1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/*===----------- avxvnniint16intrin.h - AVXVNNIINT16 intrinsics-------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <avxvnniint16intrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __AVXVNNIINT16INTRIN_H
#define __AVXVNNIINT16INTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint16"), \
__min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint16"), \
__min_vector_width__(256)))
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwsud_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUD instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwsud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwsud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwsud_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUD instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwsud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwsud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwsuds_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwsuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwsuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwsuds_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwsuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwsuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpbusd_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUSD instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwusd_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwusd128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwusd_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUSD instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwusd_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwusd256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwusds_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwusds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwusds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwsuds_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwusds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwusds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwuud_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUUD instruction.
///
/// \param __W
/// A 128-bit vector of [4 x unsigned int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwuud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwuud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwuud_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUUD instruction.
///
/// \param __W
/// A 256-bit vector of [8 x unsigned int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwuud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwuud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwsuds_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 128-bit vector of [4 x unsigned int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwuuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwuuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwuuds_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 256-bit vector of [8 x unsigned int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwuuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwuuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif // __AVXVNNIINT16INTRIN_H
|