1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
//===--- Context.cpp - Context for the constexpr VM -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Context.h"
#include "ByteCodeEmitter.h"
#include "ByteCodeExprGen.h"
#include "ByteCodeStmtGen.h"
#include "EvalEmitter.h"
#include "Interp.h"
#include "InterpFrame.h"
#include "InterpStack.h"
#include "PrimType.h"
#include "Program.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;
using namespace clang::interp;
Context::Context(ASTContext &Ctx) : Ctx(Ctx), P(new Program(*this)) {}
Context::~Context() {}
bool Context::isPotentialConstantExpr(State &Parent, const FunctionDecl *FD) {
assert(Stk.empty());
Function *Func = P->getFunction(FD);
if (!Func || !Func->hasBody()) {
if (auto R = ByteCodeStmtGen<ByteCodeEmitter>(*this, *P).compileFunc(FD)) {
Func = *R;
} else {
handleAllErrors(R.takeError(), [&Parent](ByteCodeGenError &Err) {
Parent.FFDiag(Err.getRange().getBegin(),
diag::err_experimental_clang_interp_failed)
<< Err.getRange();
});
return false;
}
}
APValue DummyResult;
if (!Run(Parent, Func, DummyResult)) {
return false;
}
return Func->isConstexpr();
}
bool Context::evaluateAsRValue(State &Parent, const Expr *E, APValue &Result) {
assert(Stk.empty());
ByteCodeExprGen<EvalEmitter> C(*this, *P, Parent, Stk, Result);
if (Check(Parent, C.interpretExpr(E))) {
assert(Stk.empty());
#ifndef NDEBUG
// Make sure we don't rely on some value being still alive in
// InterpStack memory.
Stk.clear();
#endif
return true;
}
Stk.clear();
return false;
}
bool Context::evaluateAsInitializer(State &Parent, const VarDecl *VD,
APValue &Result) {
assert(Stk.empty());
ByteCodeExprGen<EvalEmitter> C(*this, *P, Parent, Stk, Result);
if (Check(Parent, C.interpretDecl(VD))) {
assert(Stk.empty());
#ifndef NDEBUG
// Make sure we don't rely on some value being still alive in
// InterpStack memory.
Stk.clear();
#endif
return true;
}
Stk.clear();
return false;
}
const LangOptions &Context::getLangOpts() const { return Ctx.getLangOpts(); }
std::optional<PrimType> Context::classify(QualType T) const {
if (T->isFunctionPointerType() || T->isFunctionReferenceType())
return PT_FnPtr;
if (T->isReferenceType() || T->isPointerType())
return PT_Ptr;
if (T->isBooleanType())
return PT_Bool;
if (T->isSignedIntegerOrEnumerationType()) {
switch (Ctx.getIntWidth(T)) {
case 64:
return PT_Sint64;
case 32:
return PT_Sint32;
case 16:
return PT_Sint16;
case 8:
return PT_Sint8;
default:
return {};
}
}
if (T->isUnsignedIntegerOrEnumerationType()) {
switch (Ctx.getIntWidth(T)) {
case 64:
return PT_Uint64;
case 32:
return PT_Uint32;
case 16:
return PT_Uint16;
case 8:
return PT_Uint8;
default:
return {};
}
}
if (T->isNullPtrType())
return PT_Ptr;
if (T->isFloatingType())
return PT_Float;
if (auto *AT = dyn_cast<AtomicType>(T))
return classify(AT->getValueType());
return {};
}
unsigned Context::getCharBit() const {
return Ctx.getTargetInfo().getCharWidth();
}
/// Simple wrapper around getFloatTypeSemantics() to make code a
/// little shorter.
const llvm::fltSemantics &Context::getFloatSemantics(QualType T) const {
return Ctx.getFloatTypeSemantics(T);
}
bool Context::Run(State &Parent, const Function *Func, APValue &Result) {
InterpState State(Parent, *P, Stk, *this);
State.Current = new InterpFrame(State, Func, /*Caller=*/nullptr, {});
if (Interpret(State, Result))
return true;
Stk.clear();
return false;
}
bool Context::Check(State &Parent, llvm::Expected<bool> &&Flag) {
if (Flag)
return *Flag;
handleAllErrors(Flag.takeError(), [&Parent](ByteCodeGenError &Err) {
Parent.FFDiag(Err.getRange().getBegin(),
diag::err_experimental_clang_interp_failed)
<< Err.getRange();
});
return false;
}
// TODO: Virtual bases?
const CXXMethodDecl *
Context::getOverridingFunction(const CXXRecordDecl *DynamicDecl,
const CXXRecordDecl *StaticDecl,
const CXXMethodDecl *InitialFunction) const {
const CXXRecordDecl *CurRecord = DynamicDecl;
const CXXMethodDecl *FoundFunction = InitialFunction;
for (;;) {
const CXXMethodDecl *Overrider =
FoundFunction->getCorrespondingMethodDeclaredInClass(CurRecord, false);
if (Overrider)
return Overrider;
// Common case of only one base class.
if (CurRecord->getNumBases() == 1) {
CurRecord = CurRecord->bases_begin()->getType()->getAsCXXRecordDecl();
continue;
}
// Otherwise, go to the base class that will lead to the StaticDecl.
for (const CXXBaseSpecifier &Spec : CurRecord->bases()) {
const CXXRecordDecl *Base = Spec.getType()->getAsCXXRecordDecl();
if (Base == StaticDecl || Base->isDerivedFrom(StaticDecl)) {
CurRecord = Base;
break;
}
}
}
llvm_unreachable(
"Couldn't find an overriding function in the class hierarchy?");
return nullptr;
}
|