1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
//===- bolt/Rewrite/BoltDiff.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RewriteInstance methods related to comparing one instance to another, used
// by the boltdiff tool to print a report.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/IdenticalCodeFolding.h"
#include "bolt/Profile/ProfileReaderBase.h"
#include "bolt/Rewrite/RewriteInstance.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#undef DEBUG_TYPE
#define DEBUG_TYPE "boltdiff"
using namespace llvm;
using namespace object;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltDiffCategory;
extern cl::opt<bool> NeverPrint;
extern cl::opt<bool> ICF;
static cl::opt<bool> IgnoreLTOSuffix(
"ignore-lto-suffix",
cl::desc("ignore lto_priv or const suffixes when matching functions"),
cl::init(true), cl::cat(BoltDiffCategory));
static cl::opt<bool> PrintUnmapped(
"print-unmapped",
cl::desc("print functions of binary 2 that were not matched to any "
"function in binary 1"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> PrintProfiledUnmapped(
"print-profiled-unmapped",
cl::desc("print functions that have profile in binary 1 but do not "
"in binary 2"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> PrintDiffCFG(
"print-diff-cfg",
cl::desc("print the CFG of important functions that changed in "
"binary 2"),
cl::cat(BoltDiffCategory));
static cl::opt<bool>
PrintDiffBBs("print-diff-bbs",
cl::desc("print the basic blocks showed in top differences"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> MatchByHash(
"match-by-hash",
cl::desc("match functions in binary 2 to binary 1 if they have the same "
"hash of a function in binary 1"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> IgnoreUnchanged(
"ignore-unchanged",
cl::desc("do not diff functions whose contents have not been changed from "
"one binary to another"),
cl::cat(BoltDiffCategory));
static cl::opt<unsigned> DisplayCount(
"display-count",
cl::desc("number of functions to display when printing the top largest "
"differences in function activity"),
cl::init(10), cl::cat(BoltDiffCategory));
static cl::opt<bool> NormalizeByBin1(
"normalize-by-bin1",
cl::desc("show execution count of functions in binary 2 as a ratio of the "
"total samples in binary 1 - make sure both profiles have equal "
"collection time and sampling rate for this to make sense"),
cl::cat(BoltDiffCategory));
static cl::opt<bool>
SkipNonSimple("skip-non-simple",
cl::desc("skip non-simple functions in reporting"),
cl::ReallyHidden, cl::cat(BoltDiffCategory));
} // end namespace opts
namespace llvm {
namespace bolt {
namespace {
/// Helper used to print colored numbers
void printColoredPercentage(double Perc) {
if (outs().has_colors() && Perc > 0.0)
outs().changeColor(raw_ostream::RED);
else if (outs().has_colors() && Perc < 0.0)
outs().changeColor(raw_ostream::GREEN);
else if (outs().has_colors())
outs().changeColor(raw_ostream::YELLOW);
outs() << format("%.2f", Perc) << "%";
if (outs().has_colors())
outs().resetColor();
}
void setLightColor() {
if (opts::PrintDiffBBs && outs().has_colors())
outs().changeColor(raw_ostream::CYAN);
}
void setTitleColor() {
if (outs().has_colors())
outs().changeColor(raw_ostream::WHITE, /*Bold=*/true);
}
void setRegularColor() {
if (outs().has_colors())
outs().resetColor();
}
} // end anonymous namespace
/// Perform the comparison between two binaries with profiling information
class RewriteInstanceDiff {
typedef std::tuple<const BinaryBasicBlock *, const BinaryBasicBlock *, double>
EdgeTy;
RewriteInstance &RI1;
RewriteInstance &RI2;
// The map of functions keyed by functions in binary 2, providing its
// corresponding function in binary 1
std::map<const BinaryFunction *, const BinaryFunction *> FuncMap;
// The map of basic blocks correspondence, analogue to FuncMap for BBs,
// sorted by score difference
std::map<const BinaryBasicBlock *, const BinaryBasicBlock *> BBMap;
// The map of edge correspondence
std::map<double, std::pair<EdgeTy, EdgeTy>> EdgeMap;
// Maps all known basic blocks back to their parent function
std::map<const BinaryBasicBlock *, const BinaryFunction *> BBToFuncMap;
// Accounting which functions were matched
std::set<const BinaryFunction *> Bin1MappedFuncs;
std::set<const BinaryFunction *> Bin2MappedFuncs;
// Structures for our 3 matching strategies: by name, by hash and by lto name,
// from the strongest to the weakest bind between two functions
StringMap<const BinaryFunction *> NameLookup;
DenseMap<size_t, const BinaryFunction *> HashLookup;
StringMap<const BinaryFunction *> LTONameLookup1;
StringMap<const BinaryFunction *> LTONameLookup2;
// Score maps used to order and find hottest functions
std::multimap<double, const BinaryFunction *> LargestBin1;
std::multimap<double, const BinaryFunction *> LargestBin2;
// Map multiple functions in the same LTO bucket to a single parent function
// representing all functions sharing the same prefix
std::map<const BinaryFunction *, const BinaryFunction *> LTOMap1;
std::map<const BinaryFunction *, const BinaryFunction *> LTOMap2;
std::map<const BinaryFunction *, double> LTOAggregatedScore1;
std::map<const BinaryFunction *, double> LTOAggregatedScore2;
// Map scores in bin2 and 1 keyed by a binary 2 function - post-matching
DenseMap<const BinaryFunction *, std::pair<double, double>> ScoreMap;
double getNormalizedScore(const BinaryFunction &Function,
const RewriteInstance &Ctx) {
if (!opts::NormalizeByBin1)
return static_cast<double>(Function.getFunctionScore()) /
Ctx.getTotalScore();
return static_cast<double>(Function.getFunctionScore()) /
RI1.getTotalScore();
}
double getNormalizedScore(const BinaryBasicBlock &BB,
const RewriteInstance &Ctx) {
if (!opts::NormalizeByBin1)
return static_cast<double>(BB.getKnownExecutionCount()) /
Ctx.getTotalScore();
return static_cast<double>(BB.getKnownExecutionCount()) /
RI1.getTotalScore();
}
double getNormalizedScore(BinaryBasicBlock::const_branch_info_iterator BIIter,
const RewriteInstance &Ctx) {
double Score =
BIIter->Count == BinaryBasicBlock::COUNT_NO_PROFILE ? 0 : BIIter->Count;
if (!opts::NormalizeByBin1)
return Score / Ctx.getTotalScore();
return Score / RI1.getTotalScore();
}
/// Initialize data structures used for function lookup in binary 1, used
/// later when matching functions in binary 2 to corresponding functions
/// in binary 1
void buildLookupMaps() {
for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
StringRef LTOName;
const BinaryFunction &Function = BFI.second;
const double Score = getNormalizedScore(Function, RI1);
LargestBin1.insert(std::make_pair<>(Score, &Function));
for (const StringRef &Name : Function.getNames()) {
if (std::optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
LTOName = *OptionalLTOName;
NameLookup[Name] = &Function;
}
if (opts::MatchByHash && Function.hasCFG())
HashLookup[Function.computeHash(/*UseDFS=*/true)] = &Function;
if (opts::IgnoreLTOSuffix && !LTOName.empty()) {
if (!LTONameLookup1.count(LTOName))
LTONameLookup1[LTOName] = &Function;
LTOMap1[&Function] = LTONameLookup1[LTOName];
}
}
// Compute LTONameLookup2 and LargestBin2
for (const auto &BFI : RI2.BC->getBinaryFunctions()) {
StringRef LTOName;
const BinaryFunction &Function = BFI.second;
const double Score = getNormalizedScore(Function, RI2);
LargestBin2.insert(std::make_pair<>(Score, &Function));
for (const StringRef &Name : Function.getNames()) {
if (std::optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
LTOName = *OptionalLTOName;
}
if (opts::IgnoreLTOSuffix && !LTOName.empty()) {
if (!LTONameLookup2.count(LTOName))
LTONameLookup2[LTOName] = &Function;
LTOMap2[&Function] = LTONameLookup2[LTOName];
}
}
}
/// Match functions in binary 2 with functions in binary 1
void matchFunctions() {
outs() << "BOLT-DIFF: Mapping functions in Binary2 to Binary1\n";
uint64_t BothHaveProfile = 0ull;
std::set<const BinaryFunction *> Bin1ProfiledMapped;
for (const auto &BFI2 : RI2.BC->getBinaryFunctions()) {
const BinaryFunction &Function2 = BFI2.second;
StringRef LTOName;
bool Match = false;
for (const StringRef &Name : Function2.getNames()) {
auto Iter = NameLookup.find(Name);
if (std::optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
LTOName = *OptionalLTOName;
if (Iter == NameLookup.end())
continue;
FuncMap.insert(std::make_pair<>(&Function2, Iter->second));
Bin1MappedFuncs.insert(Iter->second);
Bin2MappedFuncs.insert(&Function2);
if (Function2.hasValidProfile() && Iter->second->hasValidProfile()) {
++BothHaveProfile;
Bin1ProfiledMapped.insert(Iter->second);
}
Match = true;
break;
}
if (Match || !Function2.hasCFG())
continue;
auto Iter = HashLookup.find(Function2.computeHash(/*UseDFS*/ true));
if (Iter != HashLookup.end()) {
FuncMap.insert(std::make_pair<>(&Function2, Iter->second));
Bin1MappedFuncs.insert(Iter->second);
Bin2MappedFuncs.insert(&Function2);
if (Function2.hasValidProfile() && Iter->second->hasValidProfile()) {
++BothHaveProfile;
Bin1ProfiledMapped.insert(Iter->second);
}
continue;
}
if (LTOName.empty())
continue;
auto LTOIter = LTONameLookup1.find(LTOName);
if (LTOIter != LTONameLookup1.end()) {
FuncMap.insert(std::make_pair<>(&Function2, LTOIter->second));
Bin1MappedFuncs.insert(LTOIter->second);
Bin2MappedFuncs.insert(&Function2);
if (Function2.hasValidProfile() && LTOIter->second->hasValidProfile()) {
++BothHaveProfile;
Bin1ProfiledMapped.insert(LTOIter->second);
}
}
}
PrintProgramStats PPS(opts::NeverPrint);
outs() << "* BOLT-DIFF: Starting print program stats pass for binary 1\n";
PPS.runOnFunctions(*RI1.BC);
outs() << "* BOLT-DIFF: Starting print program stats pass for binary 2\n";
PPS.runOnFunctions(*RI2.BC);
outs() << "=====\n";
outs() << "Inputs share " << BothHaveProfile
<< " functions with valid profile.\n";
if (opts::PrintProfiledUnmapped) {
outs() << "\nFunctions in profile 1 that are missing in the profile 2:\n";
std::vector<const BinaryFunction *> Unmapped;
for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
if (!Function.hasValidProfile() || Bin1ProfiledMapped.count(&Function))
continue;
Unmapped.emplace_back(&Function);
}
llvm::sort(Unmapped,
[&](const BinaryFunction *A, const BinaryFunction *B) {
return A->getFunctionScore() > B->getFunctionScore();
});
for (const BinaryFunction *Function : Unmapped) {
outs() << Function->getPrintName() << " : ";
outs() << Function->getFunctionScore() << "\n";
}
outs() << "=====\n";
}
}
/// Check if opcodes in BB1 match those in BB2
bool compareBBs(const BinaryBasicBlock &BB1,
const BinaryBasicBlock &BB2) const {
auto Iter1 = BB1.begin();
auto Iter2 = BB2.begin();
if ((Iter1 == BB1.end() && Iter2 != BB2.end()) ||
(Iter1 != BB1.end() && Iter2 == BB2.end()))
return false;
while (Iter1 != BB1.end()) {
if (Iter2 == BB2.end() || Iter1->getOpcode() != Iter2->getOpcode())
return false;
++Iter1;
++Iter2;
}
if (Iter2 != BB2.end())
return false;
return true;
}
/// For a function in binary 2 that matched one in binary 1, now match each
/// individual basic block in it to its corresponding blocks in binary 1.
/// Also match each edge in binary 2 to the corresponding ones in binary 1.
void matchBasicBlocks() {
for (const auto &MapEntry : FuncMap) {
const BinaryFunction *const &Func1 = MapEntry.second;
const BinaryFunction *const &Func2 = MapEntry.first;
auto Iter1 = Func1->getLayout().block_begin();
auto Iter2 = Func2->getLayout().block_begin();
bool Match = true;
std::map<const BinaryBasicBlock *, const BinaryBasicBlock *> Map;
std::map<double, std::pair<EdgeTy, EdgeTy>> EMap;
while (Iter1 != Func1->getLayout().block_end()) {
if (Iter2 == Func2->getLayout().block_end()) {
Match = false;
break;
}
if (!compareBBs(**Iter1, **Iter2)) {
Match = false;
break;
}
Map.insert(std::make_pair<>(*Iter2, *Iter1));
auto SuccIter1 = (*Iter1)->succ_begin();
auto SuccIter2 = (*Iter2)->succ_begin();
auto BIIter1 = (*Iter1)->branch_info_begin();
auto BIIter2 = (*Iter2)->branch_info_begin();
while (SuccIter1 != (*Iter1)->succ_end()) {
if (SuccIter2 == (*Iter2)->succ_end()) {
Match = false;
break;
}
const double ScoreEdge1 = getNormalizedScore(BIIter1, RI1);
const double ScoreEdge2 = getNormalizedScore(BIIter2, RI2);
EMap.insert(std::make_pair<>(
std::abs(ScoreEdge2 - ScoreEdge1),
std::make_pair<>(
std::make_tuple<>(*Iter2, *SuccIter2, ScoreEdge2),
std::make_tuple<>(*Iter1, *SuccIter1, ScoreEdge1))));
++SuccIter1;
++SuccIter2;
++BIIter1;
++BIIter2;
}
if (SuccIter2 != (*Iter2)->succ_end())
Match = false;
if (!Match)
break;
BBToFuncMap[*Iter1] = Func1;
BBToFuncMap[*Iter2] = Func2;
++Iter1;
++Iter2;
}
if (!Match || Iter2 != Func2->getLayout().block_end())
continue;
BBMap.insert(Map.begin(), Map.end());
EdgeMap.insert(EMap.begin(), EMap.end());
}
}
/// Print the largest differences in basic block performance from binary 1
/// to binary 2
void reportHottestBBDiffs() {
std::map<double, const BinaryBasicBlock *> LargestDiffs;
for (const auto &MapEntry : BBMap) {
const BinaryBasicBlock *BB2 = MapEntry.first;
const BinaryBasicBlock *BB1 = MapEntry.second;
LargestDiffs.insert(
std::make_pair<>(std::abs(getNormalizedScore(*BB2, RI2) -
getNormalizedScore(*BB1, RI1)),
BB2));
}
unsigned Printed = 0;
setTitleColor();
outs()
<< "\nTop " << opts::DisplayCount
<< " largest differences in basic block performance bin 2 -> bin 1:\n";
outs() << "=========================================================\n";
setRegularColor();
outs() << " * Functions with different contents do not appear here\n\n";
for (const BinaryBasicBlock *BB2 :
llvm::make_second_range(llvm::reverse(LargestDiffs))) {
const double Score2 = getNormalizedScore(*BB2, RI2);
const double Score1 = getNormalizedScore(*BBMap[BB2], RI1);
const BinaryFunction *Func = BBToFuncMap[BB2];
if (opts::SkipNonSimple && !Func->isSimple())
continue;
outs() << "BB " << BB2->getName() << " from " << Func->getDemangledName()
<< "\n\tScore bin1 = " << format("%.4f", Score1 * 100.0)
<< "%\n\tScore bin2 = " << format("%.4f", Score2 * 100.0);
outs() << "%\t(Difference: ";
printColoredPercentage((Score2 - Score1) * 100.0);
outs() << ")\n";
if (opts::PrintDiffBBs) {
setLightColor();
BB2->dump();
setRegularColor();
}
if (Printed++ == opts::DisplayCount)
break;
}
}
/// Print the largest differences in edge counts from one binary to another
void reportHottestEdgeDiffs() {
unsigned Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " largest differences in edge hotness bin 2 -> bin 1:\n";
outs() << "=========================================================\n";
setRegularColor();
outs() << " * Functions with different contents do not appear here\n";
for (std::pair<EdgeTy, EdgeTy> &EI :
llvm::make_second_range(llvm::reverse(EdgeMap))) {
EdgeTy &Edge2 = EI.first;
EdgeTy &Edge1 = EI.second;
const double Score2 = std::get<2>(Edge2);
const double Score1 = std::get<2>(Edge1);
const BinaryFunction *Func = BBToFuncMap[std::get<0>(Edge2)];
if (opts::SkipNonSimple && !Func->isSimple())
continue;
outs() << "Edge (" << std::get<0>(Edge2)->getName() << " -> "
<< std::get<1>(Edge2)->getName() << ") in "
<< Func->getDemangledName()
<< "\n\tScore bin1 = " << format("%.4f", Score1 * 100.0)
<< "%\n\tScore bin2 = " << format("%.4f", Score2 * 100.0);
outs() << "%\t(Difference: ";
printColoredPercentage((Score2 - Score1) * 100.0);
outs() << ")\n";
if (opts::PrintDiffBBs) {
setLightColor();
std::get<0>(Edge2)->dump();
std::get<1>(Edge2)->dump();
setRegularColor();
}
if (Printed++ == opts::DisplayCount)
break;
}
}
/// For LTO functions sharing the same prefix (for example, func1.lto_priv.1
/// and func1.lto_priv.2 share the func1.lto_priv prefix), compute aggregated
/// scores for them. This is used to avoid reporting all LTO functions as
/// having a large difference in performance because hotness shifted from
/// LTO variant 1 to variant 2, even though they represent the same function.
void computeAggregatedLTOScore() {
for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
double Score = getNormalizedScore(Function, RI1);
auto Iter = LTOMap1.find(&Function);
if (Iter == LTOMap1.end())
continue;
LTOAggregatedScore1[Iter->second] += Score;
}
double UnmappedScore = 0;
for (const auto &BFI : RI2.BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
bool Matched = FuncMap.find(&Function) != FuncMap.end();
double Score = getNormalizedScore(Function, RI2);
auto Iter = LTOMap2.find(&Function);
if (Iter == LTOMap2.end()) {
if (!Matched)
UnmappedScore += Score;
continue;
}
LTOAggregatedScore2[Iter->second] += Score;
if (FuncMap.find(Iter->second) == FuncMap.end())
UnmappedScore += Score;
}
int64_t Unmapped =
RI2.BC->getBinaryFunctions().size() - Bin2MappedFuncs.size();
outs() << "BOLT-DIFF: " << Unmapped
<< " functions in Binary2 have no correspondence to any other "
"function in Binary1.\n";
// Print the hotness score of functions in binary 2 that were not matched
// to any function in binary 1
outs() << "BOLT-DIFF: These unmapped functions in Binary2 represent "
<< format("%.2f", UnmappedScore * 100.0) << "% of execution.\n";
}
/// Print the largest hotness differences from binary 2 to binary 1
void reportHottestFuncDiffs() {
std::multimap<double, decltype(FuncMap)::value_type> LargestDiffs;
for (const auto &MapEntry : FuncMap) {
const BinaryFunction *const &Func1 = MapEntry.second;
const BinaryFunction *const &Func2 = MapEntry.first;
double Score1 = getNormalizedScore(*Func1, RI1);
auto Iter1 = LTOMap1.find(Func1);
if (Iter1 != LTOMap1.end())
Score1 = LTOAggregatedScore1[Iter1->second];
double Score2 = getNormalizedScore(*Func2, RI2);
auto Iter2 = LTOMap2.find(Func2);
if (Iter2 != LTOMap2.end())
Score2 = LTOAggregatedScore2[Iter2->second];
if (Score1 == 0.0 || Score2 == 0.0)
continue;
if (opts::SkipNonSimple && !Func1->isSimple() && !Func2->isSimple())
continue;
LargestDiffs.insert(
std::make_pair<>(std::abs(Score1 - Score2), MapEntry));
ScoreMap[Func2] = std::make_pair<>(Score1, Score2);
}
unsigned Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " largest differences in performance bin 2 -> bin 1:\n";
outs() << "=========================================================\n";
setRegularColor();
for (decltype(this->FuncMap)::value_type &MapEntry :
llvm::make_second_range(llvm::reverse(LargestDiffs))) {
if (opts::IgnoreUnchanged &&
MapEntry.second->computeHash(/*UseDFS=*/true) ==
MapEntry.first->computeHash(/*UseDFS=*/true))
continue;
const std::pair<double, double> &Scores = ScoreMap[MapEntry.first];
outs() << "Function " << MapEntry.first->getDemangledName();
if (MapEntry.first->getDemangledName() !=
MapEntry.second->getDemangledName())
outs() << "\nmatched " << MapEntry.second->getDemangledName();
outs() << "\n\tScore bin1 = " << format("%.2f", Scores.first * 100.0)
<< "%\n\tScore bin2 = " << format("%.2f", Scores.second * 100.0)
<< "%\t(Difference: ";
printColoredPercentage((Scores.second - Scores.first) * 100.0);
outs() << ")";
if (MapEntry.second->computeHash(/*UseDFS=*/true) !=
MapEntry.first->computeHash(/*UseDFS=*/true)) {
outs() << "\t[Functions have different contents]";
if (opts::PrintDiffCFG) {
outs() << "\n *** CFG for function in binary 1:\n";
setLightColor();
MapEntry.second->dump();
setRegularColor();
outs() << "\n *** CFG for function in binary 2:\n";
setLightColor();
MapEntry.first->dump();
setRegularColor();
}
}
outs() << "\n";
if (Printed++ == opts::DisplayCount)
break;
}
}
/// Print hottest functions from each binary
void reportHottestFuncs() {
unsigned Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " hottest functions in binary 2:\n";
outs() << "=====================================\n";
setRegularColor();
for (std::pair<const double, const BinaryFunction *> &MapEntry :
llvm::reverse(LargestBin2)) {
outs() << "Function " << MapEntry.second->getDemangledName() << "\n";
auto Iter = ScoreMap.find(MapEntry.second);
if (Iter != ScoreMap.end())
outs() << "\tScore bin1 = "
<< format("%.2f", Iter->second.first * 100.0) << "%\n";
outs() << "\tScore bin2 = " << format("%.2f", MapEntry.first * 100.0)
<< "%\n";
if (Printed++ == opts::DisplayCount)
break;
}
Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " hottest functions in binary 1:\n";
outs() << "=====================================\n";
setRegularColor();
for (const std::pair<const double, const BinaryFunction *> &MapEntry :
llvm::reverse(LargestBin1)) {
outs() << "Function " << MapEntry.second->getDemangledName()
<< "\n\tScore bin1 = " << format("%.2f", MapEntry.first * 100.0)
<< "%\n";
if (Printed++ == opts::DisplayCount)
break;
}
}
/// Print functions in binary 2 that did not match anything in binary 1.
/// Unfortunately, in an LTO build, even a small change can lead to several
/// LTO variants being unmapped, corresponding to local functions that never
/// appear in one of the binaries because they were previously inlined.
void reportUnmapped() {
outs() << "List of functions from binary 2 that were not matched with any "
<< "function in binary 1:\n";
for (const auto &BFI2 : RI2.BC->getBinaryFunctions()) {
const BinaryFunction &Function2 = BFI2.second;
if (Bin2MappedFuncs.count(&Function2))
continue;
outs() << Function2.getPrintName() << "\n";
}
}
public:
/// Main entry point: coordinate all tasks necessary to compare two binaries
void compareAndReport() {
buildLookupMaps();
matchFunctions();
if (opts::IgnoreLTOSuffix)
computeAggregatedLTOScore();
matchBasicBlocks();
reportHottestFuncDiffs();
reportHottestBBDiffs();
reportHottestEdgeDiffs();
reportHottestFuncs();
if (!opts::PrintUnmapped)
return;
reportUnmapped();
}
RewriteInstanceDiff(RewriteInstance &RI1, RewriteInstance &RI2)
: RI1(RI1), RI2(RI2) {
compareAndReport();
}
};
} // end nampespace bolt
} // end namespace llvm
void RewriteInstance::compare(RewriteInstance &RI2) {
outs() << "BOLT-DIFF: ======== Binary1 vs. Binary2 ========\n";
outs() << "Trace for binary 1 has " << this->getTotalScore()
<< " instructions executed.\n";
outs() << "Trace for binary 2 has " << RI2.getTotalScore()
<< " instructions executed.\n";
if (opts::NormalizeByBin1) {
double Diff2to1 =
static_cast<double>(RI2.getTotalScore() - this->getTotalScore()) /
this->getTotalScore();
outs() << "Binary2 change in score with respect to Binary1: ";
printColoredPercentage(Diff2to1 * 100.0);
outs() << "\n";
}
if (!this->getTotalScore() || !RI2.getTotalScore()) {
outs() << "BOLT-DIFF: Both binaries must have recorded activity in known "
"functions.\n";
return;
}
// Pre-pass ICF
if (opts::ICF) {
IdenticalCodeFolding ICF(opts::NeverPrint);
outs() << "BOLT-DIFF: Starting ICF pass for binary 1";
ICF.runOnFunctions(*BC);
outs() << "BOLT-DIFF: Starting ICF pass for binary 2";
ICF.runOnFunctions(*RI2.BC);
}
RewriteInstanceDiff RID(*this, RI2);
}
|