1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
//===- bolt/Rewrite/LinuxKernelRewriter.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Support for updating Linux Kernel metadata.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Rewrite/MetadataRewriter.h"
#include "bolt/Rewrite/MetadataRewriters.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
using namespace llvm;
using namespace bolt;
namespace opts {
static cl::opt<bool>
PrintORC("print-orc",
cl::desc("print ORC unwind information for instructions"),
cl::init(true), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
DumpORC("dump-orc", cl::desc("dump raw ORC unwind information (sorted)"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
} // namespace opts
/// Linux Kernel supports stack unwinding using ORC (oops rewind capability).
/// ORC state at every IP can be described by the following data structure.
struct ORCState {
int16_t SPOffset;
int16_t BPOffset;
int16_t Info;
bool operator==(const ORCState &Other) const {
return SPOffset == Other.SPOffset && BPOffset == Other.BPOffset &&
Info == Other.Info;
}
bool operator!=(const ORCState &Other) const { return !(*this == Other); }
};
/// Basic printer for ORC entry. It does not provide the same level of
/// information as objtool (for now).
inline raw_ostream &operator<<(raw_ostream &OS, const ORCState &E) {
if (opts::PrintORC)
OS << format("{sp: %d, bp: %d, info: 0x%x}", E.SPOffset, E.BPOffset,
E.Info);
return OS;
}
namespace {
/// Section terminator ORC entry.
static ORCState NullORC = {0, 0, 0};
class LinuxKernelRewriter final : public MetadataRewriter {
/// Linux Kernel special sections point to a specific instruction in many
/// cases. Unlike SDTMarkerInfo, these markers can come from different
/// sections.
struct LKInstructionMarkerInfo {
uint64_t SectionOffset;
int32_t PCRelativeOffset;
bool IsPCRelative;
StringRef SectionName;
};
/// Map linux kernel program locations/instructions to their pointers in
/// special linux kernel sections
std::unordered_map<uint64_t, std::vector<LKInstructionMarkerInfo>> LKMarkers;
/// Linux ORC sections.
ErrorOr<BinarySection &> ORCUnwindSection = std::errc::bad_address;
ErrorOr<BinarySection &> ORCUnwindIPSection = std::errc::bad_address;
/// Size of entries in ORC sections.
static constexpr size_t ORC_UNWIND_ENTRY_SIZE = 6;
static constexpr size_t ORC_UNWIND_IP_ENTRY_SIZE = 4;
struct ORCListEntry {
uint64_t IP; /// Instruction address.
BinaryFunction *BF; /// Binary function corresponding to the entry.
ORCState ORC; /// Stack unwind info in ORC format.
bool operator<(const ORCListEntry &Other) const {
if (IP < Other.IP)
return 1;
if (IP > Other.IP)
return 0;
return ORC == NullORC;
}
};
using ORCListType = std::vector<ORCListEntry>;
ORCListType ORCEntries;
/// Insert an LKMarker for a given code pointer \p PC from a non-code section
/// \p SectionName.
void insertLKMarker(uint64_t PC, uint64_t SectionOffset,
int32_t PCRelativeOffset, bool IsPCRelative,
StringRef SectionName);
/// Process linux kernel special sections and their relocations.
void processLKSections();
/// Process special linux kernel section, __ex_table.
void processLKExTable();
/// Process special linux kernel section, .pci_fixup.
void processLKPCIFixup();
/// Process __ksymtab and __ksymtab_gpl.
void processLKKSymtab(bool IsGPL = false);
/// Process special linux kernel section, __bug_table.
void processLKBugTable();
/// Process special linux kernel section, .smp_locks.
void processLKSMPLocks();
/// Update LKMarkers' locations for the output binary.
void updateLKMarkers();
/// Read ORC unwind information and annotate instructions.
Error readORCTables();
/// Update ORC for functions once CFG is constructed.
Error processORCPostCFG();
/// Update ORC data in the binary.
Error rewriteORCTables();
/// Mark instructions referenced by kernel metadata.
Error markInstructions();
public:
LinuxKernelRewriter(BinaryContext &BC)
: MetadataRewriter("linux-kernel-rewriter", BC) {}
Error preCFGInitializer() override {
processLKSections();
if (Error E = markInstructions())
return E;
if (Error E = readORCTables())
return E;
return Error::success();
}
Error postCFGInitializer() override {
if (Error E = processORCPostCFG())
return E;
return Error::success();
}
Error postEmitFinalizer() override {
updateLKMarkers();
if (Error E = rewriteORCTables())
return E;
return Error::success();
}
};
Error LinuxKernelRewriter::markInstructions() {
for (const uint64_t PC : llvm::make_first_range(LKMarkers)) {
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(PC);
if (!BF || !BC.shouldEmit(*BF))
continue;
const uint64_t Offset = PC - BF->getAddress();
MCInst *Inst = BF->getInstructionAtOffset(Offset);
if (!Inst)
return createStringError(errc::executable_format_error,
"no instruction matches kernel marker offset");
BC.MIB->setOffset(*Inst, static_cast<uint32_t>(Offset));
BF->setHasSDTMarker(true);
}
return Error::success();
}
void LinuxKernelRewriter::insertLKMarker(uint64_t PC, uint64_t SectionOffset,
int32_t PCRelativeOffset,
bool IsPCRelative,
StringRef SectionName) {
LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{
SectionOffset, PCRelativeOffset, IsPCRelative, SectionName});
}
void LinuxKernelRewriter::processLKSections() {
assert(opts::LinuxKernelMode &&
"process Linux Kernel special sections and their relocations only in "
"linux kernel mode.\n");
processLKExTable();
processLKPCIFixup();
processLKKSymtab();
processLKKSymtab(true);
processLKBugTable();
processLKSMPLocks();
}
/// Process __ex_table section of Linux Kernel.
/// This section contains information regarding kernel level exception
/// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html).
/// More documentation is in arch/x86/include/asm/extable.h.
///
/// The section is the list of the following structures:
///
/// struct exception_table_entry {
/// int insn;
/// int fixup;
/// int handler;
/// };
///
void LinuxKernelRewriter::processLKExTable() {
ErrorOr<BinarySection &> SectionOrError =
BC.getUniqueSectionByName("__ex_table");
if (!SectionOrError)
return;
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 12) == 0 &&
"The size of the __ex_table section should be a multiple of 12");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "failed reading PC-relative offset for __ex_table");
int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *ContainingBF =
BC.getBinaryFunctionContainingAddress(RefAddress);
if (!ContainingBF)
continue;
MCSymbol *ReferencedSymbol = ContainingBF->getSymbol();
const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress();
switch (I % 12) {
default:
llvm_unreachable("bad alignment of __ex_table");
break;
case 0:
// insn
insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table");
break;
case 4:
// fixup
if (FunctionOffset)
ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset);
BC.addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 0,
*Offset);
break;
case 8:
// handler
assert(!FunctionOffset &&
"__ex_table handler entry should point to function start");
BC.addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 0,
*Offset);
break;
}
}
}
/// Process .pci_fixup section of Linux Kernel.
/// This section contains a list of entries for different PCI devices and their
/// corresponding hook handler (code pointer where the fixup
/// code resides, usually on x86_64 it is an entry PC relative 32 bit offset).
/// Documentation is in include/linux/pci.h.
void LinuxKernelRewriter::processLKPCIFixup() {
ErrorOr<BinarySection &> SectionOrError =
BC.getUniqueSectionByName(".pci_fixup");
assert(SectionOrError &&
".pci_fixup section not found in Linux Kernel binary");
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16");
for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) {
const uint64_t PC = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(PC, 4);
assert(Offset && "cannot read value from .pci_fixup");
const int32_t SignedOffset = *Offset;
const uint64_t HookupAddress = PC + SignedOffset;
BinaryFunction *HookupFunction =
BC.getBinaryFunctionAtAddress(HookupAddress);
assert(HookupFunction && "expected function for entry in .pci_fixup");
BC.addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0,
*Offset);
}
}
/// Process __ksymtab[_gpl] sections of Linux Kernel.
/// This section lists all the vmlinux symbols that kernel modules can access.
///
/// All the entries are 4 bytes each and hence we can read them by one by one
/// and ignore the ones that are not pointing to the .text section. All pointers
/// are PC relative offsets. Always, points to the beginning of the function.
void LinuxKernelRewriter::processLKKSymtab(bool IsGPL) {
StringRef SectionName = "__ksymtab";
if (IsGPL)
SectionName = "__ksymtab_gpl";
ErrorOr<BinarySection &> SectionOrError =
BC.getUniqueSectionByName(SectionName);
assert(SectionOrError &&
"__ksymtab[_gpl] section not found in Linux Kernel binary");
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the __ksymtab[_gpl] section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a ksymtab entry");
const int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *BF = BC.getBinaryFunctionAtAddress(RefAddress);
if (!BF)
continue;
BC.addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0,
*Offset);
}
}
/// Process __bug_table section.
/// This section contains information useful for kernel debugging.
/// Each entry in the section is a struct bug_entry that contains a pointer to
/// the ud2 instruction corresponding to the bug, corresponding file name (both
/// pointers use PC relative offset addressing), line number, and flags.
/// The definition of the struct bug_entry can be found in
/// `include/asm-generic/bug.h`
void LinuxKernelRewriter::processLKBugTable() {
ErrorOr<BinarySection &> SectionOrError =
BC.getUniqueSectionByName("__bug_table");
if (!SectionOrError)
return;
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 12) == 0 &&
"The size of the __bug_table section should be a multiple of 12");
for (uint64_t I = 0; I < SectionSize; I += 12) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
assert(Offset &&
"Reading valid PC-relative offset for a __bug_table entry");
const int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
assert(BC.getBinaryFunctionContainingAddress(RefAddress) &&
"__bug_table entries should point to a function");
insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table");
}
}
/// .smp_locks section contains PC-relative references to instructions with LOCK
/// prefix. The prefix can be converted to NOP at boot time on non-SMP systems.
void LinuxKernelRewriter::processLKSMPLocks() {
ErrorOr<BinarySection &> SectionOrError =
BC.getUniqueSectionByName(".smp_locks");
if (!SectionOrError)
return;
uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the .smp_locks section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry");
int32_t SignedOffset = *Offset;
uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *ContainingBF =
BC.getBinaryFunctionContainingAddress(RefAddress);
if (!ContainingBF)
continue;
insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks");
}
}
void LinuxKernelRewriter::updateLKMarkers() {
if (LKMarkers.size() == 0)
return;
std::unordered_map<std::string, uint64_t> PatchCounts;
for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>>
&LKMarkerInfoKV : LKMarkers) {
const uint64_t OriginalAddress = LKMarkerInfoKV.first;
const BinaryFunction *BF =
BC.getBinaryFunctionContainingAddress(OriginalAddress, false, true);
if (!BF)
continue;
uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress);
if (NewAddress == 0)
continue;
// Apply base address.
if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff)
NewAddress = NewAddress + 0xffffffff00000000;
if (OriginalAddress == NewAddress)
continue;
for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) {
StringRef SectionName = LKMarkerInfo.SectionName;
SimpleBinaryPatcher *LKPatcher;
ErrorOr<BinarySection &> BSec = BC.getUniqueSectionByName(SectionName);
assert(BSec && "missing section info for kernel section");
if (!BSec->getPatcher())
BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher());
PatchCounts[std::string(SectionName)]++;
if (LKMarkerInfo.IsPCRelative)
LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset,
NewAddress - OriginalAddress +
LKMarkerInfo.PCRelativeOffset);
else
LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress);
}
}
outs() << "BOLT-INFO: patching linux kernel sections. Total patches per "
"section are as follows:\n";
for (const std::pair<const std::string, uint64_t> &KV : PatchCounts)
outs() << " Section: " << KV.first << ", patch-counts: " << KV.second
<< '\n';
}
Error LinuxKernelRewriter::readORCTables() {
// NOTE: we should ignore relocations for orc tables as the tables are sorted
// post-link time and relocations are not updated.
ORCUnwindSection = BC.getUniqueSectionByName(".orc_unwind");
ORCUnwindIPSection = BC.getUniqueSectionByName(".orc_unwind_ip");
if (!ORCUnwindSection && !ORCUnwindIPSection)
return Error::success();
if (!ORCUnwindSection || !ORCUnwindIPSection)
return createStringError(errc::executable_format_error,
"missing ORC section");
const uint64_t NumEntries =
ORCUnwindIPSection->getSize() / ORC_UNWIND_IP_ENTRY_SIZE;
if (ORCUnwindSection->getSize() != NumEntries * ORC_UNWIND_ENTRY_SIZE ||
ORCUnwindIPSection->getSize() != NumEntries * ORC_UNWIND_IP_ENTRY_SIZE)
return createStringError(errc::executable_format_error,
"ORC entries number mismatch detected");
const uint64_t IPSectionAddress = ORCUnwindIPSection->getAddress();
DataExtractor OrcDE = DataExtractor(ORCUnwindSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor IPDE = DataExtractor(ORCUnwindIPSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor ORCCursor(0);
DataExtractor::Cursor IPCursor(0);
uint64_t PrevIP = 0;
for (uint32_t Index = 0; Index < NumEntries; ++Index) {
const uint64_t IP =
IPSectionAddress + IPCursor.tell() + (int32_t)IPDE.getU32(IPCursor);
// Consume the status of the cursor.
if (!IPCursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading ORC IP table");
if (IP < PrevIP && opts::Verbosity)
errs() << "BOLT-WARNING: out of order IP 0x" << Twine::utohexstr(IP)
<< " detected while reading ORC\n";
PrevIP = IP;
// Store all entries, includes those we are not going to update as the
// tables need to be sorted globally before being written out.
ORCEntries.push_back(ORCListEntry());
ORCListEntry &Entry = ORCEntries.back();
Entry.IP = IP;
Entry.ORC.SPOffset = (int16_t)OrcDE.getU16(ORCCursor);
Entry.ORC.BPOffset = (int16_t)OrcDE.getU16(ORCCursor);
Entry.ORC.Info = (int16_t)OrcDE.getU16(ORCCursor);
// Consume the status of the cursor.
if (!ORCCursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading ORC");
BinaryFunction *&BF = Entry.BF;
BF = BC.getBinaryFunctionContainingAddress(IP, /*CheckPastEnd*/ true);
// If the entry immediately pointing past the end of the function is not
// the terminator entry, then it does not belong to this function.
if (BF && BF->getAddress() + BF->getSize() == IP && Entry.ORC != NullORC)
BF = 0;
// If terminator entry points to the start of the function, then it belongs
// to a different function that contains the previous IP.
if (BF && BF->getAddress() == IP && Entry.ORC == NullORC)
BF = BC.getBinaryFunctionContainingAddress(IP - 1);
if (!BF) {
if (opts::Verbosity)
errs() << "BOLT-WARNING: no binary function found matching ORC 0x"
<< Twine::utohexstr(IP) << ": " << Entry.ORC << '\n';
continue;
}
if (Entry.ORC == NullORC)
continue;
BF->setHasORC(true);
if (!BF->hasInstructions())
continue;
MCInst *Inst = BF->getInstructionAtOffset(IP - BF->getAddress());
if (!Inst)
return createStringError(
errc::executable_format_error,
"no instruction at address 0x%" PRIx64 " in .orc_unwind_ip", IP);
// Some addresses will have two entries associated with them. The first
// one being a "weak" section terminator. Since we ignore the terminator,
// we should only assign one entry per instruction.
if (BC.MIB->hasAnnotation(*Inst, "ORC"))
return createStringError(
errc::executable_format_error,
"duplicate non-terminal ORC IP 0x%" PRIx64 " in .orc_unwind_ip", IP);
BC.MIB->addAnnotation(*Inst, "ORC", Entry.ORC);
}
// Older kernels could contain unsorted tables in the file as the tables were
// sorted during boot time.
llvm::sort(ORCEntries);
if (opts::DumpORC) {
outs() << "BOLT-INFO: ORC unwind information:\n";
for (const ORCListEntry &E : ORCEntries) {
outs() << "0x" << Twine::utohexstr(E.IP) << ": " << E.ORC;
if (E.BF)
outs() << ": " << *E.BF;
outs() << '\n';
}
}
return Error::success();
}
Error LinuxKernelRewriter::processORCPostCFG() {
// Propagate ORC to the rest of the function. We can annotate every
// instruction in every function, but to minimize the overhead, we annotate
// the first instruction in every basic block to reflect the state at the
// entry. This way, the ORC state can be calculated based on annotations
// regardless of the basic block layout. Note that if we insert/delete
// instructions, we must take care to attach ORC info to the new/deleted ones.
for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
std::optional<ORCState> CurrentState;
for (BinaryBasicBlock &BB : BF) {
for (MCInst &Inst : BB) {
ErrorOr<ORCState> State =
BC.MIB->tryGetAnnotationAs<ORCState>(Inst, "ORC");
if (State) {
CurrentState = *State;
continue;
}
// In case there was no ORC entry that matched the function start
// address, we need to propagate ORC state from the previous entry.
if (!CurrentState) {
auto It =
llvm::partition_point(ORCEntries, [&](const ORCListEntry &E) {
return E.IP < BF.getAddress();
});
if (It != ORCEntries.begin())
It = std::prev(It);
if (It->ORC == NullORC && BF.hasORC())
errs() << "BOLT-WARNING: ORC unwind info excludes prologue for "
<< BF << '\n';
CurrentState = It->ORC;
if (It->ORC != NullORC)
BF.setHasORC(true);
}
// While printing ORC, attach info to every instruction for convenience.
if (opts::PrintORC || &Inst == &BB.front())
BC.MIB->addAnnotation(Inst, "ORC", *CurrentState);
}
}
}
return Error::success();
}
Error LinuxKernelRewriter::rewriteORCTables() {
// TODO:
return Error::success();
}
} // namespace
std::unique_ptr<MetadataRewriter>
llvm::bolt::createLinuxKernelRewriter(BinaryContext &BC) {
return std::make_unique<LinuxKernelRewriter>(BC);
}
|