File: ByteCodeExprGen.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2185 lines) | stat: -rw-r--r-- 65,165 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
//===--- ByteCodeExprGen.cpp - Code generator for expressions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ByteCodeExprGen.h"
#include "ByteCodeEmitter.h"
#include "ByteCodeGenError.h"
#include "ByteCodeStmtGen.h"
#include "Context.h"
#include "Floating.h"
#include "Function.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"

using namespace clang;
using namespace clang::interp;

using APSInt = llvm::APSInt;

namespace clang {
namespace interp {

/// Scope used to handle temporaries in toplevel variable declarations.
template <class Emitter> class DeclScope final : public VariableScope<Emitter> {
public:
  DeclScope(ByteCodeExprGen<Emitter> *Ctx, const ValueDecl *VD)
      : VariableScope<Emitter>(Ctx), Scope(Ctx->P, VD) {}

  void addExtended(const Scope::Local &Local) override {
    return this->addLocal(Local);
  }

private:
  Program::DeclScope Scope;
};

/// Scope used to handle initialization methods.
template <class Emitter> class OptionScope final {
public:
  /// Root constructor, compiling or discarding primitives.
  OptionScope(ByteCodeExprGen<Emitter> *Ctx, bool NewDiscardResult)
      : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult) {
    Ctx->DiscardResult = NewDiscardResult;
  }

  ~OptionScope() { Ctx->DiscardResult = OldDiscardResult; }

private:
  /// Parent context.
  ByteCodeExprGen<Emitter> *Ctx;
  /// Old discard flag to restore.
  bool OldDiscardResult;
};

} // namespace interp
} // namespace clang

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCastExpr(const CastExpr *CE) {
  auto *SubExpr = CE->getSubExpr();
  switch (CE->getCastKind()) {

  case CK_LValueToRValue: {
    return dereference(
        SubExpr, DerefKind::Read,
        [](PrimType) {
          // Value loaded - nothing to do here.
          return true;
        },
        [this, CE](PrimType T) {
          // Pointer on stack - dereference it.
          if (!this->emitLoadPop(T, CE))
            return false;
          return DiscardResult ? this->emitPop(T, CE) : true;
        });
  }

  case CK_UncheckedDerivedToBase:
  case CK_DerivedToBase: {
    if (!this->visit(SubExpr))
      return false;

    return this->emitDerivedToBaseCasts(getRecordTy(SubExpr->getType()),
                                        getRecordTy(CE->getType()), CE);
  }

  case CK_FloatingCast: {
    if (!this->visit(SubExpr))
      return false;
    const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
    return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
  }

  case CK_IntegralToFloating: {
    std::optional<PrimType> FromT = classify(SubExpr->getType());
    if (!FromT)
      return false;

    if (!this->visit(SubExpr))
      return false;

    const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
    llvm::RoundingMode RM = getRoundingMode(CE);
    return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE);
  }

  case CK_FloatingToBoolean:
  case CK_FloatingToIntegral: {
    std::optional<PrimType> ToT = classify(CE->getType());

    if (!ToT)
      return false;

    if (!this->visit(SubExpr))
      return false;

    return this->emitCastFloatingIntegral(*ToT, CE);
  }

  case CK_NullToPointer:
    if (DiscardResult)
      return true;
    return this->emitNull(classifyPrim(CE->getType()), CE);

  case CK_ArrayToPointerDecay:
  case CK_AtomicToNonAtomic:
  case CK_ConstructorConversion:
  case CK_FunctionToPointerDecay:
  case CK_NonAtomicToAtomic:
  case CK_NoOp:
  case CK_UserDefinedConversion:
    return this->visit(SubExpr);

  case CK_IntegralToBoolean:
  case CK_IntegralCast: {
    std::optional<PrimType> FromT = classify(SubExpr->getType());
    std::optional<PrimType> ToT = classify(CE->getType());
    if (!FromT || !ToT)
      return false;

    if (!this->visit(SubExpr))
      return false;

    if (FromT == ToT)
      return true;

    return this->emitCast(*FromT, *ToT, CE);
  }

  case CK_PointerToBoolean: {
    // Just emit p != nullptr for this.
    if (!this->visit(SubExpr))
      return false;

    if (!this->emitNullPtr(CE))
      return false;

    return this->emitNEPtr(CE);
  }

  case CK_ToVoid:
    return discard(SubExpr);

  default:
    assert(false && "Cast not implemented");
  }
  llvm_unreachable("Unhandled clang::CastKind enum");
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
  if (DiscardResult)
    return true;

  return this->emitConst(LE->getValue(), LE);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
  if (DiscardResult)
    return true;

  return this->emitConstFloat(E->getValue(), E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitParenExpr(const ParenExpr *PE) {
  const Expr *SubExpr = PE->getSubExpr();

  if (DiscardResult)
    return this->discard(SubExpr);

  return this->visit(SubExpr);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
  // Need short-circuiting for these.
  if (BO->isLogicalOp())
    return this->VisitLogicalBinOp(BO);

  const Expr *LHS = BO->getLHS();
  const Expr *RHS = BO->getRHS();

  // Typecheck the args.
  std::optional<PrimType> LT = classify(LHS->getType());
  std::optional<PrimType> RT = classify(RHS->getType());
  std::optional<PrimType> T = classify(BO->getType());
  if (!LT || !RT || !T) {
    return this->bail(BO);
  }

  auto Discard = [this, T, BO](bool Result) {
    if (!Result)
      return false;
    return DiscardResult ? this->emitPop(*T, BO) : true;
  };

  // Deal with operations which have composite or void types.
  if (BO->isCommaOp()) {
    if (!discard(LHS))
      return false;
    return Discard(this->visit(RHS));
  }

  // Pointer arithmetic special case.
  if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
    if (T == PT_Ptr || (LT == PT_Ptr && RT == PT_Ptr))
      return this->VisitPointerArithBinOp(BO);
  }

  if (!visit(LHS) || !visit(RHS))
    return false;

  // For languages such as C, cast the result of one
  // of our comparision opcodes to T (which is usually int).
  auto MaybeCastToBool = [this, T, BO](bool Result) {
    if (!Result)
      return false;
    if (DiscardResult)
      return this->emitPop(*T, BO);
    if (T != PT_Bool)
      return this->emitCast(PT_Bool, *T, BO);
    return true;
  };

  switch (BO->getOpcode()) {
  case BO_EQ:
    return MaybeCastToBool(this->emitEQ(*LT, BO));
  case BO_NE:
    return MaybeCastToBool(this->emitNE(*LT, BO));
  case BO_LT:
    return MaybeCastToBool(this->emitLT(*LT, BO));
  case BO_LE:
    return MaybeCastToBool(this->emitLE(*LT, BO));
  case BO_GT:
    return MaybeCastToBool(this->emitGT(*LT, BO));
  case BO_GE:
    return MaybeCastToBool(this->emitGE(*LT, BO));
  case BO_Sub:
    if (BO->getType()->isFloatingType())
      return Discard(this->emitSubf(getRoundingMode(BO), BO));
    return Discard(this->emitSub(*T, BO));
  case BO_Add:
    if (BO->getType()->isFloatingType())
      return Discard(this->emitAddf(getRoundingMode(BO), BO));
    return Discard(this->emitAdd(*T, BO));
  case BO_Mul:
    if (BO->getType()->isFloatingType())
      return Discard(this->emitMulf(getRoundingMode(BO), BO));
    return Discard(this->emitMul(*T, BO));
  case BO_Rem:
    return Discard(this->emitRem(*T, BO));
  case BO_Div:
    if (BO->getType()->isFloatingType())
      return Discard(this->emitDivf(getRoundingMode(BO), BO));
    return Discard(this->emitDiv(*T, BO));
  case BO_Assign:
    if (DiscardResult)
      return this->emitStorePop(*T, BO);
    return this->emitStore(*T, BO);
  case BO_And:
    return Discard(this->emitBitAnd(*T, BO));
  case BO_Or:
    return Discard(this->emitBitOr(*T, BO));
  case BO_Shl:
    return Discard(this->emitShl(*LT, *RT, BO));
  case BO_Shr:
    return Discard(this->emitShr(*LT, *RT, BO));
  case BO_Xor:
    return Discard(this->emitBitXor(*T, BO));
  case BO_LOr:
  case BO_LAnd:
    llvm_unreachable("Already handled earlier");
  default:
    return this->bail(BO);
  }

  llvm_unreachable("Unhandled binary op");
}

/// Perform addition/subtraction of a pointer and an integer or
/// subtraction of two pointers.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
  BinaryOperatorKind Op = E->getOpcode();
  const Expr *LHS = E->getLHS();
  const Expr *RHS = E->getRHS();

  if ((Op != BO_Add && Op != BO_Sub) ||
      (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
    return false;

  std::optional<PrimType> LT = classify(LHS);
  std::optional<PrimType> RT = classify(RHS);

  if (!LT || !RT)
    return false;

  if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
    if (Op != BO_Sub)
      return false;

    assert(E->getType()->isIntegerType());
    if (!visit(RHS) || !visit(LHS))
      return false;

    return this->emitSubPtr(classifyPrim(E->getType()), E);
  }

  PrimType OffsetType;
  if (LHS->getType()->isIntegerType()) {
    if (!visit(RHS) || !visit(LHS))
      return false;
    OffsetType = *LT;
  } else if (RHS->getType()->isIntegerType()) {
    if (!visit(LHS) || !visit(RHS))
      return false;
    OffsetType = *RT;
  } else {
    return false;
  }

  if (Op == BO_Add)
    return this->emitAddOffset(OffsetType, E);
  else if (Op == BO_Sub)
    return this->emitSubOffset(OffsetType, E);

  return this->bail(E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
  assert(E->isLogicalOp());
  BinaryOperatorKind Op = E->getOpcode();
  const Expr *LHS = E->getLHS();
  const Expr *RHS = E->getRHS();

  if (Op == BO_LOr) {
    // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
    LabelTy LabelTrue = this->getLabel();
    LabelTy LabelEnd = this->getLabel();

    if (!this->visit(LHS))
      return false;
    if (!this->jumpTrue(LabelTrue))
      return false;

    if (!this->visit(RHS))
      return false;
    if (!this->jump(LabelEnd))
      return false;

    this->emitLabel(LabelTrue);
    this->emitConstBool(true, E);
    this->fallthrough(LabelEnd);
    this->emitLabel(LabelEnd);

    if (DiscardResult)
      return this->emitPopBool(E);

    return true;
  }

  // Logical AND.
  // Visit LHS. Only visit RHS if LHS was TRUE.
  LabelTy LabelFalse = this->getLabel();
  LabelTy LabelEnd = this->getLabel();

  if (!this->visit(LHS))
    return false;
  if (!this->jumpFalse(LabelFalse))
    return false;

  if (!this->visit(RHS))
    return false;
  if (!this->jump(LabelEnd))
    return false;

  this->emitLabel(LabelFalse);
  this->emitConstBool(false, E);
  this->fallthrough(LabelEnd);
  this->emitLabel(LabelEnd);

  if (DiscardResult)
    return this->emitPopBool(E);

  return true;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
  std::optional<PrimType> T = classify(E);

  if (!T)
    return false;

  return this->visitZeroInitializer(E->getType(), E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArraySubscriptExpr(
    const ArraySubscriptExpr *E) {
  const Expr *Base = E->getBase();
  const Expr *Index = E->getIdx();
  PrimType IndexT = classifyPrim(Index->getType());

  // Take pointer of LHS, add offset from RHS.
  // What's left on the stack after this is a pointer.
  if (!this->visit(Base))
    return false;

  if (!this->visit(Index))
    return false;

  if (!this->emitArrayElemPtrPop(IndexT, E))
    return false;

  if (DiscardResult)
    return this->emitPopPtr(E);

  return true;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitInitListExpr(const InitListExpr *E) {
  for (const Expr *Init : E->inits()) {
    if (!this->visit(Init))
      return false;
  }
  return true;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitSubstNonTypeTemplateParmExpr(
    const SubstNonTypeTemplateParmExpr *E) {
  return this->visit(E->getReplacement());
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
  // TODO: Check if the ConstantExpr already has a value set and if so,
  //   use that instead of evaluating it again.
  return this->visit(E->getSubExpr());
}

static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
                             UnaryExprOrTypeTrait Kind) {
  bool AlignOfReturnsPreferred =
      ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;

  // C++ [expr.alignof]p3:
  //     When alignof is applied to a reference type, the result is the
  //     alignment of the referenced type.
  if (const auto *Ref = T->getAs<ReferenceType>())
    T = Ref->getPointeeType();

  // __alignof is defined to return the preferred alignment.
  // Before 8, clang returned the preferred alignment for alignof and
  // _Alignof as well.
  if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
    return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));

  return ASTCtx.getTypeAlignInChars(T);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryExprOrTypeTraitExpr(
    const UnaryExprOrTypeTraitExpr *E) {
  UnaryExprOrTypeTrait Kind = E->getKind();
  ASTContext &ASTCtx = Ctx.getASTContext();

  if (Kind == UETT_SizeOf) {
    QualType ArgType = E->getTypeOfArgument();
    CharUnits Size;
    if (ArgType->isVoidType() || ArgType->isFunctionType())
      Size = CharUnits::One();
    else {
      if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
        return false;

      Size = ASTCtx.getTypeSizeInChars(ArgType);
    }

    return this->emitConst(Size.getQuantity(), E);
  }

  if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
    CharUnits Size;

    if (E->isArgumentType()) {
      QualType ArgType = E->getTypeOfArgument();

      Size = AlignOfType(ArgType, ASTCtx, Kind);
    } else {
      // Argument is an expression, not a type.
      const Expr *Arg = E->getArgumentExpr()->IgnoreParens();

      // The kinds of expressions that we have special-case logic here for
      // should be kept up to date with the special checks for those
      // expressions in Sema.

      // alignof decl is always accepted, even if it doesn't make sense: we
      // default to 1 in those cases.
      if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
        Size = ASTCtx.getDeclAlign(DRE->getDecl(),
                                   /*RefAsPointee*/ true);
      else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
        Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
                                   /*RefAsPointee*/ true);
      else
        Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
    }

    return this->emitConst(Size.getQuantity(), E);
  }

  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitMemberExpr(const MemberExpr *E) {
  if (DiscardResult)
    return true;

  // 'Base.Member'
  const Expr *Base = E->getBase();
  const ValueDecl *Member = E->getMemberDecl();

  if (!this->visit(Base))
    return false;

  // Base above gives us a pointer on the stack.
  // TODO: Implement non-FieldDecl members.
  if (const auto *FD = dyn_cast<FieldDecl>(Member)) {
    const RecordDecl *RD = FD->getParent();
    const Record *R = getRecord(RD);
    const Record::Field *F = R->getField(FD);
    // Leave a pointer to the field on the stack.
    if (F->Decl->getType()->isReferenceType())
      return this->emitGetFieldPop(PT_Ptr, F->Offset, E);
    return this->emitGetPtrField(F->Offset, E);
  }

  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArrayInitIndexExpr(
    const ArrayInitIndexExpr *E) {
  // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
  // stand-alone, e.g. via EvaluateAsInt().
  if (!ArrayIndex)
    return false;
  return this->emitConst(*ArrayIndex, E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
  return this->visit(E->getSourceExpr());
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitAbstractConditionalOperator(
    const AbstractConditionalOperator *E) {
  return this->visitConditional(
      E, [this](const Expr *E) { return this->visit(E); });
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitStringLiteral(const StringLiteral *E) {
  unsigned StringIndex = P.createGlobalString(E);
  return this->emitGetPtrGlobal(StringIndex, E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCharacterLiteral(
    const CharacterLiteral *E) {
  return this->emitConst(E->getValue(), E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitFloatCompoundAssignOperator(
    const CompoundAssignOperator *E) {
  assert(E->getType()->isFloatingType());

  const Expr *LHS = E->getLHS();
  const Expr *RHS = E->getRHS();
  llvm::RoundingMode RM = getRoundingMode(E);
  QualType LHSComputationType = E->getComputationLHSType();
  QualType ResultType = E->getComputationResultType();
  std::optional<PrimType> LT = classify(LHSComputationType);
  std::optional<PrimType> RT = classify(ResultType);

  if (!LT || !RT)
    return false;

  // C++17 onwards require that we evaluate the RHS first.
  // Compute RHS and save it in a temporary variable so we can
  // load it again later.
  if (!visit(RHS))
    return false;

  unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
  if (!this->emitSetLocal(*RT, TempOffset, E))
    return false;

  // First, visit LHS.
  if (!visit(LHS))
    return false;
  if (!this->emitLoad(*LT, E))
    return false;

  // If necessary, convert LHS to its computation type.
  if (LHS->getType() != LHSComputationType) {
    const auto *TargetSemantics = &Ctx.getFloatSemantics(LHSComputationType);

    if (!this->emitCastFP(TargetSemantics, RM, E))
      return false;
  }

  // Now load RHS.
  if (!this->emitGetLocal(*RT, TempOffset, E))
    return false;

  switch (E->getOpcode()) {
  case BO_AddAssign:
    if (!this->emitAddf(RM, E))
      return false;
    break;
  case BO_SubAssign:
    if (!this->emitSubf(RM, E))
      return false;
    break;
  case BO_MulAssign:
    if (!this->emitMulf(RM, E))
      return false;
    break;
  case BO_DivAssign:
    if (!this->emitDivf(RM, E))
      return false;
    break;
  default:
    return false;
  }

  // If necessary, convert result to LHS's type.
  if (LHS->getType() != ResultType) {
    const auto *TargetSemantics = &Ctx.getFloatSemantics(LHS->getType());

    if (!this->emitCastFP(TargetSemantics, RM, E))
      return false;
  }

  if (DiscardResult)
    return this->emitStorePop(*LT, E);
  return this->emitStore(*LT, E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitPointerCompoundAssignOperator(
    const CompoundAssignOperator *E) {
  BinaryOperatorKind Op = E->getOpcode();
  const Expr *LHS = E->getLHS();
  const Expr *RHS = E->getRHS();
  std::optional<PrimType> LT = classify(LHS->getType());
  std::optional<PrimType> RT = classify(RHS->getType());

  if (Op != BO_AddAssign && Op != BO_SubAssign)
    return false;

  if (!LT || !RT)
    return false;
  assert(*LT == PT_Ptr);

  if (!visit(LHS))
    return false;

  if (!this->emitLoadPtr(LHS))
    return false;

  if (!visit(RHS))
    return false;

  if (Op == BO_AddAssign)
    this->emitAddOffset(*RT, E);
  else
    this->emitSubOffset(*RT, E);

  if (DiscardResult)
    return this->emitStorePopPtr(E);
  return this->emitStorePtr(E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCompoundAssignOperator(
    const CompoundAssignOperator *E) {

  // Handle floating point operations separately here, since they
  // require special care.
  if (E->getType()->isFloatingType())
    return VisitFloatCompoundAssignOperator(E);

  if (E->getType()->isPointerType())
    return VisitPointerCompoundAssignOperator(E);

  const Expr *LHS = E->getLHS();
  const Expr *RHS = E->getRHS();
  std::optional<PrimType> LHSComputationT =
      classify(E->getComputationLHSType());
  std::optional<PrimType> LT = classify(LHS->getType());
  std::optional<PrimType> RT = classify(E->getComputationResultType());
  std::optional<PrimType> ResultT = classify(E->getType());

  if (!LT || !RT || !ResultT || !LHSComputationT)
    return false;

  assert(!E->getType()->isPointerType() && "Handled above");
  assert(!E->getType()->isFloatingType() && "Handled above");

  // C++17 onwards require that we evaluate the RHS first.
  // Compute RHS and save it in a temporary variable so we can
  // load it again later.
  // FIXME: Compound assignments are unsequenced in C, so we might
  //   have to figure out how to reject them.
  if (!visit(RHS))
    return false;

  unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);

  if (!this->emitSetLocal(*RT, TempOffset, E))
    return false;

  // Get LHS pointer, load its value and cast it to the
  // computation type if necessary.
  if (!visit(LHS))
    return false;
  if (!this->emitLoad(*LT, E))
    return false;
  if (*LT != *LHSComputationT) {
    if (!this->emitCast(*LT, *LHSComputationT, E))
      return false;
  }

  // Get the RHS value on the stack.
  if (!this->emitGetLocal(*RT, TempOffset, E))
    return false;

  // Perform operation.
  switch (E->getOpcode()) {
  case BO_AddAssign:
    if (!this->emitAdd(*LHSComputationT, E))
      return false;
    break;
  case BO_SubAssign:
    if (!this->emitSub(*LHSComputationT, E))
      return false;
    break;
  case BO_MulAssign:
    if (!this->emitMul(*LHSComputationT, E))
      return false;
    break;
  case BO_DivAssign:
    if (!this->emitDiv(*LHSComputationT, E))
      return false;
    break;
  case BO_RemAssign:
    if (!this->emitRem(*LHSComputationT, E))
      return false;
    break;
  case BO_ShlAssign:
    if (!this->emitShl(*LHSComputationT, *RT, E))
      return false;
    break;
  case BO_ShrAssign:
    if (!this->emitShr(*LHSComputationT, *RT, E))
      return false;
    break;
  case BO_AndAssign:
    if (!this->emitBitAnd(*LHSComputationT, E))
      return false;
    break;
  case BO_XorAssign:
    if (!this->emitBitXor(*LHSComputationT, E))
      return false;
    break;
  case BO_OrAssign:
    if (!this->emitBitOr(*LHSComputationT, E))
      return false;
    break;
  default:
    llvm_unreachable("Unimplemented compound assign operator");
  }

  // And now cast from LHSComputationT to ResultT.
  if (*ResultT != *LHSComputationT) {
    if (!this->emitCast(*LHSComputationT, *ResultT, E))
      return false;
  }

  // And store the result in LHS.
  if (DiscardResult)
    return this->emitStorePop(*ResultT, E);
  return this->emitStore(*ResultT, E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitExprWithCleanups(
    const ExprWithCleanups *E) {
  const Expr *SubExpr = E->getSubExpr();

  assert(E->getNumObjects() == 0 && "TODO: Implement cleanups");
  if (DiscardResult)
    return this->discard(SubExpr);

  return this->visit(SubExpr);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitMaterializeTemporaryExpr(
    const MaterializeTemporaryExpr *E) {
  const Expr *SubExpr = E->getSubExpr();
  std::optional<PrimType> SubExprT = classify(SubExpr);

  if (E->getStorageDuration() == SD_Static) {
    if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
      const LifetimeExtendedTemporaryDecl *TempDecl =
          E->getLifetimeExtendedTemporaryDecl();

      if (!this->visitInitializer(SubExpr))
        return false;

      if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
        return false;
      return this->emitGetPtrGlobal(*GlobalIndex, E);
    }

    return false;
  }

  // For everyhing else, use local variables.
  if (SubExprT) {
    if (std::optional<unsigned> LocalIndex = allocateLocalPrimitive(
            SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true)) {
      if (!this->visitInitializer(SubExpr))
        return false;
      this->emitSetLocal(*SubExprT, *LocalIndex, E);
      return this->emitGetPtrLocal(*LocalIndex, E);
    }
  } else {
    if (std::optional<unsigned> LocalIndex =
            allocateLocal(SubExpr, /*IsExtended=*/true)) {
      if (!this->emitGetPtrLocal(*LocalIndex, E))
        return false;
      return this->visitInitializer(SubExpr);
    }
  }
  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCompoundLiteralExpr(
    const CompoundLiteralExpr *E) {
  std::optional<PrimType> T = classify(E->getType());
  const Expr *Init = E->getInitializer();
  if (E->isFileScope()) {
    if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
      if (classify(E->getType()))
        return this->visit(Init);
      if (!this->emitGetPtrGlobal(*GlobalIndex, E))
        return false;
      return this->visitInitializer(Init);
    }
  }

  // Otherwise, use a local variable.
  if (T) {
    // For primitive types, we just visit the initializer.
    return this->visit(Init);
  } else {
    if (std::optional<unsigned> LocalIndex = allocateLocal(Init)) {
      if (!this->emitGetPtrLocal(*LocalIndex, E))
        return false;
      return this->visitInitializer(Init);
    }
  }

  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
  return this->emitConstBool(E->getValue(), E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
  // XXX We assume here that a pointer-to-initialize is on the stack.

  const Record *R = P.getOrCreateRecord(E->getLambdaClass());

  auto *CaptureInitIt = E->capture_init_begin();
  // Initialize all fields (which represent lambda captures) of the
  // record with their initializers.
  for (const Record::Field &F : R->fields()) {
    const Expr *Init = *CaptureInitIt;
    ++CaptureInitIt;

    if (std::optional<PrimType> T = classify(Init)) {
      if (!this->visit(Init))
        return false;

      if (!this->emitSetField(*T, F.Offset, E))
        return false;
    } else {
      if (!this->emitDupPtr(E))
        return false;

      if (!this->emitGetPtrField(F.Offset, E))
        return false;

      if (!this->visitInitializer(Init))
        return false;

      if (!this->emitPopPtr(E))
        return false;
    }
  }

  return true;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
  if (DiscardResult)
    return true;

  return this->visit(E->getFunctionName());
}

template <class Emitter> bool ByteCodeExprGen<Emitter>::discard(const Expr *E) {
  if (E->containsErrors())
    return false;

  OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true);
  return this->Visit(E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::visit(const Expr *E) {
  if (E->containsErrors())
    return false;

  OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false);
  return this->Visit(E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitBool(const Expr *E) {
  if (std::optional<PrimType> T = classify(E->getType())) {
    return visit(E);
  } else {
    return this->bail(E);
  }
}

/// Visit a conditional operator, i.e. `A ? B : C`.
/// \V determines what function to call for the B and C expressions.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitConditional(
    const AbstractConditionalOperator *E,
    llvm::function_ref<bool(const Expr *)> V) {

  const Expr *Condition = E->getCond();
  const Expr *TrueExpr = E->getTrueExpr();
  const Expr *FalseExpr = E->getFalseExpr();

  LabelTy LabelEnd = this->getLabel();   // Label after the operator.
  LabelTy LabelFalse = this->getLabel(); // Label for the false expr.

  if (!this->visit(Condition))
    return false;

  // C special case: Convert to bool because our jump ops need that.
  // TODO: We probably want this to be done in visitBool().
  if (std::optional<PrimType> CondT = classify(Condition->getType());
      CondT && CondT != PT_Bool) {
    if (!this->emitCast(*CondT, PT_Bool, E))
      return false;
  }

  if (!this->jumpFalse(LabelFalse))
    return false;

  if (!V(TrueExpr))
    return false;
  if (!this->jump(LabelEnd))
    return false;

  this->emitLabel(LabelFalse);

  if (!V(FalseExpr))
    return false;

  this->fallthrough(LabelEnd);
  this->emitLabel(LabelEnd);

  return true;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitZeroInitializer(QualType QT,
                                                    const Expr *E) {
  // FIXME: We need the QualType to get the float semantics, but that means we
  //   classify it over and over again in array situations.
  PrimType T = classifyPrim(QT);

  switch (T) {
  case PT_Bool:
    return this->emitZeroBool(E);
  case PT_Sint8:
    return this->emitZeroSint8(E);
  case PT_Uint8:
    return this->emitZeroUint8(E);
  case PT_Sint16:
    return this->emitZeroSint16(E);
  case PT_Uint16:
    return this->emitZeroUint16(E);
  case PT_Sint32:
    return this->emitZeroSint32(E);
  case PT_Uint32:
    return this->emitZeroUint32(E);
  case PT_Sint64:
    return this->emitZeroSint64(E);
  case PT_Uint64:
    return this->emitZeroUint64(E);
  case PT_Ptr:
    return this->emitNullPtr(E);
  case PT_FnPtr:
    return this->emitNullFnPtr(E);
  case PT_Float: {
    return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
  }
  }
  llvm_unreachable("unknown primitive type");
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereference(
    const Expr *LV, DerefKind AK, llvm::function_ref<bool(PrimType)> Direct,
    llvm::function_ref<bool(PrimType)> Indirect) {
  if (std::optional<PrimType> T = classify(LV->getType())) {
    if (!LV->refersToBitField()) {
      // Only primitive, non bit-field types can be dereferenced directly.
      if (const auto *DE = dyn_cast<DeclRefExpr>(LV)) {
        if (!DE->getDecl()->getType()->isReferenceType()) {
          if (const auto *PD = dyn_cast<ParmVarDecl>(DE->getDecl()))
            return dereferenceParam(LV, *T, PD, AK, Direct, Indirect);
          if (const auto *VD = dyn_cast<VarDecl>(DE->getDecl()))
            return dereferenceVar(LV, *T, VD, AK, Direct, Indirect);
        }
      }
    }

    if (!visit(LV))
      return false;
    return Indirect(*T);
  }

  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceParam(
    const Expr *LV, PrimType T, const ParmVarDecl *PD, DerefKind AK,
    llvm::function_ref<bool(PrimType)> Direct,
    llvm::function_ref<bool(PrimType)> Indirect) {
  auto It = this->Params.find(PD);
  if (It != this->Params.end()) {
    unsigned Idx = It->second;
    switch (AK) {
    case DerefKind::Read:
      return DiscardResult ? true : this->emitGetParam(T, Idx, LV);

    case DerefKind::Write:
      if (!Direct(T))
        return false;
      if (!this->emitSetParam(T, Idx, LV))
        return false;
      return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);

    case DerefKind::ReadWrite:
      if (!this->emitGetParam(T, Idx, LV))
        return false;
      if (!Direct(T))
        return false;
      if (!this->emitSetParam(T, Idx, LV))
        return false;
      return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
    }
    return true;
  }

  // If the param is a pointer, we can dereference a dummy value.
  if (!DiscardResult && T == PT_Ptr && AK == DerefKind::Read) {
    if (auto Idx = P.getOrCreateDummy(PD))
      return this->emitGetPtrGlobal(*Idx, PD);
    return false;
  }

  // Value cannot be produced - try to emit pointer and do stuff with it.
  return visit(LV) && Indirect(T);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceVar(
    const Expr *LV, PrimType T, const VarDecl *VD, DerefKind AK,
    llvm::function_ref<bool(PrimType)> Direct,
    llvm::function_ref<bool(PrimType)> Indirect) {
  auto It = Locals.find(VD);
  if (It != Locals.end()) {
    const auto &L = It->second;
    switch (AK) {
    case DerefKind::Read:
      if (!this->emitGetLocal(T, L.Offset, LV))
        return false;
      return DiscardResult ? this->emitPop(T, LV) : true;

    case DerefKind::Write:
      if (!Direct(T))
        return false;
      if (!this->emitSetLocal(T, L.Offset, LV))
        return false;
      return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);

    case DerefKind::ReadWrite:
      if (!this->emitGetLocal(T, L.Offset, LV))
        return false;
      if (!Direct(T))
        return false;
      if (!this->emitSetLocal(T, L.Offset, LV))
        return false;
      return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
    }
  } else if (auto Idx = P.getGlobal(VD)) {
    switch (AK) {
    case DerefKind::Read:
      if (!this->emitGetGlobal(T, *Idx, LV))
        return false;
      return DiscardResult ? this->emitPop(T, LV) : true;

    case DerefKind::Write:
      if (!Direct(T))
        return false;
      if (!this->emitSetGlobal(T, *Idx, LV))
        return false;
      return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);

    case DerefKind::ReadWrite:
      if (!this->emitGetGlobal(T, *Idx, LV))
        return false;
      if (!Direct(T))
        return false;
      if (!this->emitSetGlobal(T, *Idx, LV))
        return false;
      return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
    }
  }

  // If the declaration is a constant value, emit it here even
  // though the declaration was not evaluated in the current scope.
  // The access mode can only be read in this case.
  if (!DiscardResult && AK == DerefKind::Read) {
    if (VD->hasLocalStorage() && VD->hasInit() && !VD->isConstexpr()) {
      QualType VT = VD->getType();
      if (VT.isConstQualified() && VT->isFundamentalType())
        return this->visit(VD->getInit());
    }
  }

  // Value cannot be produced - try to emit pointer.
  return visit(LV) && Indirect(T);
}

template <class Emitter>
template <typename T>
bool ByteCodeExprGen<Emitter>::emitConst(T Value, const Expr *E) {
  switch (classifyPrim(E->getType())) {
  case PT_Sint8:
    return this->emitConstSint8(Value, E);
  case PT_Uint8:
    return this->emitConstUint8(Value, E);
  case PT_Sint16:
    return this->emitConstSint16(Value, E);
  case PT_Uint16:
    return this->emitConstUint16(Value, E);
  case PT_Sint32:
    return this->emitConstSint32(Value, E);
  case PT_Uint32:
    return this->emitConstUint32(Value, E);
  case PT_Sint64:
    return this->emitConstSint64(Value, E);
  case PT_Uint64:
    return this->emitConstUint64(Value, E);
  case PT_Bool:
    return this->emitConstBool(Value, E);
  case PT_Ptr:
  case PT_FnPtr:
  case PT_Float:
    llvm_unreachable("Invalid integral type");
    break;
  }
  llvm_unreachable("unknown primitive type");
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
  if (Value.isSigned())
    return this->emitConst(Value.getSExtValue(), E);
  return this->emitConst(Value.getZExtValue(), E);
}

template <class Emitter>
unsigned ByteCodeExprGen<Emitter>::allocateLocalPrimitive(DeclTy &&Src,
                                                          PrimType Ty,
                                                          bool IsConst,
                                                          bool IsExtended) {
  // Make sure we don't accidentally register the same decl twice.
  if (const auto *VD =
          dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
    assert(!P.getGlobal(VD));
    assert(!Locals.contains(VD));
  }

  // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
  //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
  //   or isa<MaterializeTemporaryExpr>().
  Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
                                     Src.is<const Expr *>());
  Scope::Local Local = this->createLocal(D);
  if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
    Locals.insert({VD, Local});
  VarScope->add(Local, IsExtended);
  return Local.Offset;
}

template <class Emitter>
std::optional<unsigned>
ByteCodeExprGen<Emitter>::allocateLocal(DeclTy &&Src, bool IsExtended) {
  // Make sure we don't accidentally register the same decl twice.
  if (const auto *VD =
          dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
    assert(!P.getGlobal(VD));
    assert(!Locals.contains(VD));
  }

  QualType Ty;
  const ValueDecl *Key = nullptr;
  const Expr *Init = nullptr;
  bool IsTemporary = false;
  if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
    Key = VD;
    Ty = VD->getType();

    if (const auto *VarD = dyn_cast<VarDecl>(VD))
      Init = VarD->getInit();
  }
  if (auto *E = Src.dyn_cast<const Expr *>()) {
    IsTemporary = true;
    Ty = E->getType();
  }

  Descriptor *D = P.createDescriptor(
      Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
      IsTemporary, /*IsMutable=*/false, Init);
  if (!D)
    return {};

  Scope::Local Local = this->createLocal(D);
  if (Key)
    Locals.insert({Key, Local});
  VarScope->add(Local, IsExtended);
  return Local.Offset;
}

// NB: When calling this function, we have a pointer to the
//   array-to-initialize on the stack.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitArrayInitializer(const Expr *Initializer) {
  assert(Initializer->getType()->isArrayType());

  // TODO: Fillers?
  if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
    unsigned ElementIndex = 0;
    for (const Expr *Init : InitList->inits()) {
      if (std::optional<PrimType> T = classify(Init->getType())) {
        // Visit the primitive element like normal.
        if (!this->visit(Init))
          return false;
        if (!this->emitInitElem(*T, ElementIndex, Init))
          return false;
      } else {
        // Advance the pointer currently on the stack to the given
        // dimension.
        if (!this->emitConstUint32(ElementIndex, Init))
          return false;
        if (!this->emitArrayElemPtrUint32(Init))
          return false;
        if (!visitInitializer(Init))
          return false;
        if (!this->emitPopPtr(Init))
          return false;
      }

      ++ElementIndex;
    }
    return true;
  } else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
    return this->visitInitializer(DIE->getExpr());
  } else if (const auto *AILE = dyn_cast<ArrayInitLoopExpr>(Initializer)) {
    // TODO: This compiles to quite a lot of bytecode if the array is larger.
    //   Investigate compiling this to a loop, or at least try to use
    //   the AILE's Common expr.
    const Expr *SubExpr = AILE->getSubExpr();
    size_t Size = AILE->getArraySize().getZExtValue();
    std::optional<PrimType> ElemT = classify(SubExpr->getType());

    // So, every iteration, we execute an assignment here
    // where the LHS is on the stack (the target array)
    // and the RHS is our SubExpr.
    for (size_t I = 0; I != Size; ++I) {
      ArrayIndexScope<Emitter> IndexScope(this, I);

      if (ElemT) {
        if (!this->visit(SubExpr))
          return false;
        if (!this->emitInitElem(*ElemT, I, Initializer))
          return false;
      } else {
        // Get to our array element and recurse into visitInitializer()
        if (!this->emitConstUint64(I, SubExpr))
          return false;
        if (!this->emitArrayElemPtrUint64(SubExpr))
          return false;
        if (!visitInitializer(SubExpr))
          return false;
        if (!this->emitPopPtr(Initializer))
          return false;
      }
    }
    return true;
  } else if (const auto *IVIE = dyn_cast<ImplicitValueInitExpr>(Initializer)) {
    const ArrayType *AT = IVIE->getType()->getAsArrayTypeUnsafe();
    assert(AT);
    const auto *CAT = cast<ConstantArrayType>(AT);
    size_t NumElems = CAT->getSize().getZExtValue();

    if (std::optional<PrimType> ElemT = classify(CAT->getElementType())) {
      // TODO(perf): For int and bool types, we can probably just skip this
      //   since we memset our Block*s to 0 and so we have the desired value
      //   without this.
      for (size_t I = 0; I != NumElems; ++I) {
        if (!this->visitZeroInitializer(CAT->getElementType(), Initializer))
          return false;
        if (!this->emitInitElem(*ElemT, I, Initializer))
          return false;
      }
    } else {
      assert(false && "default initializer for non-primitive type");
    }

    return true;
  } else if (const auto *Ctor = dyn_cast<CXXConstructExpr>(Initializer)) {
    const ConstantArrayType *CAT =
        Ctx.getASTContext().getAsConstantArrayType(Ctor->getType());
    assert(CAT);
    size_t NumElems = CAT->getSize().getZExtValue();
    const Function *Func = getFunction(Ctor->getConstructor());
    if (!Func || !Func->isConstexpr())
      return false;

    // FIXME(perf): We're calling the constructor once per array element here,
    //   in the old intepreter we had a special-case for trivial constructors.
    for (size_t I = 0; I != NumElems; ++I) {
      if (!this->emitConstUint64(I, Initializer))
        return false;
      if (!this->emitArrayElemPtrUint64(Initializer))
        return false;

      // Constructor arguments.
      for (const auto *Arg : Ctor->arguments()) {
        if (!this->visit(Arg))
          return false;
      }

      if (!this->emitCall(Func, Initializer))
        return false;
    }
    return true;
  } else if (const auto *SL = dyn_cast<StringLiteral>(Initializer)) {
    const ConstantArrayType *CAT =
        Ctx.getASTContext().getAsConstantArrayType(SL->getType());
    assert(CAT && "a string literal that's not a constant array?");

    // If the initializer string is too long, a diagnostic has already been
    // emitted. Read only the array length from the string literal.
    unsigned N =
        std::min(unsigned(CAT->getSize().getZExtValue()), SL->getLength());
    size_t CharWidth = SL->getCharByteWidth();

    for (unsigned I = 0; I != N; ++I) {
      uint32_t CodeUnit = SL->getCodeUnit(I);

      if (CharWidth == 1) {
        this->emitConstSint8(CodeUnit, SL);
        this->emitInitElemSint8(I, SL);
      } else if (CharWidth == 2) {
        this->emitConstUint16(CodeUnit, SL);
        this->emitInitElemUint16(I, SL);
      } else if (CharWidth == 4) {
        this->emitConstUint32(CodeUnit, SL);
        this->emitInitElemUint32(I, SL);
      } else {
        llvm_unreachable("unsupported character width");
      }
    }
    return true;
  } else if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Initializer)) {
    return visitInitializer(CLE->getInitializer());
  } else if (const auto *EWC = dyn_cast<ExprWithCleanups>(Initializer)) {
    return visitInitializer(EWC->getSubExpr());
  }

  assert(false && "Unknown expression for array initialization");
  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitRecordInitializer(const Expr *Initializer) {
  Initializer = Initializer->IgnoreParenImpCasts();
  assert(Initializer->getType()->isRecordType());

  if (const auto CtorExpr = dyn_cast<CXXConstructExpr>(Initializer)) {
    const Function *Func = getFunction(CtorExpr->getConstructor());

    if (!Func)
      return false;

    // The This pointer is already on the stack because this is an initializer,
    // but we need to dup() so the call() below has its own copy.
    if (!this->emitDupPtr(Initializer))
      return false;

    // Constructor arguments.
    for (const auto *Arg : CtorExpr->arguments()) {
      if (!this->visit(Arg))
        return false;
    }

    return this->emitCall(Func, Initializer);
  } else if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
    const Record *R = getRecord(InitList->getType());

    unsigned InitIndex = 0;
    for (const Expr *Init : InitList->inits()) {

      if (!this->emitDupPtr(Initializer))
        return false;

      if (std::optional<PrimType> T = classify(Init)) {
        const Record::Field *FieldToInit = R->getField(InitIndex);
        if (!this->visit(Init))
          return false;

        if (!this->emitInitField(*T, FieldToInit->Offset, Initializer))
          return false;

        if (!this->emitPopPtr(Initializer))
          return false;
        ++InitIndex;
      } else {
        // Initializer for a direct base class.
        if (const Record::Base *B = R->getBase(Init->getType())) {
          if (!this->emitGetPtrBasePop(B->Offset, Init))
            return false;

          if (!this->visitInitializer(Init))
            return false;

          if (!this->emitPopPtr(Initializer))
            return false;
          // Base initializers don't increase InitIndex, since they don't count
          // into the Record's fields.
        } else {
          const Record::Field *FieldToInit = R->getField(InitIndex);
          // Non-primitive case. Get a pointer to the field-to-initialize
          // on the stack and recurse into visitInitializer().
          if (!this->emitGetPtrField(FieldToInit->Offset, Init))
            return false;

          if (!this->visitInitializer(Init))
            return false;

          if (!this->emitPopPtr(Initializer))
            return false;
          ++InitIndex;
        }
      }
    }

    return true;
  } else if (const CallExpr *CE = dyn_cast<CallExpr>(Initializer)) {
    // RVO functions expect a pointer to initialize on the stack.
    // Dup our existing pointer so it has its own copy to use.
    if (!this->emitDupPtr(Initializer))
      return false;

    return this->visit(CE);
  } else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
    return this->visitInitializer(DIE->getExpr());
  } else if (const auto *CE = dyn_cast<CastExpr>(Initializer)) {
    return this->visitInitializer(CE->getSubExpr());
  } else if (const auto *CE = dyn_cast<CXXBindTemporaryExpr>(Initializer)) {
    return this->visitInitializer(CE->getSubExpr());
  } else if (const auto *ACO =
                 dyn_cast<AbstractConditionalOperator>(Initializer)) {
    return this->visitConditional(
        ACO, [this](const Expr *E) { return this->visitRecordInitializer(E); });
  } else if (const auto *LE = dyn_cast<LambdaExpr>(Initializer)) {
    return this->VisitLambdaExpr(LE);
  }

  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitInitializer(const Expr *Initializer) {
  QualType InitializerType = Initializer->getType();

  if (InitializerType->isArrayType())
    return visitArrayInitializer(Initializer);

  if (InitializerType->isRecordType())
    return visitRecordInitializer(Initializer);

  // Otherwise, visit the expression like normal.
  return this->visit(Initializer);
}

template <class Emitter>
const RecordType *ByteCodeExprGen<Emitter>::getRecordTy(QualType Ty) {
  if (const PointerType *PT = dyn_cast<PointerType>(Ty))
    return PT->getPointeeType()->getAs<RecordType>();
  else
    return Ty->getAs<RecordType>();
}

template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(QualType Ty) {
  if (auto *RecordTy = getRecordTy(Ty)) {
    return getRecord(RecordTy->getDecl());
  }
  return nullptr;
}

template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(const RecordDecl *RD) {
  return P.getOrCreateRecord(RD);
}

template <class Emitter>
const Function *ByteCodeExprGen<Emitter>::getFunction(const FunctionDecl *FD) {
  assert(FD);
  const Function *Func = P.getFunction(FD);
  bool IsBeingCompiled = Func && !Func->isFullyCompiled();
  bool WasNotDefined = Func && !Func->isConstexpr() && !Func->hasBody();

  if (IsBeingCompiled)
    return Func;

  if (!Func || WasNotDefined) {
    if (auto R = ByteCodeStmtGen<ByteCodeEmitter>(Ctx, P).compileFunc(FD))
      Func = *R;
    else {
      llvm::consumeError(R.takeError());
      return nullptr;
    }
  }

  return Func;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitExpr(const Expr *Exp) {
  ExprScope<Emitter> RootScope(this);
  if (!visit(Exp))
    return false;

  if (std::optional<PrimType> T = classify(Exp))
    return this->emitRet(*T, Exp);
  else
    return this->emitRetValue(Exp);
}

/// Toplevel visitDecl().
/// We get here from evaluateAsInitializer().
/// We need to evaluate the initializer and return its value.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitDecl(const VarDecl *VD) {
  assert(!VD->isInvalidDecl() && "Trying to constant evaluate an invalid decl");

  // Create and initialize the variable.
  if (!this->visitVarDecl(VD))
    return false;

  // Get a pointer to the variable
  if (Context::shouldBeGloballyIndexed(VD)) {
    auto GlobalIndex = P.getGlobal(VD);
    assert(GlobalIndex); // visitVarDecl() didn't return false.
    if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
      return false;
  } else {
    auto Local = Locals.find(VD);
    assert(Local != Locals.end()); // Same here.
    if (!this->emitGetPtrLocal(Local->second.Offset, VD))
      return false;
  }

  // Return the value
  if (std::optional<PrimType> VarT = classify(VD->getType())) {
    if (!this->emitLoadPop(*VarT, VD))
      return false;

    return this->emitRet(*VarT, VD);
  }

  return this->emitRetValue(VD);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitVarDecl(const VarDecl *VD) {
  // We don't know what to do with these, so just return false.
  if (VD->getType().isNull())
    return false;

  const Expr *Init = VD->getInit();
  std::optional<PrimType> VarT = classify(VD->getType());

  if (Context::shouldBeGloballyIndexed(VD)) {
    // We've already seen and initialized this global.
    if (P.getGlobal(VD))
      return true;

    std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);

    if (!GlobalIndex)
      return this->bail(VD);

    assert(Init);
    {
      DeclScope<Emitter> LocalScope(this, VD);

      if (VarT) {
        if (!this->visit(Init))
          return false;
        return this->emitInitGlobal(*VarT, *GlobalIndex, VD);
      }
      return this->visitGlobalInitializer(Init, *GlobalIndex);
    }
  } else {
    VariableScope<Emitter> LocalScope(this);
    if (VarT) {
      unsigned Offset = this->allocateLocalPrimitive(
          VD, *VarT, VD->getType().isConstQualified());
      if (Init) {
        // Compile the initializer in its own scope.
        ExprScope<Emitter> Scope(this);
        if (!this->visit(Init))
          return false;

        return this->emitSetLocal(*VarT, Offset, VD);
      }
    } else {
      if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
        if (Init)
          return this->visitLocalInitializer(Init, *Offset);
      }
    }
    return true;
  }

  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) {
  const Function *Func = getFunction(E->getDirectCallee());
  if (!Func)
    return false;

  // Put arguments on the stack.
  for (const auto *Arg : E->arguments()) {
    if (!this->visit(Arg))
      return false;
  }

  if (!this->emitCallBI(Func, E))
    return false;

  QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
  if (DiscardResult && !ReturnType->isVoidType()) {
    PrimType T = classifyPrim(ReturnType);
    return this->emitPop(T, E);
  }

  return true;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCallExpr(const CallExpr *E) {
  if (E->getBuiltinCallee())
    return VisitBuiltinCallExpr(E);

  QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
  std::optional<PrimType> T = classify(ReturnType);
  bool HasRVO = !ReturnType->isVoidType() && !T;

  if (HasRVO && DiscardResult) {
    // If we need to discard the return value but the function returns its
    // value via an RVO pointer, we need to create one such pointer just
    // for this call.
    if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
      if (!this->emitGetPtrLocal(*LocalIndex, E))
        return false;
    }
  }

  // Put arguments on the stack.
  for (const auto *Arg : E->arguments()) {
    if (!this->visit(Arg))
      return false;
  }

  if (const FunctionDecl *FuncDecl = E->getDirectCallee()) {
    const Function *Func = getFunction(FuncDecl);
    if (!Func)
      return false;
    // If the function is being compiled right now, this is a recursive call.
    // In that case, the function can't be valid yet, even though it will be
    // later.
    // If the function is already fully compiled but not constexpr, it was
    // found to be faulty earlier on, so bail out.
    if (Func->isFullyCompiled() && !Func->isConstexpr())
      return false;

    assert(HasRVO == Func->hasRVO());

    bool HasQualifier = false;
    if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
      HasQualifier = ME->hasQualifier();

    bool IsVirtual = false;
    if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
      IsVirtual = MD->isVirtual();

    // In any case call the function. The return value will end up on the stack
    // and if the function has RVO, we already have the pointer on the stack to
    // write the result into.
    if (IsVirtual && !HasQualifier) {
      if (!this->emitCallVirt(Func, E))
        return false;
    } else {
      if (!this->emitCall(Func, E))
        return false;
    }
  } else {
    // Indirect call. Visit the callee, which will leave a FunctionPointer on
    // the stack. Cleanup of the returned value if necessary will be done after
    // the function call completed.
    if (!this->visit(E->getCallee()))
      return false;

    if (!this->emitCallPtr(E))
      return false;
  }

  // Cleanup for discarded return values.
  if (DiscardResult && !ReturnType->isVoidType() && T)
    return this->emitPop(*T, E);

  return true;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXMemberCallExpr(
    const CXXMemberCallExpr *E) {
  // Get a This pointer on the stack.
  if (!this->visit(E->getImplicitObjectArgument()))
    return false;

  return VisitCallExpr(E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultInitExpr(
    const CXXDefaultInitExpr *E) {
  assert(classify(E->getType()));
  return this->visit(E->getExpr());
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultArgExpr(
    const CXXDefaultArgExpr *E) {
  return this->visit(E->getExpr());
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXBoolLiteralExpr(
    const CXXBoolLiteralExpr *E) {
  if (DiscardResult)
    return true;

  return this->emitConstBool(E->getValue(), E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXNullPtrLiteralExpr(
    const CXXNullPtrLiteralExpr *E) {
  if (DiscardResult)
    return true;

  return this->emitNullPtr(E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
  if (DiscardResult)
    return true;
  return this->emitThis(E);
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
  const Expr *SubExpr = E->getSubExpr();
  std::optional<PrimType> T = classify(SubExpr->getType());

  switch (E->getOpcode()) {
  case UO_PostInc: { // x++
    if (!this->visit(SubExpr))
      return false;

    if (T == PT_Ptr) {
      if (!this->emitIncPtr(E))
        return false;

      return DiscardResult ? this->emitPopPtr(E) : true;
    }

    if (T == PT_Float) {
      return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E)
                           : this->emitIncf(getRoundingMode(E), E);
    }

    return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
  }
  case UO_PostDec: { // x--
    if (!this->visit(SubExpr))
      return false;

    if (T == PT_Ptr) {
      if (!this->emitDecPtr(E))
        return false;

      return DiscardResult ? this->emitPopPtr(E) : true;
    }

    if (T == PT_Float) {
      return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E)
                           : this->emitDecf(getRoundingMode(E), E);
    }

    return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
  }
  case UO_PreInc: { // ++x
    if (!this->visit(SubExpr))
      return false;

    if (T == PT_Ptr) {
      this->emitLoadPtr(E);
      this->emitConstUint8(1, E);
      this->emitAddOffsetUint8(E);
      return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
    }

    // Post-inc and pre-inc are the same if the value is to be discarded.
    if (DiscardResult) {
      if (T == PT_Float)
        return this->emitIncfPop(getRoundingMode(E), E);
      return this->emitIncPop(*T, E);
    }

    if (T == PT_Float) {
      const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
      this->emitLoadFloat(E);
      this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E);
      this->emitAddf(getRoundingMode(E), E);
      return this->emitStoreFloat(E);
    }
    this->emitLoad(*T, E);
    this->emitConst(1, E);
    this->emitAdd(*T, E);
    return this->emitStore(*T, E);
  }
  case UO_PreDec: { // --x
    if (!this->visit(SubExpr))
      return false;

    if (T == PT_Ptr) {
      this->emitLoadPtr(E);
      this->emitConstUint8(1, E);
      this->emitSubOffsetUint8(E);
      return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
    }

    // Post-dec and pre-dec are the same if the value is to be discarded.
    if (DiscardResult) {
      if (T == PT_Float)
        return this->emitDecfPop(getRoundingMode(E), E);
      return this->emitDecPop(*T, E);
    }

    if (T == PT_Float) {
      const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
      this->emitLoadFloat(E);
      this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E);
      this->emitSubf(getRoundingMode(E), E);
      return this->emitStoreFloat(E);
    }
    this->emitLoad(*T, E);
    this->emitConst(1, E);
    this->emitSub(*T, E);
    return this->emitStore(*T, E);
  }
  case UO_LNot: // !x
    if (!this->visit(SubExpr))
      return false;
    // The Inv doesn't change anything, so skip it if we don't need the result.
    return DiscardResult ? this->emitPop(*T, E) : this->emitInvBool(E);
  case UO_Minus: // -x
    if (!this->visit(SubExpr))
      return false;
    return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
  case UO_Plus:  // +x
    if (!this->visit(SubExpr)) // noop
      return false;
    return DiscardResult ? this->emitPop(*T, E) : true;
  case UO_AddrOf: // &x
    // We should already have a pointer when we get here.
    if (!this->visit(SubExpr))
      return false;
    return DiscardResult ? this->emitPop(*T, E) : true;
  case UO_Deref:  // *x
    return dereference(
        SubExpr, DerefKind::Read,
        [](PrimType) {
          llvm_unreachable("Dereferencing requires a pointer");
          return false;
        },
        [this, E](PrimType T) {
          return DiscardResult ? this->emitPop(T, E) : true;
        });
  case UO_Not:    // ~x
    if (!this->visit(SubExpr))
      return false;
    return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
  case UO_Real:   // __real x
  case UO_Imag:   // __imag x
  case UO_Extension:
  case UO_Coawait:
    assert(false && "Unhandled opcode");
  }

  return false;
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
  if (DiscardResult)
    return true;

  const auto *D = E->getDecl();

  if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
    return this->emitConst(ECD->getInitVal(), E);
  } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
    return this->visit(BD->getBinding());
  } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
    const Function *F = getFunction(FuncDecl);
    return F && this->emitGetFnPtr(F, E);
  }

  // References are implemented via pointers, so when we see a DeclRefExpr
  // pointing to a reference, we need to get its value directly (i.e. the
  // pointer to the actual value) instead of a pointer to the pointer to the
  // value.
  bool IsReference = D->getType()->isReferenceType();

  // Check for local/global variables and parameters.
  if (auto It = Locals.find(D); It != Locals.end()) {
    const unsigned Offset = It->second.Offset;

    if (IsReference)
      return this->emitGetLocal(PT_Ptr, Offset, E);
    return this->emitGetPtrLocal(Offset, E);
  } else if (auto GlobalIndex = P.getGlobal(D)) {
    if (IsReference)
      return this->emitGetGlobalPtr(*GlobalIndex, E);

    return this->emitGetPtrGlobal(*GlobalIndex, E);
  } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
    if (auto It = this->Params.find(PVD); It != this->Params.end()) {
      if (IsReference)
        return this->emitGetParamPtr(It->second, E);
      return this->emitGetPtrParam(It->second, E);
    }
  }

  // Handle lambda captures.
  if (auto It = this->LambdaCaptures.find(D);
      It != this->LambdaCaptures.end()) {
    auto [Offset, IsReference] = It->second;

    if (IsReference)
      return this->emitGetThisFieldPtr(Offset, E);
    return this->emitGetPtrThisField(Offset, E);
  }

  return false;
}

template <class Emitter>
void ByteCodeExprGen<Emitter>::emitCleanup() {
  for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
    C->emitDestruction();
}

template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitDerivedToBaseCasts(
    const RecordType *DerivedType, const RecordType *BaseType, const Expr *E) {
  // Pointer of derived type is already on the stack.
  const auto *FinalDecl = cast<CXXRecordDecl>(BaseType->getDecl());
  const RecordDecl *CurDecl = DerivedType->getDecl();
  const Record *CurRecord = getRecord(CurDecl);
  assert(CurDecl && FinalDecl);
  for (;;) {
    assert(CurRecord->getNumBases() > 0);
    // One level up
    for (const Record::Base &B : CurRecord->bases()) {
      const auto *BaseDecl = cast<CXXRecordDecl>(B.Decl);

      if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(FinalDecl)) {
        // This decl will lead us to the final decl, so emit a base cast.
        if (!this->emitGetPtrBasePop(B.Offset, E))
          return false;

        CurRecord = B.R;
        CurDecl = BaseDecl;
        break;
      }
    }
    if (CurDecl == FinalDecl)
      return true;
  }

  llvm_unreachable("Couldn't find the base class?");
  return false;
}

/// When calling this, we have a pointer of the local-to-destroy
/// on the stack.
/// Emit destruction of record types (or arrays of record types).
/// FIXME: Handle virtual destructors.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitRecordDestruction(const Descriptor *Desc) {
  assert(Desc);
  assert(!Desc->isPrimitive());
  assert(!Desc->isPrimitiveArray());

  // Arrays.
  if (Desc->isArray()) {
    const Descriptor *ElemDesc = Desc->ElemDesc;
    const Record *ElemRecord = ElemDesc->ElemRecord;
    assert(ElemRecord); // This is not a primitive array.

    if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
        Dtor && !Dtor->isTrivial()) {
      for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
        if (!this->emitConstUint64(I, SourceInfo{}))
          return false;
        if (!this->emitArrayElemPtrUint64(SourceInfo{}))
          return false;
        if (!this->emitRecordDestruction(Desc->ElemDesc))
          return false;
      }
    }
    return this->emitPopPtr(SourceInfo{});
  }

  const Record *R = Desc->ElemRecord;
  assert(R);
  // First, destroy all fields.
  for (const Record::Field &Field : llvm::reverse(R->fields())) {
    const Descriptor *D = Field.Desc;
    if (!D->isPrimitive() && !D->isPrimitiveArray()) {
      if (!this->emitDupPtr(SourceInfo{}))
        return false;
      if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
        return false;
      if (!this->emitRecordDestruction(D))
        return false;
    }
  }

  // FIXME: Unions need to be handled differently here. We don't want to
  //   call the destructor of its members.

  // Now emit the destructor and recurse into base classes.
  if (const CXXDestructorDecl *Dtor = R->getDestructor();
      Dtor && !Dtor->isTrivial()) {
    const Function *DtorFunc = getFunction(Dtor);
    if (DtorFunc && DtorFunc->isConstexpr()) {
      assert(DtorFunc->hasThisPointer());
      assert(DtorFunc->getNumParams() == 1);
      if (!this->emitDupPtr(SourceInfo{}))
        return false;
      if (!this->emitCall(DtorFunc, SourceInfo{}))
        return false;
    }
  }

  for (const Record::Base &Base : llvm::reverse(R->bases())) {
    if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
      return false;
    if (!this->emitRecordDestruction(Base.Desc))
      return false;
  }
  // FIXME: Virtual bases.

  // Remove the instance pointer.
  return this->emitPopPtr(SourceInfo{});
}

namespace clang {
namespace interp {

template class ByteCodeExprGen<ByteCodeEmitter>;
template class ByteCodeExprGen<EvalEmitter>;

} // namespace interp
} // namespace clang