-inc",
cl::desc("The cost of increasing a count of zero-weight block by one."),
cl::init(10), cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostBlockUnknownInc(
"stale-matching-cost-block-unknown-inc",
cl::desc("The cost of increasing an unknown block's count by one."),
cl::init(10), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostJumpInc(
"stale-matching-cost-jump-inc",
cl::desc("The cost of increasing a jump's count by one."), cl::init(100),
cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostJumpFTInc(
"stale-matching-cost-jump-ft-inc",
cl::desc("The cost of increasing a fall-through jump's count by one."),
cl::init(100), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostJumpDec(
"stale-matching-cost-jump-dec",
cl::desc("The cost of decreasing a jump's count by one."), cl::init(110),
cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostJumpFTDec(
"stale-matching-cost-jump-ft-dec",
cl::desc("The cost of decreasing a fall-through jump's count by one."),
cl::init(110), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostJumpUnknownInc(
"stale-matching-cost-jump-unknown-inc",
cl::desc("The cost of increasing an unknown jump's count by one."),
cl::init(50), cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<unsigned> StaleMatchingCostJumpUnknownFTInc(
"stale-matching-cost-jump-unknown-ft-inc",
cl::desc(
"The cost of increasing an unknown fall-through jump's count by one."),
cl::init(5), cl::ReallyHidden, cl::cat(BoltOptCategory));
} // namespace opts
namespace llvm {
namespace bolt {
/// An object wrapping several components of a basic block hash. The combined
/// (blended) hash is represented and stored as one uint64_t, while individual
/// components are of smaller size (e.g., uint16_t or uint8_t).
struct BlendedBlockHash {
private:
static uint64_t combineHashes(uint16_t Hash1, uint16_t Hash2, uint16_t Hash3,
uint16_t Hash4) {
uint64_t Hash = 0;
Hash |= uint64_t(Hash4);
Hash <<= 16;
Hash |= uint64_t(Hash3);
Hash <<= 16;
Hash |= uint64_t(Hash2);
Hash <<= 16;
Hash |= uint64_t(Hash1);
return Hash;
}
static void parseHashes(uint64_t Hash, uint16_t &Hash1, uint16_t &Hash2,
uint16_t &Hash3, uint16_t &Hash4) {
Hash1 = Hash & 0xffff;
Hash >>= 16;
Hash2 = Hash & 0xffff;
Hash >>= 16;
Hash3 = Hash & 0xffff;
Hash >>= 16;
Hash4 = Hash & 0xffff;
Hash >>= 16;
}
public:
explicit BlendedBlockHash() {}
explicit BlendedBlockHash(uint64_t CombinedHash) {
parseHashes(CombinedHash, Offset, OpcodeHash, InstrHash, NeighborHash);
}
/// Combine the blended hash into uint64_t.
uint64_t combine() const {
return combineHashes(Offset, OpcodeHash, InstrHash, NeighborHash);
}
/// Compute a distance between two given blended hashes. The smaller the
/// distance, the more similar two blocks are. For identical basic blocks,
/// the distance is zero.
uint64_t distance(const BlendedBlockHash &BBH) const {
assert(OpcodeHash == BBH.OpcodeHash &&
"incorrect blended hash distance computation");
uint64_t Dist = 0;
// Account for NeighborHash
Dist += NeighborHash == BBH.NeighborHash ? 0 : 1;
Dist <<= 16;
// Account for InstrHash
Dist += InstrHash == BBH.InstrHash ? 0 : 1;
Dist <<= 16;
// Account for Offset
Dist += (Offset >= BBH.Offset ? Offset - BBH.Offset : BBH.Offset - Offset);
return Dist;
}
/// The offset of the basic block from the function start.
uint16_t Offset{0};
/// (Loose) Hash of the basic block instructions, excluding operands.
uint16_t OpcodeHash{0};
/// (Strong) Hash of the basic block instructions, including opcodes and
/// operands.
uint16_t InstrHash{0};
/// Hash of the (loose) basic block together with (loose) hashes of its
/// successors and predecessors.
uint16_t NeighborHash{0};
};
/// The object is used to identify and match basic blocks in a BinaryFunction
/// given their hashes computed on a binary built from several revisions behind
/// release.
class StaleMatcher {
public:
/// Initialize stale matcher.
void init(const std::vector<FlowBlock *> &Blocks,
const std::vector<BlendedBlockHash> &Hashes) {
assert(Blocks.size() == Hashes.size() &&
"incorrect matcher initialization");
for (size_t I = 0; I < Blocks.size(); I++) {
FlowBlock *Block = Blocks[I];
uint16_t OpHash = Hashes[I].OpcodeHash;
OpHashToBlocks[OpHash].push_back(std::make_pair(Hashes[I], Block));
}
}
/// Find the most similar block for a given hash.
const FlowBlock *matchBlock(BlendedBlockHash BlendedHash) const {
auto BlockIt = OpHashToBlocks.find(BlendedHash.OpcodeHash);
if (BlockIt == OpHashToBlocks.end()) {
return nullptr;
}
FlowBlock *BestBlock = nullptr;
uint64_t BestDist = std::numeric_limits<uint64_t>::max();
for (auto It : BlockIt->second) {
FlowBlock *Block = It.second;
BlendedBlockHash Hash = It.first;
uint64_t Dist = Hash.distance(BlendedHash);
if (BestBlock == nullptr || Dist < BestDist) {
BestDist = Dist;
BestBlock = Block;
}
}
return BestBlock;
}
private:
using HashBlockPairType = std::pair<BlendedBlockHash, FlowBlock *>;
std::unordered_map<uint16_t, std::vector<HashBlockPairType>> OpHashToBlocks;
};
void BinaryFunction::computeBlockHashes() const {
if (size() == 0)
return;
assert(hasCFG() && "the function is expected to have CFG");
std::vector<BlendedBlockHash> BlendedHashes(BasicBlocks.size());
std::vector<uint64_t> OpcodeHashes(BasicBlocks.size());
// Initialize hash components
for (size_t I = 0; I < BasicBlocks.size(); I++) {
const BinaryBasicBlock *BB = BasicBlocks[I];
assert(BB->getIndex() == I && "incorrect block index");
BlendedHashes[I].Offset = BB->getOffset();
// Hashing complete instructions
std::string InstrHashStr = hashBlock(
BC, *BB, [&](const MCOperand &Op) { return hashInstOperand(BC, Op); });
uint64_t InstrHash = std::hash<std::string>{}(InstrHashStr);
BlendedHashes[I].InstrHash = hash_64_to_16(InstrHash);
// Hashing opcodes
std::string OpcodeHashStr =
hashBlock(BC, *BB, [](const MCOperand &Op) { return std::string(); });
OpcodeHashes[I] = std::hash<std::string>{}(OpcodeHashStr);
BlendedHashes[I].OpcodeHash = hash_64_to_16(OpcodeHashes[I]);
}
// Initialize neighbor hash
for (size_t I = 0; I < BasicBlocks.size(); I++) {
const BinaryBasicBlock *BB = BasicBlocks[I];
uint64_t Hash = OpcodeHashes[I];
// Append hashes of successors
for (BinaryBasicBlock *SuccBB : BB->successors()) {
uint64_t SuccHash = OpcodeHashes[SuccBB->getIndex()];
Hash = hashing::detail::hash_16_bytes(Hash, SuccHash);
}
// Append hashes of predecessors
for (BinaryBasicBlock *PredBB : BB->predecessors()) {
uint64_t PredHash = OpcodeHashes[PredBB->getIndex()];
Hash = hashing::detail::hash_16_bytes(Hash, PredHash);
}
BlendedHashes[I].NeighborHash = hash_64_to_16(Hash);
}
// Assign hashes
for (size_t I = 0; I < BasicBlocks.size(); I++) {
const BinaryBasicBlock *BB = BasicBlocks[I];
BB->setHash(BlendedHashes[I].combine());
}
}
/// Create a wrapper flow function to use with the profile inference algorithm,
/// and initialize its jumps and metadata.
FlowFunction
createFlowFunction(const BinaryFunction::BasicBlockOrderType &BlockOrder) {
FlowFunction Func;
// Add a special "dummy" source so that there is always a unique entry point.
// Because of the extra source, for all other blocks in FlowFunction it holds
// that Block.Index == BB->getLayoutIndex() + 1
FlowBlock EntryBlock;
EntryBlock.Index = 0;
Func.Blocks.push_back(EntryBlock);
// Create FlowBlock for every basic block in the binary function
for (const BinaryBasicBlock *BB : BlockOrder) {
Func.Blocks.emplace_back();
FlowBlock &Block = Func.Blocks.back();
Block.Index = Func.Blocks.size() - 1;
(void)BB;
assert(Block.Index == BB->getLayoutIndex() + 1 &&
"incorrectly assigned basic block index");
}
// Create FlowJump for each jump between basic blocks in the binary function
std::vector<uint64_t> InDegree(Func.Blocks.size(), 0);
for (const BinaryBasicBlock *SrcBB : BlockOrder) {
std::unordered_set<const BinaryBasicBlock *> UniqueSuccs;
// Collect regular jumps
for (const BinaryBasicBlock *DstBB : SrcBB->successors()) {
// Ignoring parallel edges
if (UniqueSuccs.find(DstBB) != UniqueSuccs.end())
continue;
Func.Jumps.emplace_back();
FlowJump &Jump = Func.Jumps.back();
Jump.Source = SrcBB->getLayoutIndex() + 1;
Jump.Target = DstBB->getLayoutIndex() + 1;
InDegree[Jump.Target]++;
UniqueSuccs.insert(DstBB);
}
// Collect jumps to landing pads
for (const BinaryBasicBlock *DstBB : SrcBB->landing_pads()) {
// Ignoring parallel edges
if (UniqueSuccs.find(DstBB) != UniqueSuccs.end())
continue;
Func.Jumps.emplace_back();
FlowJump &Jump = Func.Jumps.back();
Jump.Source = SrcBB->getLayoutIndex() + 1;
Jump.Target = DstBB->getLayoutIndex() + 1;
InDegree[Jump.Target]++;
UniqueSuccs.insert(DstBB);
}
}
// Add dummy edges to the extra sources. If there are multiple entry blocks,
// add an unlikely edge from 0 to the subsequent ones
assert(InDegree[0] == 0 && "dummy entry blocks shouldn't have predecessors");
for (uint64_t I = 1; I < Func.Blocks.size(); I++) {
const BinaryBasicBlock *BB = BlockOrder[I - 1];
if (BB->isEntryPoint() || InDegree[I] == 0) {
Func.Jumps.emplace_back();
FlowJump &Jump = Func.Jumps.back();
Jump.Source = 0;
Jump.Target = I;
if (!BB->isEntryPoint())
Jump.IsUnlikely = true;
}
}
// Create necessary metadata for the flow function
for (FlowJump &Jump : Func.Jumps) {
Func.Blocks.at(Jump.Source).SuccJumps.push_back(&Jump);
Func.Blocks.at(Jump.Target).PredJumps.push_back(&Jump);
}
return Func;
}
/// Assign initial block/jump weights based on the stale profile data. The goal
/// is to extract as much information from the stale profile as possible. Here
/// we assume that each basic block is specified via a hash value computed from
/// its content and the hashes of the unchanged basic blocks stay the same
/// across different revisions of the binary.
/// Whenever there is a count in the profile with the hash corresponding to one
/// of the basic blocks in the binary, the count is "matched" to the block.
/// Similarly, if both the source and the target of a count in the profile are
/// matched to a jump in the binary, the count is recorded in CFG.
void matchWeightsByHashes(const BinaryFunction::BasicBlockOrderType &BlockOrder,
const yaml::bolt::BinaryFunctionProfile &YamlBF,
FlowFunction &Func) {
assert(Func.Blocks.size() == BlockOrder.size() + 1);
std::vector<FlowBlock *> Blocks;
std::vector<BlendedBlockHash> BlendedHashes;
for (uint64_t I = 0; I < BlockOrder.size(); I++) {
const BinaryBasicBlock *BB = BlockOrder[I];
assert(BB->getHash() != 0 && "empty hash of BinaryBasicBlock");
Blocks.push_back(&Func.Blocks[I + 1]);
BlendedBlockHash BlendedHash(BB->getHash());
BlendedHashes.push_back(BlendedHash);
LLVM_DEBUG(dbgs() << "BB with index " << I << " has hash = "
<< Twine::utohexstr(BB->getHash()) << "\n");
}
StaleMatcher Matcher;
Matcher.init(Blocks, BlendedHashes);
// Index in yaml profile => corresponding (matched) block
DenseMap<uint64_t, const FlowBlock *> MatchedBlocks;
// Match blocks from the profile to the blocks in CFG
for (const yaml::bolt::BinaryBasicBlockProfile &YamlBB : YamlBF.Blocks) {
assert(YamlBB.Hash != 0 && "empty hash of BinaryBasicBlockProfile");
BlendedBlockHash BlendedHash(YamlBB.Hash);
const FlowBlock *MatchedBlock = Matcher.matchBlock(BlendedHash);
if (MatchedBlock != nullptr) {
MatchedBlocks[YamlBB.Index] = MatchedBlock;
LLVM_DEBUG(dbgs() << "Matched yaml block with bid = " << YamlBB.Index
<< " and hash = " << Twine::utohexstr(YamlBB.Hash)
<< " to BB with index = " << MatchedBlock->Index - 1
<< "\n");
} else {
LLVM_DEBUG(
dbgs() << "Couldn't match yaml block with bid = " << YamlBB.Index
<< " and hash = " << Twine::utohexstr(YamlBB.Hash) << "\n");
}
}
// Match jumps from the profile to the jumps from CFG
std::vector<uint64_t> OutWeight(Func.Blocks.size(), 0);
std::vector<uint64_t> InWeight(Func.Blocks.size(), 0);
for (const yaml::bolt::BinaryBasicBlockProfile &YamlBB : YamlBF.Blocks) {
for (const yaml::bolt::SuccessorInfo &YamlSI : YamlBB.Successors) {
if (YamlSI.Count == 0)
continue;
// Try to find the jump for a given (src, dst) pair from the profile and
// assign the jump weight based on the profile count
const uint64_t SrcIndex = YamlBB.Index;
const uint64_t DstIndex = YamlSI.Index;
const FlowBlock *MatchedSrcBlock = MatchedBlocks.lookup(SrcIndex);
const FlowBlock *MatchedDstBlock = MatchedBlocks.lookup(DstIndex);
if (MatchedSrcBlock != nullptr && MatchedDstBlock != nullptr) {
// Find a jump between the two blocks
FlowJump *Jump = nullptr;
for (FlowJump *SuccJump : MatchedSrcBlock->SuccJumps) {
if (SuccJump->Target == MatchedDstBlock->Index) {
Jump = SuccJump;
break;
}
}
// Assign the weight, if the corresponding jump is found
if (Jump != nullptr) {
Jump->Weight = YamlSI.Count;
Jump->HasUnknownWeight = false;
}
}
// Assign the weight for the src block, if it is found
if (MatchedSrcBlock != nullptr)
OutWeight[MatchedSrcBlock->Index] += YamlSI.Count;
// Assign the weight for the dst block, if it is found
if (MatchedDstBlock != nullptr)
InWeight[MatchedDstBlock->Index] += YamlSI.Count;
}
}
// Assign block counts based on in-/out- jumps
for (FlowBlock &Block : Func.Blocks) {
if (OutWeight[Block.Index] == 0 && InWeight[Block.Index] == 0) {
assert(Block.HasUnknownWeight && "unmatched block with positive count");
continue;
}
Block.HasUnknownWeight = false;
Block.Weight = std::max(OutWeight[Block.Index], InWeight[Block.Index]);
}
}
/// The function finds all blocks that are (i) reachable from the Entry block
/// and (ii) do not have a path to an exit, and marks all such blocks 'cold'
/// so that profi does not send any flow to such blocks.
void preprocessUnreachableBlocks(FlowFunction &Func) {
const uint64_t NumBlocks = Func.Blocks.size();
// Start bfs from the source
std::queue<uint64_t> Queue;
std::vector<bool> VisitedEntry(NumBlocks, false);
for (uint64_t I = 0; I < NumBlocks; I++) {
FlowBlock &Block = Func.Blocks[I];
if (Block.isEntry()) {
Queue.push(I);
VisitedEntry[I] = true;
break;
}
}
while (!Queue.empty()) {
const uint64_t Src = Queue.front();
Queue.pop();
for (FlowJump *Jump : Func.Blocks[Src].SuccJumps) {
const uint64_t Dst = Jump->Target;
if (!VisitedEntry[Dst]) {
Queue.push(Dst);
VisitedEntry[Dst] = true;
}
}
}
// Start bfs from all sinks
std::vector<bool> VisitedExit(NumBlocks, false);
for (uint64_t I = 0; I < NumBlocks; I++) {
FlowBlock &Block = Func.Blocks[I];
if (Block.isExit() && VisitedEntry[I]) {
Queue.push(I);
VisitedExit[I] = true;
}
}
while (!Queue.empty()) {
const uint64_t Src = Queue.front();
Queue.pop();
for (FlowJump *Jump : Func.Blocks[Src].PredJumps) {
const uint64_t Dst = Jump->Source;
if (!VisitedExit[Dst]) {
Queue.push(Dst);
VisitedExit[Dst] = true;
}
}
}
// Make all blocks of zero weight so that flow is not sent
for (uint64_t I = 0; I < NumBlocks; I++) {
FlowBlock &Block = Func.Blocks[I];
if (Block.Weight == 0)
continue;
if (!VisitedEntry[I] || !VisitedExit[I]) {
Block.Weight = 0;
Block.HasUnknownWeight = true;
Block.IsUnlikely = true;
for (FlowJump *Jump : Block.SuccJumps) {
if (Jump->Source == Block.Index && Jump->Target == Block.Index) {
Jump->Weight = 0;
Jump->HasUnknownWeight = true;
Jump->IsUnlikely = true;
}
}
}
}
}
/// Decide if stale profile matching can be applied for a given function.
/// Currently we skip inference for (very) large instances and for instances
/// having "unexpected" control flow (e.g., having no sink basic blocks).
bool canApplyInference(const FlowFunction &Func) {
if (Func.Blocks.size() > opts::StaleMatchingMaxFuncSize)
return false;
bool HasExitBlocks = llvm::any_of(
Func.Blocks, [&](const FlowBlock &Block) { return Block.isExit(); });
if (!HasExitBlocks)
return false;
return true;
}
/// Apply the profile inference algorithm for a given flow function.
void applyInference(FlowFunction &Func) {
ProfiParams Params;
// Set the params from the command-line flags.
Params.EvenFlowDistribution = opts::StaleMatchingEvenFlowDistribution;
Params.RebalanceUnknown = opts::StaleMatchingRebalanceUnknown;
Params.JoinIslands = opts::StaleMatchingJoinIslands;
Params.CostBlockInc = opts::StaleMatchingCostBlockInc;
Params.CostBlockDec = opts::StaleMatchingCostBlockDec;
Params.CostBlockEntryInc = opts::StaleMatchingCostBlockEntryInc;
Params.CostBlockEntryDec = opts::StaleMatchingCostBlockEntryDec;
Params.CostBlockZeroInc = opts::StaleMatchingCostBlockZeroInc;
Params.CostBlockUnknownInc = opts::StaleMatchingCostBlockUnknownInc;
Params.CostJumpInc = opts::StaleMatchingCostJumpInc;
Params.CostJumpFTInc = opts::StaleMatchingCostJumpFTInc;
Params.CostJumpDec = opts::StaleMatchingCostJumpDec;
Params.CostJumpFTDec = opts::StaleMatchingCostJumpFTDec;
Params.CostJumpUnknownInc = opts::StaleMatchingCostJumpUnknownInc;
Params.CostJumpUnknownFTInc = opts::StaleMatchingCostJumpUnknownFTInc;
applyFlowInference(Params, Func);
}
/// Collect inferred counts from the flow function and update annotations in
/// the binary function.
void assignProfile(BinaryFunction &BF,
const BinaryFunction::BasicBlockOrderType &BlockOrder,
FlowFunction &Func) {
BinaryContext &BC = BF.getBinaryContext();
assert(Func.Blocks.size() == BlockOrder.size() + 1);
for (uint64_t I = 0; I < BlockOrder.size(); I++) {
FlowBlock &Block = Func.Blocks[I + 1];
BinaryBasicBlock *BB = BlockOrder[I];
// Update block's count
BB->setExecutionCount(Block.Flow);
// Update jump counts: (i) clean existing counts and then (ii) set new ones
auto BI = BB->branch_info_begin();
for (const BinaryBasicBlock *DstBB : BB->successors()) {
(void)DstBB;
BI->Count = 0;
BI->MispredictedCount = 0;
++BI;
}
for (FlowJump *Jump : Block.SuccJumps) {
if (Jump->IsUnlikely)
continue;
if (Jump->Flow == 0)
continue;
BinaryBasicBlock &SuccBB = *BlockOrder[Jump->Target - 1];
// Check if the edge corresponds to a regular jump or a landing pad
if (BB->getSuccessor(SuccBB.getLabel())) {
BinaryBasicBlock::BinaryBranchInfo &BI = BB->getBranchInfo(SuccBB);
BI.Count += Jump->Flow;
} else {
BinaryBasicBlock *LP = BB->getLandingPad(SuccBB.getLabel());
if (LP && LP->getKnownExecutionCount() < Jump->Flow)
LP->setExecutionCount(Jump->Flow);
}
}
// Update call-site annotations
auto setOrUpdateAnnotation = [&](MCInst &Instr, StringRef Name,
uint64_t Count) {
if (BC.MIB->hasAnnotation(Instr, Name))
BC.MIB->removeAnnotation(Instr, Name);
// Do not add zero-count annotations
if (Count == 0)
return;
BC.MIB->addAnnotation(Instr, Name, Count);
};
for (MCInst &Instr : *BB) {
// Ignore pseudo instructions
if (BC.MIB->isPseudo(Instr))
continue;
// Ignore jump tables
const MCInst *LastInstr = BB->getLastNonPseudoInstr();
if (BC.MIB->getJumpTable(*LastInstr) && LastInstr == &Instr)
continue;
if (BC.MIB->isIndirectCall(Instr) || BC.MIB->isIndirectBranch(Instr)) {
auto &ICSP = BC.MIB->getOrCreateAnnotationAs<IndirectCallSiteProfile>(
Instr, "CallProfile");
if (!ICSP.empty()) {
// Try to evenly distribute the counts among the call sites
const uint64_t TotalCount = Block.Flow;
const uint64_t NumSites = ICSP.size();
for (uint64_t Idx = 0; Idx < ICSP.size(); Idx++) {
IndirectCallProfile &CSP = ICSP[Idx];
uint64_t CountPerSite = TotalCount / NumSites;
// When counts cannot be exactly distributed, increase by 1 the
// counts of the first (TotalCount % NumSites) call sites
if (Idx < TotalCount % NumSites)
CountPerSite++;
CSP.Count = CountPerSite;
}
} else {
ICSP.emplace_back(nullptr, Block.Flow, 0);
}
} else if (BC.MIB->getConditionalTailCall(Instr)) {
// We don't know exactly the number of times the conditional tail call
// is executed; conservatively, setting it to the count of the block
setOrUpdateAnnotation(Instr, "CTCTakenCount", Block.Flow);
BC.MIB->removeAnnotation(Instr, "CTCMispredCount");
} else if (BC.MIB->isCall(Instr)) {
setOrUpdateAnnotation(Instr, "Count", Block.Flow);
}
}
}
// Update function's execution count and mark the function inferred.
BF.setExecutionCount(Func.Blocks[0].Flow);
BF.setHasInferredProfile(true);
}
bool YAMLProfileReader::inferStaleProfile(
BinaryFunction &BF, const yaml::bolt::BinaryFunctionProfile &YamlBF) {
// Make sure that block indices and hashes are up to date
BF.getLayout().updateLayoutIndices();
BF.computeBlockHashes();
const BinaryFunction::BasicBlockOrderType BlockOrder(
BF.getLayout().block_begin(), BF.getLayout().block_end());
// Create a wrapper flow function to use with the profile inference algorithm
FlowFunction Func = createFlowFunction(BlockOrder);
// Match as many block/jump counts from the stale profile as possible
matchWeightsByHashes(BlockOrder, YamlBF, Func);
// Adjust the flow function by marking unreachable blocks Unlikely so that
// they don't get any counts assigned
preprocessUnreachableBlocks(Func);
// Check if profile inference can be applied for the instance
if (!canApplyInference(Func))
return false;
// Apply the profile inference algorithm
applyInference(Func);
// Collect inferred counts and update function annotations
assignProfile(BF, BlockOrder, Func);
// As of now, we always mark the binary function having "correct" profile.
// In the future, we may discard the results for instances with poor inference
// metrics and keep such functions un-optimized.
return true;
}
} // end namespace bolt
} // end namespace llvm
|