File: WalkAST.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (315 lines) | stat: -rw-r--r-- 12,452 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//===--- WalkAST.cpp - Find declaration references in the AST -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AnalysisInternal.h"
#include "clang-include-cleaner/Types.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"

namespace clang::include_cleaner {
namespace {
using DeclCallback =
    llvm::function_ref<void(SourceLocation, NamedDecl &, RefType)>;

class ASTWalker : public RecursiveASTVisitor<ASTWalker> {
  DeclCallback Callback;

  void report(SourceLocation Loc, NamedDecl *ND,
              RefType RT = RefType::Explicit) {
    if (!ND || Loc.isInvalid())
      return;
    Callback(Loc, *cast<NamedDecl>(ND->getCanonicalDecl()), RT);
  }

  NamedDecl *resolveTemplateName(TemplateName TN) {
    // For using-templates, only mark the alias.
    if (auto *USD = TN.getAsUsingShadowDecl())
      return USD;
    return TN.getAsTemplateDecl();
  }
  NamedDecl *getMemberProvider(QualType Base) {
    if (Base->isPointerType())
      return getMemberProvider(Base->getPointeeType());
    // Unwrap the sugar ElaboratedType.
    if (const auto *ElTy = dyn_cast<ElaboratedType>(Base))
      return getMemberProvider(ElTy->getNamedType());

    if (const auto *TT = dyn_cast<TypedefType>(Base))
      return TT->getDecl();
    if (const auto *UT = dyn_cast<UsingType>(Base))
      return UT->getFoundDecl();
    // A heuristic: to resolve a template type to **only** its template name.
    // We're only using this method for the base type of MemberExpr, in general
    // the template provides the member, and the critical case `unique_ptr<Foo>`
    // is supported (the base type is a Foo*).
    //
    // There are some exceptions that this heuristic could fail (dependent base,
    // dependent typealias), but we believe these are rare.
    if (const auto *TST = dyn_cast<TemplateSpecializationType>(Base))
      return resolveTemplateName(TST->getTemplateName());
    return Base->getAsRecordDecl();
  }
  // Templated as TemplateSpecializationType and
  // DeducedTemplateSpecializationType doesn't share a common base.
  template <typename T>
  // Picks the most specific specialization for a
  // (Deduced)TemplateSpecializationType, while prioritizing using-decls.
  NamedDecl *getMostRelevantTemplatePattern(const T *TST) {
    // In case of exported template names always prefer the using-decl. This
    // implies we'll point at the using-decl even when there's an explicit
    // specializaiton using the exported name, but that's rare.
    auto *ND = resolveTemplateName(TST->getTemplateName());
    if (llvm::isa_and_present<UsingShadowDecl, TypeAliasTemplateDecl>(ND))
      return ND;
    // This is the underlying decl used by TemplateSpecializationType, can be
    // null when type is dependent or not resolved to a pattern yet.
    // If so, fallback to primary template.
    CXXRecordDecl *TD = TST->getAsCXXRecordDecl();
    if (!TD || TD->getTemplateSpecializationKind() == TSK_Undeclared)
      return ND;
    // We ignore explicit instantiations. This might imply marking the wrong
    // declaration as used in specific cases, but seems like the right trade-off
    // in general (e.g. we don't want to include a custom library that has an
    // explicit specialization of a common type).
    if (auto *Pat = TD->getTemplateInstantiationPattern())
      return Pat;
    // For explicit specializations, use the specialized decl directly.
    return TD;
  }

public:
  ASTWalker(DeclCallback Callback) : Callback(Callback) {}

  // Operators are almost always ADL extension points and by design references
  // to them doesn't count as uses (generally the type should provide them, so
  // ignore them).
  // Unless we're using an operator defined as a member, in such cases treat
  // these as regular member references.
  bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
    if (!WalkUpFromCXXOperatorCallExpr(S))
      return false;
    if (auto *CD = S->getCalleeDecl()) {
      if (llvm::isa<CXXMethodDecl>(CD)) {
        // Treat this as a regular member reference.
        report(S->getOperatorLoc(), getMemberProvider(S->getArg(0)->getType()),
               RefType::Implicit);
      } else {
        report(S->getOperatorLoc(), llvm::dyn_cast<NamedDecl>(CD),
               RefType::Implicit);
      }
    }
    for (auto *Arg : S->arguments())
      if (!TraverseStmt(Arg))
        return false;
    return true;
  }

  bool VisitDeclRefExpr(DeclRefExpr *DRE) {
    // Static class members are handled here, as they don't produce MemberExprs.
    if (DRE->getFoundDecl()->isCXXClassMember()) {
      if (auto *Qual = DRE->getQualifier())
        report(DRE->getLocation(), Qual->getAsRecordDecl(), RefType::Implicit);
    } else {
      report(DRE->getLocation(), DRE->getFoundDecl());
    }
    return true;
  }

  bool VisitMemberExpr(MemberExpr *E) {
    // Reporting a usage of the member decl would cause issues (e.g. force
    // including the base class for inherited members). Instead, we report a
    // usage of the base type of the MemberExpr, so that e.g. code
    // `returnFoo().bar` can keep #include "foo.h" (rather than inserting
    // "bar.h" for the underlying base type `Bar`).
    QualType Type = E->getBase()->IgnoreImpCasts()->getType();
    report(E->getMemberLoc(), getMemberProvider(Type), RefType::Implicit);
    return true;
  }
  bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
    report(E->getMemberLoc(), getMemberProvider(E->getBaseType()),
           RefType::Implicit);
    return true;
  }

  bool VisitCXXConstructExpr(CXXConstructExpr *E) {
    // Always treat consturctor calls as implicit. We'll have an explicit
    // reference for the constructor calls that mention the type-name (through
    // TypeLocs). This reference only matters for cases where there's no
    // explicit syntax at all or there're only braces.
    report(E->getLocation(), getMemberProvider(E->getType()),
           RefType::Implicit);
    return true;
  }

  bool VisitOverloadExpr(OverloadExpr *E) {
    // Since we can't prove which overloads are used, report all of them.
    llvm::for_each(E->decls(), [this, E](NamedDecl *D) {
      report(E->getNameLoc(), D, RefType::Ambiguous);
    });
    return true;
  }

  // Report all (partial) specializations of a class/var template decl.
  template <typename TemplateDeclType, typename ParitialDeclType>
  void reportSpecializations(SourceLocation Loc, NamedDecl *ND) {
    const auto *TD = llvm::dyn_cast<TemplateDeclType>(ND);
    if (!TD)
      return;

    for (auto *Spec : TD->specializations())
      report(Loc, Spec, RefType::Ambiguous);
    llvm::SmallVector<ParitialDeclType *> PartialSpecializations;
    TD->getPartialSpecializations(PartialSpecializations);
    for (auto *PartialSpec : PartialSpecializations)
      report(Loc, PartialSpec, RefType::Ambiguous);
  }
  bool VisitUsingDecl(UsingDecl *UD) {
    for (const auto *Shadow : UD->shadows()) {
      auto *TD = Shadow->getTargetDecl();
      auto IsUsed = TD->isUsed() || TD->isReferenced();
      report(UD->getLocation(), TD,
             IsUsed ? RefType::Explicit : RefType::Ambiguous);

      // All (partial) template specializations are visible via a using-decl,
      // However a using-decl only refers to the primary template (per C++ name
      // lookup). Thus, we need to manually report all specializations.
      reportSpecializations<ClassTemplateDecl,
                            ClassTemplatePartialSpecializationDecl>(
          UD->getLocation(), TD);
      reportSpecializations<VarTemplateDecl,
                            VarTemplatePartialSpecializationDecl>(
          UD->getLocation(), TD);
      if (const auto *FTD = llvm::dyn_cast<FunctionTemplateDecl>(TD))
        for (auto *Spec : FTD->specializations())
          report(UD->getLocation(), Spec, RefType::Ambiguous);
    }
    return true;
  }

  bool VisitFunctionDecl(FunctionDecl *FD) {
    // Mark declaration from definition as it needs type-checking.
    if (FD->isThisDeclarationADefinition())
      report(FD->getLocation(), FD);
    return true;
  }
  bool VisitVarDecl(VarDecl *VD) {
    // Ignore the parameter decl itself (its children were handled elsewhere),
    // as they don't contribute to the main-file #include.
    if (llvm::isa<ParmVarDecl>(VD))
      return true;
    // Mark declaration from definition as it needs type-checking.
    if (VD->isThisDeclarationADefinition())
      report(VD->getLocation(), VD);
    return true;
  }

  bool VisitEnumDecl(EnumDecl *D) {
    // Definition of an enum with an underlying type references declaration for
    // type-checking purposes.
    if (D->isThisDeclarationADefinition() && D->getIntegerTypeSourceInfo())
      report(D->getLocation(), D);
    return true;
  }

  // Report a reference from explicit specializations to the specialized
  // template. Implicit ones are filtered out by RAV and explicit instantiations
  // are already traversed through typelocs.
  bool
  VisitClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *CTSD) {
    if (CTSD->isExplicitSpecialization())
      report(CTSD->getLocation(),
             CTSD->getSpecializedTemplate()->getTemplatedDecl());
    return true;
  }
  bool VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *VTSD) {
    if (VTSD->isExplicitSpecialization())
      report(VTSD->getLocation(),
             VTSD->getSpecializedTemplate()->getTemplatedDecl());
    return true;
  }

  // TypeLoc visitors.
  void reportType(SourceLocation RefLoc, NamedDecl *ND) {
    // Reporting explicit references to types nested inside classes can cause
    // issues, e.g. a type accessed through a derived class shouldn't require
    // inclusion of the base.
    // Hence we report all such references as implicit. The code must spell the
    // outer type-location somewhere, which will trigger an explicit reference
    // and per IWYS, it's that spelling's responsibility to bring in necessary
    // declarations.
    RefType RT = llvm::isa<RecordDecl>(ND->getDeclContext())
                     ? RefType::Implicit
                     : RefType::Explicit;
    return report(RefLoc, ND, RT);
  }

  bool VisitUsingTypeLoc(UsingTypeLoc TL) {
    reportType(TL.getNameLoc(), TL.getFoundDecl());
    return true;
  }

  bool VisitTagTypeLoc(TagTypeLoc TTL) {
    reportType(TTL.getNameLoc(), TTL.getDecl());
    return true;
  }

  bool VisitTypedefTypeLoc(TypedefTypeLoc TTL) {
    reportType(TTL.getNameLoc(), TTL.getTypedefNameDecl());
    return true;
  }

  bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
    reportType(TL.getTemplateNameLoc(),
               getMostRelevantTemplatePattern(TL.getTypePtr()));
    return true;
  }

  bool VisitDeducedTemplateSpecializationTypeLoc(
      DeducedTemplateSpecializationTypeLoc TL) {
    reportType(TL.getTemplateNameLoc(),
               getMostRelevantTemplatePattern(TL.getTypePtr()));
    return true;
  }

  bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &TL) {
    auto &Arg = TL.getArgument();
    // Template-template parameters require special attention, as there's no
    // TemplateNameLoc.
    if (Arg.getKind() == TemplateArgument::Template ||
        Arg.getKind() == TemplateArgument::TemplateExpansion) {
      report(TL.getLocation(),
             resolveTemplateName(Arg.getAsTemplateOrTemplatePattern()));
      return true;
    }
    return RecursiveASTVisitor::TraverseTemplateArgumentLoc(TL);
  }
};

} // namespace

void walkAST(Decl &Root, DeclCallback Callback) {
  ASTWalker(Callback).TraverseDecl(&Root);
}

} // namespace clang::include_cleaner