1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
|
//===- bolt/runtime/instr.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does
// not support linking modules with dependencies on one another into the final
// binary (TODO?), which means this library has to be self-contained in a single
// module.
//
// All extern declarations here need to be defined by BOLT itself. Those will be
// undefined symbols that BOLT needs to resolve by emitting these symbols with
// MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible
// for defining the symbols here and these two files have a tight coupling: one
// working statically when you run BOLT and another during program runtime when
// you run an instrumented binary. The main goal here is to output an fdata file
// (BOLT profile) with the instrumentation counters inserted by the static pass.
// Counters for indirect calls are an exception, as we can't know them
// statically. These counters are created and managed here. To allow this, we
// need a minimal framework for allocating memory dynamically. We provide this
// with the BumpPtrAllocator class (not LLVM's, but our own version of it).
//
// Since this code is intended to be inserted into any executable, we decided to
// make it standalone and do not depend on any external libraries (i.e. language
// support libraries, such as glibc or stdc++). To allow this, we provide a few
// light implementations of common OS interacting functionalities using direct
// syscall wrappers. Our simple allocator doesn't manage deallocations that
// fragment the memory space, so it's stack based. This is the minimal framework
// provided here to allow processing instrumented counters and writing fdata.
//
// In the C++ idiom used here, we never use or rely on constructors or
// destructors for global objects. That's because those need support from the
// linker in initialization/finalization code, and we want to keep our linker
// very simple. Similarly, we don't create any global objects that are zero
// initialized, since those would need to go .bss, which our simple linker also
// don't support (TODO?).
//
//===----------------------------------------------------------------------===//
#if defined (__x86_64__)
#include "common.h"
// Enables a very verbose logging to stderr useful when debugging
//#define ENABLE_DEBUG
#ifdef ENABLE_DEBUG
#define DEBUG(X) \
{ X; }
#else
#define DEBUG(X) \
{}
#endif
#pragma GCC visibility push(hidden)
extern "C" {
#if defined(__APPLE__)
extern uint64_t* _bolt_instr_locations_getter();
extern uint32_t _bolt_num_counters_getter();
extern uint8_t* _bolt_instr_tables_getter();
extern uint32_t _bolt_instr_num_funcs_getter();
#else
// Main counters inserted by instrumentation, incremented during runtime when
// points of interest (locations) in the program are reached. Those are direct
// calls and direct and indirect branches (local ones). There are also counters
// for basic block execution if they are a spanning tree leaf and need to be
// counted in order to infer the execution count of other edges of the CFG.
extern uint64_t __bolt_instr_locations[];
extern uint32_t __bolt_num_counters;
// Descriptions are serialized metadata about binary functions written by BOLT,
// so we have a minimal understanding about the program structure. For a
// reference on the exact format of this metadata, see *Description structs,
// Location, IntrumentedNode and EntryNode.
// Number of indirect call site descriptions
extern uint32_t __bolt_instr_num_ind_calls;
// Number of indirect call target descriptions
extern uint32_t __bolt_instr_num_ind_targets;
// Number of function descriptions
extern uint32_t __bolt_instr_num_funcs;
// Time to sleep across dumps (when we write the fdata profile to disk)
extern uint32_t __bolt_instr_sleep_time;
// Do not clear counters across dumps, rewrite file with the updated values
extern bool __bolt_instr_no_counters_clear;
// Wait until all forks of instrumented process will finish
extern bool __bolt_instr_wait_forks;
// Filename to dump data to
extern char __bolt_instr_filename[];
// Instumented binary file path
extern char __bolt_instr_binpath[];
// If true, append current PID to the fdata filename when creating it so
// different invocations of the same program can be differentiated.
extern bool __bolt_instr_use_pid;
// Functions that will be used to instrument indirect calls. BOLT static pass
// will identify indirect calls and modify them to load the address in these
// trampolines and call this address instead. BOLT can't use direct calls to
// our handlers because our addresses here are not known at analysis time. We
// only support resolving dependencies from this file to the output of BOLT,
// *not* the other way around.
// TODO: We need better linking support to make that happen.
extern void (*__bolt_ind_call_counter_func_pointer)();
extern void (*__bolt_ind_tailcall_counter_func_pointer)();
// Function pointers to init/fini trampoline routines in the binary, so we can
// resume regular execution of these functions that we hooked
extern void __bolt_start_trampoline();
extern void __bolt_fini_trampoline();
#endif
}
namespace {
/// A simple allocator that mmaps a fixed size region and manages this space
/// in a stack fashion, meaning you always deallocate the last element that
/// was allocated. In practice, we don't need to deallocate individual elements.
/// We monotonically increase our usage and then deallocate everything once we
/// are done processing something.
class BumpPtrAllocator {
/// This is written before each allocation and act as a canary to detect when
/// a bug caused our program to cross allocation boundaries.
struct EntryMetadata {
uint64_t Magic;
uint64_t AllocSize;
};
public:
void *allocate(size_t Size) {
Lock L(M);
if (StackBase == nullptr) {
StackBase = reinterpret_cast<uint8_t *>(
__mmap(0, MaxSize, PROT_READ | PROT_WRITE,
(Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0));
assert(StackBase != MAP_FAILED,
"BumpPtrAllocator: failed to mmap stack!");
StackSize = 0;
}
Size = alignTo(Size + sizeof(EntryMetadata), 16);
uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata);
auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize);
M->Magic = Magic;
M->AllocSize = Size;
StackSize += Size;
assert(StackSize < MaxSize, "allocator ran out of memory");
return AllocAddress;
}
#ifdef DEBUG
/// Element-wise deallocation is only used for debugging to catch memory
/// bugs by checking magic bytes. Ordinarily, we reset the allocator once
/// we are done with it. Reset is done with clear(). There's no need
/// to deallocate each element individually.
void deallocate(void *Ptr) {
Lock L(M);
uint8_t MetadataOffset = sizeof(EntryMetadata);
auto *M = reinterpret_cast<EntryMetadata *>(
reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset);
const uint8_t *StackTop = StackBase + StackSize + MetadataOffset;
// Validate size
if (Ptr != StackTop - M->AllocSize) {
// Failed validation, check if it is a pointer returned by operator new []
MetadataOffset +=
sizeof(uint64_t); // Space for number of elements alloc'ed
M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) -
MetadataOffset);
// Ok, it failed both checks if this assertion fails. Stop the program, we
// have a memory bug.
assert(Ptr == StackTop - M->AllocSize,
"must deallocate the last element alloc'ed");
}
assert(M->Magic == Magic, "allocator magic is corrupt");
StackSize -= M->AllocSize;
}
#else
void deallocate(void *) {}
#endif
void clear() {
Lock L(M);
StackSize = 0;
}
/// Set mmap reservation size (only relevant before first allocation)
void setMaxSize(uint64_t Size) { MaxSize = Size; }
/// Set mmap reservation privacy (only relevant before first allocation)
void setShared(bool S) { Shared = S; }
void destroy() {
if (StackBase == nullptr)
return;
__munmap(StackBase, MaxSize);
}
// Placement operator to construct allocator in possibly shared mmaped memory
static void *operator new(size_t, void *Ptr) { return Ptr; };
private:
static constexpr uint64_t Magic = 0x1122334455667788ull;
uint64_t MaxSize = 0xa00000;
uint8_t *StackBase{nullptr};
uint64_t StackSize{0};
bool Shared{false};
Mutex M;
};
/// Used for allocating indirect call instrumentation counters. Initialized by
/// __bolt_instr_setup, our initialization routine.
BumpPtrAllocator *GlobalAlloc;
// Base address which we substract from recorded PC values when searching for
// indirect call description entries. Needed because indCall descriptions are
// mapped read-only and contain static addresses. Initialized in
// __bolt_instr_setup.
uint64_t TextBaseAddress = 0;
// Storage for GlobalAlloc which can be shared if not using
// instrumentation-file-append-pid.
void *GlobalMetadataStorage;
} // anonymous namespace
// User-defined placement new operators. We only use those (as opposed to
// overriding the regular operator new) so we can keep our allocator in the
// stack instead of in a data section (global).
void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); }
void *operator new(size_t Sz, BumpPtrAllocator &A, char C) {
auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
memset(Ptr, C, Sz);
return Ptr;
}
void *operator new[](size_t Sz, BumpPtrAllocator &A) {
return A.allocate(Sz);
}
void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) {
auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
memset(Ptr, C, Sz);
return Ptr;
}
// Only called during exception unwinding (useless). We must manually dealloc.
// C++ language weirdness
void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); }
namespace {
// Disable instrumentation optimizations that sacrifice profile accuracy
extern "C" bool __bolt_instr_conservative;
/// Basic key-val atom stored in our hash
struct SimpleHashTableEntryBase {
uint64_t Key;
uint64_t Val;
void dump(const char *Msg = nullptr) {
// TODO: make some sort of formatting function
// Currently we have to do it the ugly way because
// we want every message to be printed atomically via a single call to
// __write. If we use reportNumber() and others nultiple times, we'll get
// garbage in mulithreaded environment
char Buf[BufSize];
char *Ptr = Buf;
Ptr = intToStr(Ptr, __getpid(), 10);
*Ptr++ = ':';
*Ptr++ = ' ';
if (Msg)
Ptr = strCopy(Ptr, Msg, strLen(Msg));
*Ptr++ = '0';
*Ptr++ = 'x';
Ptr = intToStr(Ptr, (uint64_t)this, 16);
*Ptr++ = ':';
*Ptr++ = ' ';
Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1);
Ptr = intToStr(Ptr, Key, 16);
*Ptr++ = ',';
*Ptr++ = ' ';
*Ptr++ = '0';
*Ptr++ = 'x';
Ptr = intToStr(Ptr, Val, 16);
*Ptr++ = ')';
*Ptr++ = '\n';
assert(Ptr - Buf < BufSize, "Buffer overflow!");
// print everything all at once for atomicity
__write(2, Buf, Ptr - Buf);
}
};
/// This hash table implementation starts by allocating a table of size
/// InitialSize. When conflicts happen in this main table, it resolves
/// them by chaining a new table of size IncSize. It never reallocs as our
/// allocator doesn't support it. The key is intended to be function pointers.
/// There's no clever hash function (it's just x mod size, size being prime).
/// I never tuned the coefficientes in the modular equation (TODO)
/// This is used for indirect calls (each call site has one of this, so it
/// should have a small footprint) and for tallying call counts globally for
/// each target to check if we missed the origin of some calls (this one is a
/// large instantiation of this template, since it is global for all call sites)
template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7,
uint32_t IncSize = 7>
class SimpleHashTable {
public:
using MapEntry = T;
/// Increment by 1 the value of \p Key. If it is not in this table, it will be
/// added to the table and its value set to 1.
void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) {
if (!__bolt_instr_conservative) {
TryLock L(M);
if (!L.isLocked())
return;
auto &E = getOrAllocEntry(Key, Alloc);
++E.Val;
return;
}
Lock L(M);
auto &E = getOrAllocEntry(Key, Alloc);
++E.Val;
}
/// Basic member accessing interface. Here we pass the allocator explicitly to
/// avoid storing a pointer to it as part of this table (remember there is one
/// hash for each indirect call site, so we wan't to minimize our footprint).
MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) {
if (!__bolt_instr_conservative) {
TryLock L(M);
if (!L.isLocked())
return NoEntry;
return getOrAllocEntry(Key, Alloc);
}
Lock L(M);
return getOrAllocEntry(Key, Alloc);
}
/// Traverses all elements in the table
template <typename... Args>
void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) {
Lock L(M);
if (!TableRoot)
return;
return forEachElement(Callback, InitialSize, TableRoot, args...);
}
void resetCounters();
private:
constexpr static uint64_t VacantMarker = 0;
constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull;
MapEntry *TableRoot{nullptr};
MapEntry NoEntry;
Mutex M;
template <typename... Args>
void forEachElement(void (*Callback)(MapEntry &, Args...),
uint32_t NumEntries, MapEntry *Entries, Args... args) {
for (uint32_t I = 0; I < NumEntries; ++I) {
MapEntry &Entry = Entries[I];
if (Entry.Key == VacantMarker)
continue;
if (Entry.Key & FollowUpTableMarker) {
MapEntry *Next =
reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker);
assert(Next != Entries, "Circular reference!");
forEachElement(Callback, IncSize, Next, args...);
continue;
}
Callback(Entry, args...);
}
}
MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) {
TableRoot = new (Alloc, 0) MapEntry[InitialSize];
MapEntry &Entry = TableRoot[Key % InitialSize];
Entry.Key = Key;
// DEBUG(Entry.dump("Created root entry: "));
return Entry;
}
MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector,
BumpPtrAllocator &Alloc, int CurLevel) {
// DEBUG(reportNumber("getEntry called, level ", CurLevel, 10));
const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize;
uint64_t Remainder = Selector / NumEntries;
Selector = Selector % NumEntries;
MapEntry &Entry = Entries[Selector];
// A hit
if (Entry.Key == Key) {
// DEBUG(Entry.dump("Hit: "));
return Entry;
}
// Vacant - add new entry
if (Entry.Key == VacantMarker) {
Entry.Key = Key;
// DEBUG(Entry.dump("Adding new entry: "));
return Entry;
}
// Defer to the next level
if (Entry.Key & FollowUpTableMarker) {
return getEntry(
reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker),
Key, Remainder, Alloc, CurLevel + 1);
}
// Conflict - create the next level
// DEBUG(Entry.dump("Creating new level: "));
MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize];
// DEBUG(
// reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl),
// 16));
uint64_t CurEntrySelector = Entry.Key / InitialSize;
for (int I = 0; I < CurLevel; ++I)
CurEntrySelector /= IncSize;
CurEntrySelector = CurEntrySelector % IncSize;
NextLevelTbl[CurEntrySelector] = Entry;
Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker;
assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) !=
uint64_t(Entries),
"circular reference created!\n");
// DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: "));
// DEBUG(Entry.dump("Updated old entry: "));
return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1);
}
MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) {
if (TableRoot) {
MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0);
assert(!(E.Key & FollowUpTableMarker), "Invalid entry!");
return E;
}
return firstAllocation(Key, Alloc);
}
};
template <typename T> void resetIndCallCounter(T &Entry) {
Entry.Val = 0;
}
template <typename T, uint32_t X, uint32_t Y>
void SimpleHashTable<T, X, Y>::resetCounters() {
forEachElement(resetIndCallCounter);
}
/// Represents a hash table mapping a function target address to its counter.
using IndirectCallHashTable = SimpleHashTable<>;
/// Initialize with number 1 instead of 0 so we don't go into .bss. This is the
/// global array of all hash tables storing indirect call destinations happening
/// during runtime, one table per call site.
IndirectCallHashTable *GlobalIndCallCounters{
reinterpret_cast<IndirectCallHashTable *>(1)};
/// Don't allow reentrancy in the fdata writing phase - only one thread writes
/// it
Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)};
/// Store number of calls in additional to target address (Key) and frequency
/// as perceived by the basic block counter (Val).
struct CallFlowEntryBase : public SimpleHashTableEntryBase {
uint64_t Calls;
};
using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>;
/// This is a large table indexing all possible call targets (indirect and
/// direct ones). The goal is to find mismatches between number of calls (for
/// those calls we were able to track) and the entry basic block counter of the
/// callee. In most cases, these two should be equal. If not, there are two
/// possible scenarios here:
///
/// * Entry BB has higher frequency than all known calls to this function.
/// In this case, we have dynamic library code or any uninstrumented code
/// calling this function. We will write the profile for these untracked
/// calls as having source "0 [unknown] 0" in the fdata file.
///
/// * Number of known calls is higher than the frequency of entry BB
/// This only happens when there is no counter for the entry BB / callee
/// function is not simple (in BOLT terms). We don't do anything special
/// here and just ignore those (we still report all calls to the non-simple
/// function, though).
///
class CallFlowHashTable : public CallFlowHashTableBase {
public:
CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {}
MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); }
private:
// Different than the hash table for indirect call targets, we do store the
// allocator here since there is only one call flow hash and space overhead
// is negligible.
BumpPtrAllocator &Alloc;
};
///
/// Description metadata emitted by BOLT to describe the program - refer to
/// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote()
///
struct Location {
uint32_t FunctionName;
uint32_t Offset;
};
struct CallDescription {
Location From;
uint32_t FromNode;
Location To;
uint32_t Counter;
uint64_t TargetAddress;
};
using IndCallDescription = Location;
struct IndCallTargetDescription {
Location Loc;
uint64_t Address;
};
struct EdgeDescription {
Location From;
uint32_t FromNode;
Location To;
uint32_t ToNode;
uint32_t Counter;
};
struct InstrumentedNode {
uint32_t Node;
uint32_t Counter;
};
struct EntryNode {
uint64_t Node;
uint64_t Address;
};
struct FunctionDescription {
uint32_t NumLeafNodes;
const InstrumentedNode *LeafNodes;
uint32_t NumEdges;
const EdgeDescription *Edges;
uint32_t NumCalls;
const CallDescription *Calls;
uint32_t NumEntryNodes;
const EntryNode *EntryNodes;
/// Constructor will parse the serialized function metadata written by BOLT
FunctionDescription(const uint8_t *FuncDesc);
uint64_t getSize() const {
return 16 + NumLeafNodes * sizeof(InstrumentedNode) +
NumEdges * sizeof(EdgeDescription) +
NumCalls * sizeof(CallDescription) +
NumEntryNodes * sizeof(EntryNode);
}
};
/// The context is created when the fdata profile needs to be written to disk
/// and we need to interpret our runtime counters. It contains pointers to the
/// mmaped binary (only the BOLT written metadata section). Deserialization
/// should be straightforward as most data is POD or an array of POD elements.
/// This metadata is used to reconstruct function CFGs.
struct ProfileWriterContext {
IndCallDescription *IndCallDescriptions;
IndCallTargetDescription *IndCallTargets;
uint8_t *FuncDescriptions;
char *Strings; // String table with function names used in this binary
int FileDesc; // File descriptor for the file on disk backing this
// information in memory via mmap
void *MMapPtr; // The mmap ptr
int MMapSize; // The mmap size
/// Hash table storing all possible call destinations to detect untracked
/// calls and correctly report them as [unknown] in output fdata.
CallFlowHashTable *CallFlowTable;
/// Lookup the sorted indirect call target vector to fetch function name and
/// offset for an arbitrary function pointer.
const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const;
};
/// Perform a string comparison and returns zero if Str1 matches Str2. Compares
/// at most Size characters.
int compareStr(const char *Str1, const char *Str2, int Size) {
while (*Str1 == *Str2) {
if (*Str1 == '\0' || --Size == 0)
return 0;
++Str1;
++Str2;
}
return 1;
}
/// Output Location to the fdata file
char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf,
const Location Loc, uint32_t BufSize) {
// fdata location format: Type Name Offset
// Type 1 - regular symbol
OutBuf = strCopy(OutBuf, "1 ");
const char *Str = Ctx.Strings + Loc.FunctionName;
uint32_t Size = 25;
while (*Str) {
*OutBuf++ = *Str++;
if (++Size >= BufSize)
break;
}
assert(!*Str, "buffer overflow, function name too large");
*OutBuf++ = ' ';
OutBuf = intToStr(OutBuf, Loc.Offset, 16);
*OutBuf++ = ' ';
return OutBuf;
}
/// Read and deserialize a function description written by BOLT. \p FuncDesc
/// points at the beginning of the function metadata structure in the file.
/// See Instrumentation::emitTablesAsELFNote()
FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) {
NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc);
DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10));
LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4);
NumEdges = *reinterpret_cast<const uint32_t *>(
FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode));
DEBUG(reportNumber("NumEdges = ", NumEdges, 10));
Edges = reinterpret_cast<const EdgeDescription *>(
FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode));
NumCalls = *reinterpret_cast<const uint32_t *>(
FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) +
NumEdges * sizeof(EdgeDescription));
DEBUG(reportNumber("NumCalls = ", NumCalls, 10));
Calls = reinterpret_cast<const CallDescription *>(
FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
NumEdges * sizeof(EdgeDescription));
NumEntryNodes = *reinterpret_cast<const uint32_t *>(
FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10));
EntryNodes = reinterpret_cast<const EntryNode *>(
FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) +
NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
}
/// Read and mmap descriptions written by BOLT from the executable's notes
/// section
#if defined(HAVE_ELF_H) and !defined(__APPLE__)
void *__attribute__((noinline)) __get_pc() {
return __builtin_extract_return_addr(__builtin_return_address(0));
}
/// Get string with address and parse it to hex pair <StartAddress, EndAddress>
bool parseAddressRange(const char *Str, uint64_t &StartAddress,
uint64_t &EndAddress) {
if (!Str)
return false;
// Parsed string format: <hex1>-<hex2>
StartAddress = hexToLong(Str, '-');
while (*Str && *Str != '-')
++Str;
if (!*Str)
return false;
++Str; // swallow '-'
EndAddress = hexToLong(Str);
return true;
}
/// Get full path to the real binary by getting current virtual address
/// and searching for the appropriate link in address range in
/// /proc/self/map_files
static char *getBinaryPath() {
const uint32_t BufSize = 1024;
const uint32_t NameMax = 4096;
const char DirPath[] = "/proc/self/map_files/";
static char TargetPath[NameMax] = {};
char Buf[BufSize];
if (__bolt_instr_binpath[0] != '\0')
return __bolt_instr_binpath;
if (TargetPath[0] != '\0')
return TargetPath;
unsigned long CurAddr = (unsigned long)__get_pc();
uint64_t FDdir = __open(DirPath, O_RDONLY,
/*mode=*/0666);
assert(static_cast<int64_t>(FDdir) >= 0,
"failed to open /proc/self/map_files");
while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) {
assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries");
struct dirent *d;
for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) {
d = (struct dirent *)(Buf + Bpos);
uint64_t StartAddress, EndAddress;
if (!parseAddressRange(d->d_name, StartAddress, EndAddress))
continue;
if (CurAddr < StartAddress || CurAddr > EndAddress)
continue;
char FindBuf[NameMax];
char *C = strCopy(FindBuf, DirPath, NameMax);
C = strCopy(C, d->d_name, NameMax - (C - FindBuf));
*C = '\0';
uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath));
assert(Ret != -1 && Ret != BufSize, "readlink error");
TargetPath[Ret] = '\0';
return TargetPath;
}
}
return nullptr;
}
ProfileWriterContext readDescriptions() {
ProfileWriterContext Result;
char *BinPath = getBinaryPath();
assert(BinPath && BinPath[0] != '\0', "failed to find binary path");
uint64_t FD = __open(BinPath, O_RDONLY,
/*mode=*/0666);
assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path");
Result.FileDesc = FD;
// mmap our binary to memory
uint64_t Size = __lseek(FD, 0, SEEK_END);
uint8_t *BinContents = reinterpret_cast<uint8_t *>(
__mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0));
assert(BinContents != MAP_FAILED, "readDescriptions: Failed to mmap self!");
Result.MMapPtr = BinContents;
Result.MMapSize = Size;
Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents);
Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff);
Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>(
BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize);
// Find .bolt.instr.tables with the data we need and set pointers to it
for (int I = 0; I < Hdr->e_shnum; ++I) {
char *SecName = reinterpret_cast<char *>(
BinContents + StringTblHeader->sh_offset + Shdr->sh_name);
if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) {
Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff +
(I + 1) * Hdr->e_shentsize);
continue;
}
// Actual contents of the ELF note start after offset 20 decimal:
// Offset 0: Producer name size (4 bytes)
// Offset 4: Contents size (4 bytes)
// Offset 8: Note type (4 bytes)
// Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary)
// Offset 20: Contents
uint32_t IndCallDescSize =
*reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20);
uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>(
BinContents + Shdr->sh_offset + 24 + IndCallDescSize);
uint32_t FuncDescSize =
*reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 +
IndCallDescSize + IndCallTargetDescSize);
Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>(
BinContents + Shdr->sh_offset + 24);
Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
BinContents + Shdr->sh_offset + 28 + IndCallDescSize);
Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 +
IndCallDescSize + IndCallTargetDescSize;
Result.Strings = reinterpret_cast<char *>(
BinContents + Shdr->sh_offset + 32 + IndCallDescSize +
IndCallTargetDescSize + FuncDescSize);
return Result;
}
const char ErrMsg[] =
"BOLT instrumentation runtime error: could not find section "
".bolt.instr.tables\n";
reportError(ErrMsg, sizeof(ErrMsg));
return Result;
}
#else
ProfileWriterContext readDescriptions() {
ProfileWriterContext Result;
uint8_t *Tables = _bolt_instr_tables_getter();
uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables);
uint32_t IndCallTargetDescSize =
*reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize);
uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>(
Tables + 8 + IndCallDescSize + IndCallTargetDescSize);
Result.IndCallDescriptions =
reinterpret_cast<IndCallDescription *>(Tables + 4);
Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
Tables + 8 + IndCallDescSize);
Result.FuncDescriptions =
Tables + 12 + IndCallDescSize + IndCallTargetDescSize;
Result.Strings = reinterpret_cast<char *>(
Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize);
return Result;
}
#endif
#if !defined(__APPLE__)
/// Debug by printing overall metadata global numbers to check it is sane
void printStats(const ProfileWriterContext &Ctx) {
char StatMsg[BufSize];
char *StatPtr = StatMsg;
StatPtr =
strCopy(StatPtr,
"\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: ");
StatPtr = intToStr(StatPtr,
Ctx.FuncDescriptions -
reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions),
10);
StatPtr = strCopy(StatPtr, "\nFuncDescSize: ");
StatPtr = intToStr(
StatPtr,
reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10);
StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: ");
StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10);
StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: ");
StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10);
StatPtr = strCopy(StatPtr, "\n");
__write(2, StatMsg, StatPtr - StatMsg);
}
#endif
/// This is part of a simple CFG representation in memory, where we store
/// a dynamically sized array of input and output edges per node, and store
/// a dynamically sized array of nodes per graph. We also store the spanning
/// tree edges for that CFG in a separate array of nodes in
/// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes.
struct Edge {
uint32_t Node; // Index in nodes array regarding the destination of this edge
uint32_t ID; // Edge index in an array comprising all edges of the graph
};
/// A regular graph node or a spanning tree node
struct Node {
uint32_t NumInEdges{0}; // Input edge count used to size InEdge
uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges
Edge *InEdges{nullptr}; // Created and managed by \p Graph
Edge *OutEdges{nullptr}; // ditto
};
/// Main class for CFG representation in memory. Manages object creation and
/// destruction, populates an array of CFG nodes as well as corresponding
/// spanning tree nodes.
struct Graph {
uint32_t NumNodes;
Node *CFGNodes;
Node *SpanningTreeNodes;
uint64_t *EdgeFreqs;
uint64_t *CallFreqs;
BumpPtrAllocator &Alloc;
const FunctionDescription &D;
/// Reads a list of edges from function description \p D and builds
/// the graph from it. Allocates several internal dynamic structures that are
/// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all
/// spanning tree leaf nodes descriptions (their counters). They are the seed
/// used to compute the rest of the missing edge counts in a bottom-up
/// traversal of the spanning tree.
Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
const uint64_t *Counters, ProfileWriterContext &Ctx);
~Graph();
void dump() const;
private:
void computeEdgeFrequencies(const uint64_t *Counters,
ProfileWriterContext &Ctx);
void dumpEdgeFreqs() const;
};
Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
const uint64_t *Counters, ProfileWriterContext &Ctx)
: Alloc(Alloc), D(D) {
DEBUG(reportNumber("G = 0x", (uint64_t)this, 16));
// First pass to determine number of nodes
int32_t MaxNodes = -1;
CallFreqs = nullptr;
EdgeFreqs = nullptr;
for (int I = 0; I < D.NumEdges; ++I) {
if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes)
MaxNodes = D.Edges[I].FromNode;
if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes)
MaxNodes = D.Edges[I].ToNode;
}
for (int I = 0; I < D.NumLeafNodes; ++I)
if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes)
MaxNodes = D.LeafNodes[I].Node;
for (int I = 0; I < D.NumCalls; ++I)
if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes)
MaxNodes = D.Calls[I].FromNode;
// No nodes? Nothing to do
if (MaxNodes < 0) {
DEBUG(report("No nodes!\n"));
CFGNodes = nullptr;
SpanningTreeNodes = nullptr;
NumNodes = 0;
return;
}
++MaxNodes;
DEBUG(reportNumber("NumNodes = ", MaxNodes, 10));
NumNodes = static_cast<uint32_t>(MaxNodes);
// Initial allocations
CFGNodes = new (Alloc) Node[MaxNodes];
DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16));
SpanningTreeNodes = new (Alloc) Node[MaxNodes];
DEBUG(reportNumber("G->SpanningTreeNodes = 0x",
(uint64_t)SpanningTreeNodes, 16));
// Figure out how much to allocate to each vector (in/out edge sets)
for (int I = 0; I < D.NumEdges; ++I) {
CFGNodes[D.Edges[I].FromNode].NumOutEdges++;
CFGNodes[D.Edges[I].ToNode].NumInEdges++;
if (D.Edges[I].Counter != 0xffffffff)
continue;
SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++;
SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++;
}
// Allocate in/out edge sets
for (int I = 0; I < MaxNodes; ++I) {
if (CFGNodes[I].NumInEdges > 0)
CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges];
if (CFGNodes[I].NumOutEdges > 0)
CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges];
if (SpanningTreeNodes[I].NumInEdges > 0)
SpanningTreeNodes[I].InEdges =
new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges];
if (SpanningTreeNodes[I].NumOutEdges > 0)
SpanningTreeNodes[I].OutEdges =
new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges];
CFGNodes[I].NumInEdges = 0;
CFGNodes[I].NumOutEdges = 0;
SpanningTreeNodes[I].NumInEdges = 0;
SpanningTreeNodes[I].NumOutEdges = 0;
}
// Fill in/out edge sets
for (int I = 0; I < D.NumEdges; ++I) {
const uint32_t Src = D.Edges[I].FromNode;
const uint32_t Dst = D.Edges[I].ToNode;
Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++];
E->Node = Dst;
E->ID = I;
E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++];
E->Node = Src;
E->ID = I;
if (D.Edges[I].Counter != 0xffffffff)
continue;
E = &SpanningTreeNodes[Src]
.OutEdges[SpanningTreeNodes[Src].NumOutEdges++];
E->Node = Dst;
E->ID = I;
E = &SpanningTreeNodes[Dst]
.InEdges[SpanningTreeNodes[Dst].NumInEdges++];
E->Node = Src;
E->ID = I;
}
computeEdgeFrequencies(Counters, Ctx);
}
Graph::~Graph() {
if (CallFreqs)
Alloc.deallocate(CallFreqs);
if (EdgeFreqs)
Alloc.deallocate(EdgeFreqs);
for (int I = NumNodes - 1; I >= 0; --I) {
if (SpanningTreeNodes[I].OutEdges)
Alloc.deallocate(SpanningTreeNodes[I].OutEdges);
if (SpanningTreeNodes[I].InEdges)
Alloc.deallocate(SpanningTreeNodes[I].InEdges);
if (CFGNodes[I].OutEdges)
Alloc.deallocate(CFGNodes[I].OutEdges);
if (CFGNodes[I].InEdges)
Alloc.deallocate(CFGNodes[I].InEdges);
}
if (SpanningTreeNodes)
Alloc.deallocate(SpanningTreeNodes);
if (CFGNodes)
Alloc.deallocate(CFGNodes);
}
void Graph::dump() const {
reportNumber("Dumping graph with number of nodes: ", NumNodes, 10);
report(" Full graph:\n");
for (int I = 0; I < NumNodes; ++I) {
const Node *N = &CFGNodes[I];
reportNumber(" Node #", I, 10);
reportNumber(" InEdges total ", N->NumInEdges, 10);
for (int J = 0; J < N->NumInEdges; ++J)
reportNumber(" ", N->InEdges[J].Node, 10);
reportNumber(" OutEdges total ", N->NumOutEdges, 10);
for (int J = 0; J < N->NumOutEdges; ++J)
reportNumber(" ", N->OutEdges[J].Node, 10);
report("\n");
}
report(" Spanning tree:\n");
for (int I = 0; I < NumNodes; ++I) {
const Node *N = &SpanningTreeNodes[I];
reportNumber(" Node #", I, 10);
reportNumber(" InEdges total ", N->NumInEdges, 10);
for (int J = 0; J < N->NumInEdges; ++J)
reportNumber(" ", N->InEdges[J].Node, 10);
reportNumber(" OutEdges total ", N->NumOutEdges, 10);
for (int J = 0; J < N->NumOutEdges; ++J)
reportNumber(" ", N->OutEdges[J].Node, 10);
report("\n");
}
}
void Graph::dumpEdgeFreqs() const {
reportNumber(
"Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10);
for (int I = 0; I < D.NumEdges; ++I) {
reportNumber("* Src: ", D.Edges[I].FromNode, 10);
reportNumber(" Dst: ", D.Edges[I].ToNode, 10);
reportNumber(" Cnt: ", EdgeFreqs[I], 10);
}
}
/// Auxiliary map structure for fast lookups of which calls map to each node of
/// the function CFG
struct NodeToCallsMap {
struct MapEntry {
uint32_t NumCalls;
uint32_t *Calls;
};
MapEntry *Entries;
BumpPtrAllocator &Alloc;
const uint32_t NumNodes;
NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D,
uint32_t NumNodes)
: Alloc(Alloc), NumNodes(NumNodes) {
Entries = new (Alloc, 0) MapEntry[NumNodes];
for (int I = 0; I < D.NumCalls; ++I) {
DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10));
++Entries[D.Calls[I].FromNode].NumCalls;
}
for (int I = 0; I < NumNodes; ++I) {
Entries[I].Calls = Entries[I].NumCalls ? new (Alloc)
uint32_t[Entries[I].NumCalls]
: nullptr;
Entries[I].NumCalls = 0;
}
for (int I = 0; I < D.NumCalls; ++I) {
MapEntry &Entry = Entries[D.Calls[I].FromNode];
Entry.Calls[Entry.NumCalls++] = I;
}
}
/// Set the frequency of all calls in node \p NodeID to Freq. However, if
/// the calls have their own counters and do not depend on the basic block
/// counter, this means they have landing pads and throw exceptions. In this
/// case, set their frequency with their counters and return the maximum
/// value observed in such counters. This will be used as the new frequency
/// at basic block entry. This is used to fix the CFG edge frequencies in the
/// presence of exceptions.
uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs,
const FunctionDescription &D,
const uint64_t *Counters,
ProfileWriterContext &Ctx) const {
const MapEntry &Entry = Entries[NodeID];
uint64_t MaxValue = 0ull;
for (int I = 0, E = Entry.NumCalls; I != E; ++I) {
const uint32_t CallID = Entry.Calls[I];
DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10));
const CallDescription &CallDesc = D.Calls[CallID];
if (CallDesc.Counter == 0xffffffff) {
CallFreqs[CallID] = Freq;
DEBUG(reportNumber(" with : ", Freq, 10));
} else {
const uint64_t CounterVal = Counters[CallDesc.Counter];
CallFreqs[CallID] = CounterVal;
MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue;
DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10));
}
DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16));
if (CallFreqs[CallID] > 0)
Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls +=
CallFreqs[CallID];
}
return MaxValue;
}
~NodeToCallsMap() {
for (int I = NumNodes - 1; I >= 0; --I)
if (Entries[I].Calls)
Alloc.deallocate(Entries[I].Calls);
Alloc.deallocate(Entries);
}
};
/// Fill an array with the frequency of each edge in the function represented
/// by G, as well as another array for each call.
void Graph::computeEdgeFrequencies(const uint64_t *Counters,
ProfileWriterContext &Ctx) {
if (NumNodes == 0)
return;
EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr;
CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr;
// Setup a lookup for calls present in each node (BB)
NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes);
// Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the
// spanning tree don't have explicit counters. We must infer their value using
// a linear combination of other counters (sum of counters of the outgoing
// edges minus sum of counters of the incoming edges).
uint32_t *Stack = new (Alloc) uint32_t [NumNodes];
uint32_t StackTop = 0;
enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED };
Status *Visited = new (Alloc, 0) Status[NumNodes];
uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes];
uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes];
// Setup a fast lookup for frequency of leaf nodes, which have special
// basic block frequency instrumentation (they are not edge profiled).
for (int I = 0; I < D.NumLeafNodes; ++I) {
LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter];
DEBUG({
if (Counters[D.LeafNodes[I].Counter] > 0) {
reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);
reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10);
}
});
}
for (int I = 0; I < D.NumEntryNodes; ++I) {
EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address;
DEBUG({
reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);
reportNumber(" Address: ", D.EntryNodes[I].Address, 16);
});
}
// Add all root nodes to the stack
for (int I = 0; I < NumNodes; ++I)
if (SpanningTreeNodes[I].NumInEdges == 0)
Stack[StackTop++] = I;
// Empty stack?
if (StackTop == 0) {
DEBUG(report("Empty stack!\n"));
Alloc.deallocate(EntryAddress);
Alloc.deallocate(LeafFrequency);
Alloc.deallocate(Visited);
Alloc.deallocate(Stack);
CallMap->~NodeToCallsMap();
Alloc.deallocate(CallMap);
if (CallFreqs)
Alloc.deallocate(CallFreqs);
if (EdgeFreqs)
Alloc.deallocate(EdgeFreqs);
EdgeFreqs = nullptr;
CallFreqs = nullptr;
return;
}
// Add all known edge counts, will infer the rest
for (int I = 0; I < D.NumEdges; ++I) {
const uint32_t C = D.Edges[I].Counter;
if (C == 0xffffffff) // inferred counter - we will compute its value
continue;
EdgeFreqs[I] = Counters[C];
}
while (StackTop > 0) {
const uint32_t Cur = Stack[--StackTop];
DEBUG({
if (Visited[Cur] == S_VISITING)
report("(visiting) ");
else
report("(new) ");
reportNumber("Cur: ", Cur, 10);
});
// This shouldn't happen in a tree
assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack");
if (Visited[Cur] == S_NEW) {
Visited[Cur] = S_VISITING;
Stack[StackTop++] = Cur;
assert(StackTop <= NumNodes, "stack grew too large");
for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) {
const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node;
Stack[StackTop++] = Succ;
assert(StackTop <= NumNodes, "stack grew too large");
}
continue;
}
Visited[Cur] = S_VISITED;
// Establish our node frequency based on outgoing edges, which should all be
// resolved by now.
int64_t CurNodeFreq = LeafFrequency[Cur];
// Not a leaf?
if (!CurNodeFreq) {
for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) {
const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID;
CurNodeFreq += EdgeFreqs[SuccEdge];
}
}
if (CurNodeFreq < 0)
CurNodeFreq = 0;
const uint64_t CallFreq = CallMap->visitAllCallsIn(
Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx);
// Exception handling affected our output flow? Fix with calls info
DEBUG({
if (CallFreq > CurNodeFreq)
report("Bumping node frequency with call info\n");
});
CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq;
if (CurNodeFreq > 0) {
if (uint64_t Addr = EntryAddress[Cur]) {
DEBUG(
reportNumber(" Setting flow at entry point address 0x", Addr, 16));
DEBUG(reportNumber(" with: ", CurNodeFreq, 10));
Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq;
}
}
// No parent? Reached a tree root, limit to call frequency updating.
if (SpanningTreeNodes[Cur].NumInEdges == 0)
continue;
assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent");
const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node;
const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID;
// Calculate parent edge freq.
int64_t ParentEdgeFreq = CurNodeFreq;
for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) {
const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID;
ParentEdgeFreq -= EdgeFreqs[PredEdge];
}
// Sometimes the conservative CFG that BOLT builds will lead to incorrect
// flow computation. For example, in a BB that transitively calls the exit
// syscall, BOLT will add a fall-through successor even though it should not
// have any successors. So this block execution will likely be wrong. We
// tolerate this imperfection since this case should be quite infrequent.
if (ParentEdgeFreq < 0) {
DEBUG(dumpEdgeFreqs());
DEBUG(report("WARNING: incorrect flow"));
ParentEdgeFreq = 0;
}
DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10));
DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10));
EdgeFreqs[ParentEdge] = ParentEdgeFreq;
}
Alloc.deallocate(EntryAddress);
Alloc.deallocate(LeafFrequency);
Alloc.deallocate(Visited);
Alloc.deallocate(Stack);
CallMap->~NodeToCallsMap();
Alloc.deallocate(CallMap);
DEBUG(dumpEdgeFreqs());
}
/// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses
/// \p Alloc to allocate helper dynamic structures used to compute profile for
/// edges that we do not explictly instrument.
const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx,
const uint8_t *FuncDesc,
BumpPtrAllocator &Alloc) {
const FunctionDescription F(FuncDesc);
const uint8_t *next = FuncDesc + F.getSize();
#if !defined(__APPLE__)
uint64_t *bolt_instr_locations = __bolt_instr_locations;
#else
uint64_t *bolt_instr_locations = _bolt_instr_locations_getter();
#endif
// Skip funcs we know are cold
#ifndef ENABLE_DEBUG
uint64_t CountersFreq = 0;
for (int I = 0; I < F.NumLeafNodes; ++I)
CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter];
if (CountersFreq == 0) {
for (int I = 0; I < F.NumEdges; ++I) {
const uint32_t C = F.Edges[I].Counter;
if (C == 0xffffffff)
continue;
CountersFreq += bolt_instr_locations[C];
}
if (CountersFreq == 0) {
for (int I = 0; I < F.NumCalls; ++I) {
const uint32_t C = F.Calls[I].Counter;
if (C == 0xffffffff)
continue;
CountersFreq += bolt_instr_locations[C];
}
if (CountersFreq == 0)
return next;
}
}
#endif
Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx);
DEBUG(G->dump());
if (!G->EdgeFreqs && !G->CallFreqs) {
G->~Graph();
Alloc.deallocate(G);
return next;
}
for (int I = 0; I < F.NumEdges; ++I) {
const uint64_t Freq = G->EdgeFreqs[I];
if (Freq == 0)
continue;
const EdgeDescription *Desc = &F.Edges[I];
char LineBuf[BufSize];
char *Ptr = LineBuf;
Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22);
Ptr = intToStr(Ptr, Freq, 10);
*Ptr++ = '\n';
__write(FD, LineBuf, Ptr - LineBuf);
}
for (int I = 0; I < F.NumCalls; ++I) {
const uint64_t Freq = G->CallFreqs[I];
if (Freq == 0)
continue;
char LineBuf[BufSize];
char *Ptr = LineBuf;
const CallDescription *Desc = &F.Calls[I];
Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
Ptr = intToStr(Ptr, Freq, 10);
*Ptr++ = '\n';
__write(FD, LineBuf, Ptr - LineBuf);
}
G->~Graph();
Alloc.deallocate(G);
return next;
}
#if !defined(__APPLE__)
const IndCallTargetDescription *
ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const {
uint32_t B = 0;
uint32_t E = __bolt_instr_num_ind_targets;
if (E == 0)
return nullptr;
do {
uint32_t I = (E - B) / 2 + B;
if (IndCallTargets[I].Address == Target)
return &IndCallTargets[I];
if (IndCallTargets[I].Address < Target)
B = I + 1;
else
E = I;
} while (B < E);
return nullptr;
}
/// Write a single indirect call <src, target> pair to the fdata file
void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry,
int FD, int CallsiteID,
ProfileWriterContext *Ctx) {
if (Entry.Val == 0)
return;
DEBUG(reportNumber("Target func 0x", Entry.Key, 16));
DEBUG(reportNumber("Target freq: ", Entry.Val, 10));
const IndCallDescription *CallsiteDesc =
&Ctx->IndCallDescriptions[CallsiteID];
const IndCallTargetDescription *TargetDesc =
Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress);
if (!TargetDesc) {
DEBUG(report("Failed to lookup indirect call target\n"));
char LineBuf[BufSize];
char *Ptr = LineBuf;
Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40);
Ptr = intToStr(Ptr, Entry.Val, 10);
*Ptr++ = '\n';
__write(FD, LineBuf, Ptr - LineBuf);
return;
}
Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val;
char LineBuf[BufSize];
char *Ptr = LineBuf;
Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
Ptr = intToStr(Ptr, Entry.Val, 10);
*Ptr++ = '\n';
__write(FD, LineBuf, Ptr - LineBuf);
}
/// Write to \p FD all of the indirect call profiles.
void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) {
for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) {
DEBUG(reportNumber("IndCallsite #", I, 10));
GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx);
}
}
/// Check a single call flow for a callee versus all known callers. If there are
/// less callers than what the callee expects, write the difference with source
/// [unknown] in the profile.
void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD,
ProfileWriterContext *Ctx) {
DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16));
DEBUG(reportNumber("Calls: ", Entry.Calls, 10));
DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10));
DEBUG({
if (Entry.Calls > Entry.Val)
report(" More calls than expected!\n");
});
if (Entry.Val <= Entry.Calls)
return;
DEBUG(reportNumber(
" Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10));
const IndCallTargetDescription *TargetDesc =
Ctx->lookupIndCallTarget(Entry.Key);
if (!TargetDesc) {
// There is probably something wrong with this callee and this should be
// investigated, but I don't want to assert and lose all data collected.
DEBUG(report("WARNING: failed to look up call target!\n"));
return;
}
char LineBuf[BufSize];
char *Ptr = LineBuf;
Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize);
Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10);
*Ptr++ = '\n';
__write(FD, LineBuf, Ptr - LineBuf);
}
/// Open fdata file for writing and return a valid file descriptor, aborting
/// program upon failure.
int openProfile() {
// Build the profile name string by appending our PID
char Buf[BufSize];
char *Ptr = Buf;
uint64_t PID = __getpid();
Ptr = strCopy(Buf, __bolt_instr_filename, BufSize);
if (__bolt_instr_use_pid) {
Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1));
Ptr = intToStr(Ptr, PID, 10);
Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1));
}
*Ptr++ = '\0';
uint64_t FD = __open(Buf, O_WRONLY | O_TRUNC | O_CREAT,
/*mode=*/0666);
if (static_cast<int64_t>(FD) < 0) {
report("Error while trying to open profile file for writing: ");
report(Buf);
reportNumber("\nFailed with error number: 0x",
0 - static_cast<int64_t>(FD), 16);
__exit(1);
}
return FD;
}
#endif
} // anonymous namespace
#if !defined(__APPLE__)
/// Reset all counters in case you want to start profiling a new phase of your
/// program independently of prior phases.
/// The address of this function is printed by BOLT and this can be called by
/// any attached debugger during runtime. There is a useful oneliner for gdb:
///
/// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \
/// -ex 'set confirm off' -ex quit
///
/// Where 0xdeadbeef is this function address and PROCESSNAME your binary file
/// name.
extern "C" void __bolt_instr_clear_counters() {
memset(reinterpret_cast<char *>(__bolt_instr_locations), 0,
__bolt_num_counters * 8);
for (int I = 0; I < __bolt_instr_num_ind_calls; ++I)
GlobalIndCallCounters[I].resetCounters();
}
/// This is the entry point for profile writing.
/// There are three ways of getting here:
///
/// * Program execution ended, finalization methods are running and BOLT
/// hooked into FINI from your binary dynamic section;
/// * You used the sleep timer option and during initialization we forked
/// a separete process that will call this function periodically;
/// * BOLT prints this function address so you can attach a debugger and
/// call this function directly to get your profile written to disk
/// on demand.
///
extern "C" void __attribute((force_align_arg_pointer))
__bolt_instr_data_dump(int FD) {
// Already dumping
if (!GlobalWriteProfileMutex->acquire())
return;
int ret = __lseek(FD, 0, SEEK_SET);
assert(ret == 0, "Failed to lseek!");
ret = __ftruncate(FD, 0);
assert(ret == 0, "Failed to ftruncate!");
BumpPtrAllocator HashAlloc;
HashAlloc.setMaxSize(0x6400000);
ProfileWriterContext Ctx = readDescriptions();
Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc);
DEBUG(printStats(Ctx));
BumpPtrAllocator Alloc;
Alloc.setMaxSize(0x6400000);
const uint8_t *FuncDesc = Ctx.FuncDescriptions;
for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) {
FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
Alloc.clear();
DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
}
assert(FuncDesc == (void *)Ctx.Strings,
"FuncDesc ptr must be equal to stringtable");
writeIndirectCallProfile(FD, Ctx);
Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx);
__fsync(FD);
__munmap(Ctx.MMapPtr, Ctx.MMapSize);
__close(Ctx.FileDesc);
HashAlloc.destroy();
GlobalWriteProfileMutex->release();
DEBUG(report("Finished writing profile.\n"));
}
/// Event loop for our child process spawned during setup to dump profile data
/// at user-specified intervals
void watchProcess() {
timespec ts, rem;
uint64_t Ellapsed = 0ull;
int FD = openProfile();
uint64_t ppid;
if (__bolt_instr_wait_forks) {
// Store parent pgid
ppid = -__getpgid(0);
// And leave parent process group
__setpgid(0, 0);
} else {
// Store parent pid
ppid = __getppid();
if (ppid == 1) {
// Parent already dead
__bolt_instr_data_dump(FD);
goto out;
}
}
ts.tv_sec = 1;
ts.tv_nsec = 0;
while (1) {
__nanosleep(&ts, &rem);
// This means our parent process or all its forks are dead,
// so no need for us to keep dumping.
if (__kill(ppid, 0) < 0) {
if (__bolt_instr_no_counters_clear)
__bolt_instr_data_dump(FD);
break;
}
if (++Ellapsed < __bolt_instr_sleep_time)
continue;
Ellapsed = 0;
__bolt_instr_data_dump(FD);
if (__bolt_instr_no_counters_clear == false)
__bolt_instr_clear_counters();
}
out:;
DEBUG(report("My parent process is dead, bye!\n"));
__close(FD);
__exit(0);
}
extern "C" void __bolt_instr_indirect_call();
extern "C" void __bolt_instr_indirect_tailcall();
/// Initialization code
extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() {
__bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call;
__bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall;
TextBaseAddress = getTextBaseAddress();
const uint64_t CountersStart =
reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]);
const uint64_t CountersEnd = alignTo(
reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]),
0x1000);
DEBUG(reportNumber("replace mmap start: ", CountersStart, 16));
DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16));
assert(CountersEnd > CountersStart, "no counters");
const bool Shared = !__bolt_instr_use_pid;
const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED : MAP_PRIVATE;
void *Ret =
__mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MapPrivateOrShared | MAP_FIXED, -1, 0);
assert(Ret != MAP_FAILED, "__bolt_instr_setup: Failed to mmap counters!");
GlobalMetadataStorage = __mmap(0, 4096, PROT_READ | PROT_WRITE,
MapPrivateOrShared | MAP_ANONYMOUS, -1, 0);
assert(GlobalMetadataStorage != MAP_FAILED,
"__bolt_instr_setup: failed to mmap page for metadata!");
GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator;
// Conservatively reserve 100MiB
GlobalAlloc->setMaxSize(0x6400000);
GlobalAlloc->setShared(Shared);
GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex();
if (__bolt_instr_num_ind_calls > 0)
GlobalIndCallCounters =
new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls];
if (__bolt_instr_sleep_time != 0) {
// Separate instrumented process to the own process group
if (__bolt_instr_wait_forks)
__setpgid(0, 0);
if (long PID = __fork())
return;
watchProcess();
}
}
extern "C" __attribute((force_align_arg_pointer)) void
instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) {
GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc);
}
/// We receive as in-stack arguments the identifier of the indirect call site
/// as well as the target address for the call
extern "C" __attribute((naked)) void __bolt_instr_indirect_call()
{
__asm__ __volatile__(SAVE_ALL
"mov 0xa0(%%rsp), %%rdi\n"
"mov 0x98(%%rsp), %%rsi\n"
"call instrumentIndirectCall\n"
RESTORE_ALL
"ret\n"
:::);
}
extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall()
{
__asm__ __volatile__(SAVE_ALL
"mov 0x98(%%rsp), %%rdi\n"
"mov 0x90(%%rsp), %%rsi\n"
"call instrumentIndirectCall\n"
RESTORE_ALL
"ret\n"
:::);
}
/// This is hooking ELF's entry, it needs to save all machine state.
extern "C" __attribute((naked)) void __bolt_instr_start()
{
__asm__ __volatile__(SAVE_ALL
"call __bolt_instr_setup\n"
RESTORE_ALL
"jmp __bolt_start_trampoline\n"
:::);
}
/// This is hooking into ELF's DT_FINI
extern "C" void __bolt_instr_fini() {
__bolt_fini_trampoline();
if (__bolt_instr_sleep_time == 0) {
int FD = openProfile();
__bolt_instr_data_dump(FD);
__close(FD);
}
DEBUG(report("Finished.\n"));
}
#endif
#if defined(__APPLE__)
extern "C" void __bolt_instr_data_dump() {
ProfileWriterContext Ctx = readDescriptions();
int FD = 2;
BumpPtrAllocator Alloc;
const uint8_t *FuncDesc = Ctx.FuncDescriptions;
uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter();
for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) {
FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
Alloc.clear();
DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
}
assert(FuncDesc == (void *)Ctx.Strings,
"FuncDesc ptr must be equal to stringtable");
}
// On OSX/iOS the final symbol name of an extern "C" function/variable contains
// one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup.
extern "C"
__attribute__((section("__TEXT,__setup")))
__attribute__((force_align_arg_pointer))
void _bolt_instr_setup() {
__asm__ __volatile__(SAVE_ALL :::);
report("Hello!\n");
__asm__ __volatile__(RESTORE_ALL :::);
}
extern "C"
__attribute__((section("__TEXT,__fini")))
__attribute__((force_align_arg_pointer))
void _bolt_instr_fini() {
report("Bye!\n");
__bolt_instr_data_dump();
}
#endif
#endif
|