1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
//===- bolt/RuntimeLibs/InstrumentationRuntimeLibrary.cpp -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the InstrumentationRuntimeLibrary class.
//
//===----------------------------------------------------------------------===//
#include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/JumpTable.h"
#include "bolt/Core/Linker.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace bolt;
namespace opts {
cl::opt<std::string> RuntimeInstrumentationLib(
"runtime-instrumentation-lib",
cl::desc("specify file name of the runtime instrumentation library"),
cl::init("libbolt_rt_instr.a"), cl::cat(BoltOptCategory));
extern cl::opt<bool> InstrumentationFileAppendPID;
extern cl::opt<bool> ConservativeInstrumentation;
extern cl::opt<std::string> InstrumentationFilename;
extern cl::opt<std::string> InstrumentationBinpath;
extern cl::opt<uint32_t> InstrumentationSleepTime;
extern cl::opt<bool> InstrumentationNoCountersClear;
extern cl::opt<bool> InstrumentationWaitForks;
extern cl::opt<JumpTableSupportLevel> JumpTables;
} // namespace opts
void InstrumentationRuntimeLibrary::adjustCommandLineOptions(
const BinaryContext &BC) const {
if (!BC.HasRelocations) {
errs() << "BOLT-ERROR: instrumentation runtime libraries require "
"relocations\n";
exit(1);
}
if (opts::JumpTables != JTS_MOVE) {
opts::JumpTables = JTS_MOVE;
outs() << "BOLT-INFO: forcing -jump-tables=move for instrumentation\n";
}
if (!BC.StartFunctionAddress) {
errs() << "BOLT-ERROR: instrumentation runtime libraries require a known "
"entry point of "
"the input binary\n";
exit(1);
}
if (!BC.FiniFunctionAddress && !BC.IsStaticExecutable) {
errs() << "BOLT-ERROR: input binary lacks DT_FINI entry in the dynamic "
"section but instrumentation currently relies on patching "
"DT_FINI to write the profile\n";
exit(1);
}
if ((opts::InstrumentationWaitForks || opts::InstrumentationSleepTime) &&
opts::InstrumentationFileAppendPID) {
errs()
<< "BOLT-ERROR: instrumentation-file-append-pid is not compatible with "
"instrumentation-sleep-time and instrumentation-wait-forks. If you "
"want a separate profile for each fork, it can only be dumped in "
"the end of process when instrumentation-file-append-pid is used.\n";
exit(1);
}
}
void InstrumentationRuntimeLibrary::emitBinary(BinaryContext &BC,
MCStreamer &Streamer) {
MCSection *Section = BC.isELF()
? static_cast<MCSection *>(BC.Ctx->getELFSection(
".bolt.instr.counters", ELF::SHT_PROGBITS,
BinarySection::getFlags(/*IsReadOnly=*/false,
/*IsText=*/false,
/*IsAllocatable=*/true)
))
: static_cast<MCSection *>(BC.Ctx->getMachOSection(
"__BOLT", "__counters", MachO::S_REGULAR,
SectionKind::getData()));
if (BC.IsStaticExecutable && !opts::InstrumentationSleepTime) {
errs() << "BOLT-ERROR: instrumentation of static binary currently does not "
"support profile output on binary finalization, so it "
"requires -instrumentation-sleep-time=N (N>0) usage\n";
exit(1);
}
Section->setAlignment(llvm::Align(BC.RegularPageSize));
Streamer.switchSection(Section);
// EmitOffset is used to determine padding size for data alignment
uint64_t EmitOffset = 0;
auto emitLabel = [&Streamer](MCSymbol *Symbol, bool IsGlobal = true) {
Streamer.emitLabel(Symbol);
if (IsGlobal)
Streamer.emitSymbolAttribute(Symbol, MCSymbolAttr::MCSA_Global);
};
auto emitLabelByName = [&BC, emitLabel](StringRef Name,
bool IsGlobal = true) {
MCSymbol *Symbol = BC.Ctx->getOrCreateSymbol(Name);
emitLabel(Symbol, IsGlobal);
};
auto emitPadding = [&Streamer, &EmitOffset](unsigned Size) {
const uint64_t Padding = alignTo(EmitOffset, Size) - EmitOffset;
if (Padding) {
Streamer.emitFill(Padding, 0);
EmitOffset += Padding;
}
};
auto emitDataSize = [&EmitOffset](unsigned Size) { EmitOffset += Size; };
auto emitDataPadding = [emitPadding, emitDataSize](unsigned Size) {
emitPadding(Size);
emitDataSize(Size);
};
auto emitFill = [&Streamer, emitDataSize,
emitLabel](unsigned Size, MCSymbol *Symbol = nullptr,
uint8_t Byte = 0) {
emitDataSize(Size);
if (Symbol)
emitLabel(Symbol, /*IsGlobal*/ false);
Streamer.emitFill(Size, Byte);
};
auto emitValue = [&BC, &Streamer, emitDataPadding,
emitLabel](MCSymbol *Symbol, const MCExpr *Value) {
const unsigned Psize = BC.AsmInfo->getCodePointerSize();
emitDataPadding(Psize);
emitLabel(Symbol);
if (Value)
Streamer.emitValue(Value, Psize);
else
Streamer.emitFill(Psize, 0);
};
auto emitIntValue = [&Streamer, emitDataPadding, emitLabelByName](
StringRef Name, uint64_t Value, unsigned Size = 4) {
emitDataPadding(Size);
emitLabelByName(Name);
Streamer.emitIntValue(Value, Size);
};
auto emitString = [&Streamer, emitDataSize, emitLabelByName,
emitFill](StringRef Name, StringRef Contents) {
emitDataSize(Contents.size());
emitLabelByName(Name);
Streamer.emitBytes(Contents);
emitFill(1);
};
// All of the following symbols will be exported as globals to be used by the
// instrumentation runtime library to dump the instrumentation data to disk.
// Label marking start of the memory region containing instrumentation
// counters, total vector size is Counters.size() 8-byte counters
emitLabelByName("__bolt_instr_locations");
for (MCSymbol *const &Label : Summary->Counters)
emitFill(sizeof(uint64_t), Label);
emitPadding(BC.RegularPageSize);
emitIntValue("__bolt_instr_sleep_time", opts::InstrumentationSleepTime);
emitIntValue("__bolt_instr_no_counters_clear",
!!opts::InstrumentationNoCountersClear, 1);
emitIntValue("__bolt_instr_conservative", !!opts::ConservativeInstrumentation,
1);
emitIntValue("__bolt_instr_wait_forks", !!opts::InstrumentationWaitForks, 1);
emitIntValue("__bolt_num_counters", Summary->Counters.size());
emitValue(Summary->IndCallCounterFuncPtr, nullptr);
emitValue(Summary->IndTailCallCounterFuncPtr, nullptr);
emitIntValue("__bolt_instr_num_ind_calls",
Summary->IndCallDescriptions.size());
emitIntValue("__bolt_instr_num_ind_targets",
Summary->IndCallTargetDescriptions.size());
emitIntValue("__bolt_instr_num_funcs", Summary->FunctionDescriptions.size());
emitString("__bolt_instr_filename", opts::InstrumentationFilename);
emitString("__bolt_instr_binpath", opts::InstrumentationBinpath);
emitIntValue("__bolt_instr_use_pid", !!opts::InstrumentationFileAppendPID, 1);
if (BC.isMachO()) {
MCSection *TablesSection = BC.Ctx->getMachOSection(
"__BOLT", "__tables", MachO::S_REGULAR, SectionKind::getData());
TablesSection->setAlignment(llvm::Align(BC.RegularPageSize));
Streamer.switchSection(TablesSection);
emitString("__bolt_instr_tables", buildTables(BC));
}
}
void InstrumentationRuntimeLibrary::link(
BinaryContext &BC, StringRef ToolPath, BOLTLinker &Linker,
BOLTLinker::SectionsMapper MapSections) {
std::string LibPath = getLibPath(ToolPath, opts::RuntimeInstrumentationLib);
loadLibrary(LibPath, Linker, MapSections);
if (BC.isMachO())
return;
RuntimeFiniAddress = Linker.lookupSymbol("__bolt_instr_fini").value_or(0);
if (!RuntimeFiniAddress) {
errs() << "BOLT-ERROR: instrumentation library does not define "
"__bolt_instr_fini: "
<< LibPath << "\n";
exit(1);
}
RuntimeStartAddress = Linker.lookupSymbol("__bolt_instr_start").value_or(0);
if (!RuntimeStartAddress) {
errs() << "BOLT-ERROR: instrumentation library does not define "
"__bolt_instr_start: "
<< LibPath << "\n";
exit(1);
}
outs() << "BOLT-INFO: output linked against instrumentation runtime "
"library, lib entry point is 0x"
<< Twine::utohexstr(RuntimeFiniAddress) << "\n";
outs() << "BOLT-INFO: clear procedure is 0x"
<< Twine::utohexstr(
Linker.lookupSymbol("__bolt_instr_clear_counters").value_or(0))
<< "\n";
emitTablesAsELFNote(BC);
}
std::string InstrumentationRuntimeLibrary::buildTables(BinaryContext &BC) {
std::string TablesStr;
raw_string_ostream OS(TablesStr);
// This is sync'ed with runtime/instr.cpp:readDescriptions()
auto getOutputAddress = [](const BinaryFunction &Func,
uint64_t Offset) -> uint64_t {
return Offset == 0
? Func.getOutputAddress()
: Func.translateInputToOutputAddress(Func.getAddress() + Offset);
};
// Indirect targets need to be sorted for fast lookup during runtime
llvm::sort(Summary->IndCallTargetDescriptions,
[&](const IndCallTargetDescription &A,
const IndCallTargetDescription &B) {
return getOutputAddress(*A.Target, A.ToLoc.Offset) <
getOutputAddress(*B.Target, B.ToLoc.Offset);
});
// Start of the vector with descriptions (one CounterDescription for each
// counter), vector size is Counters.size() CounterDescription-sized elmts
const size_t IDSize =
Summary->IndCallDescriptions.size() * sizeof(IndCallDescription);
OS.write(reinterpret_cast<const char *>(&IDSize), 4);
for (const IndCallDescription &Desc : Summary->IndCallDescriptions) {
OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.Offset), 4);
}
const size_t ITDSize = Summary->IndCallTargetDescriptions.size() *
sizeof(IndCallTargetDescription);
OS.write(reinterpret_cast<const char *>(&ITDSize), 4);
for (const IndCallTargetDescription &Desc :
Summary->IndCallTargetDescriptions) {
OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.Offset), 4);
uint64_t TargetFuncAddress =
getOutputAddress(*Desc.Target, Desc.ToLoc.Offset);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
uint32_t FuncDescSize = Summary->getFDSize();
OS.write(reinterpret_cast<const char *>(&FuncDescSize), 4);
for (const FunctionDescription &Desc : Summary->FunctionDescriptions) {
const size_t LeafNum = Desc.LeafNodes.size();
OS.write(reinterpret_cast<const char *>(&LeafNum), 4);
for (const InstrumentedNode &LeafNode : Desc.LeafNodes) {
OS.write(reinterpret_cast<const char *>(&LeafNode.Node), 4);
OS.write(reinterpret_cast<const char *>(&LeafNode.Counter), 4);
}
const size_t EdgesNum = Desc.Edges.size();
OS.write(reinterpret_cast<const char *>(&EdgesNum), 4);
for (const EdgeDescription &Edge : Desc.Edges) {
OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Edge.FromNode), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToNode), 4);
OS.write(reinterpret_cast<const char *>(&Edge.Counter), 4);
}
const size_t CallsNum = Desc.Calls.size();
OS.write(reinterpret_cast<const char *>(&CallsNum), 4);
for (const CallDescription &Call : Desc.Calls) {
OS.write(reinterpret_cast<const char *>(&Call.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Call.FromLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Call.FromNode), 4);
OS.write(reinterpret_cast<const char *>(&Call.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Call.ToLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Call.Counter), 4);
uint64_t TargetFuncAddress =
getOutputAddress(*Call.Target, Call.ToLoc.Offset);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
const size_t EntryNum = Desc.EntryNodes.size();
OS.write(reinterpret_cast<const char *>(&EntryNum), 4);
for (const EntryNode &EntryNode : Desc.EntryNodes) {
OS.write(reinterpret_cast<const char *>(&EntryNode.Node), 8);
uint64_t TargetFuncAddress =
getOutputAddress(*Desc.Function, EntryNode.Address);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
}
// Our string table lives immediately after descriptions vector
OS << Summary->StringTable;
OS.flush();
return TablesStr;
}
void InstrumentationRuntimeLibrary::emitTablesAsELFNote(BinaryContext &BC) {
std::string TablesStr = buildTables(BC);
const std::string BoltInfo = BinarySection::encodeELFNote(
"BOLT", TablesStr, BinarySection::NT_BOLT_INSTRUMENTATION_TABLES);
BC.registerOrUpdateNoteSection(".bolt.instr.tables", copyByteArray(BoltInfo),
BoltInfo.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}
|