1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace clang;
using namespace ento;
using namespace taint;
namespace {
class ArrayBoundCheckerV2 :
public Checker<check::Location> {
mutable std::unique_ptr<BuiltinBug> BT;
mutable std::unique_ptr<BugType> TaintBT;
enum OOB_Kind { OOB_Precedes, OOB_Excedes };
void reportOOB(CheckerContext &C, ProgramStateRef errorState,
OOB_Kind kind) const;
void reportTaintOOB(CheckerContext &C, ProgramStateRef errorState,
SVal TaintedSVal) const;
static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);
public:
void checkLocation(SVal l, bool isLoad, const Stmt *S,
CheckerContext &C) const;
};
// FIXME: Eventually replace RegionRawOffset with this class.
class RegionRawOffsetV2 {
private:
const SubRegion *baseRegion;
NonLoc byteOffset;
public:
RegionRawOffsetV2(const SubRegion *base, NonLoc offset)
: baseRegion(base), byteOffset(offset) { assert(base); }
NonLoc getByteOffset() const { return byteOffset; }
const SubRegion *getRegion() const { return baseRegion; }
static std::optional<RegionRawOffsetV2>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location);
void dump() const;
void dumpToStream(raw_ostream &os) const;
};
}
// TODO: once the constraint manager is smart enough to handle non simplified
// symbolic expressions remove this function. Note that this can not be used in
// the constraint manager as is, since this does not handle overflows. It is
// safe to assume, however, that memory offsets will not overflow.
// NOTE: callers of this function need to be aware of the effects of overflows
// and signed<->unsigned conversions!
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant =
APSIntType(extent.getValue()).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, since it the result of scaling
// based on the size of a type which is never 0.
if ((extent.getValue() % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() / constant),
svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
SValBuilder &SVB) {
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
}
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
QualType T = Value.getType(SVB.getContext());
if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) {
// In this case we reduced the bound check to a comparison of the form
// (symbol or value with unsigned type) < (negative number)
// which is always false. We are handling these cases separately because
// evalBinOpNN can perform a signed->unsigned conversion that turns the
// negative number into a huge positive value and leads to wildly
// inaccurate conclusions.
return {nullptr, State};
}
}
auto BelowThreshold =
SVB.evalBinOpNN(State, BO_LT, Value, Threshold, SVB.getConditionType()).getAs<NonLoc>();
if (BelowThreshold)
return State->assume(*BelowThreshold);
return {nullptr, nullptr};
}
void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
const Stmt* LoadS,
CheckerContext &checkerContext) const {
// NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
// some new logic here that reasons directly about memory region extents.
// Once that logic is more mature, we can bring it back to assumeInBound()
// for all clients to use.
//
// The algorithm we are using here for bounds checking is to see if the
// memory access is within the extent of the base region. Since we
// have some flexibility in defining the base region, we can achieve
// various levels of conservatism in our buffer overflow checking.
// The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
// #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
// and incomplete analysis of these leads to false positives. As even
// accurate reports would be confusing for the users, just disable reports
// from these macros:
if (isFromCtypeMacro(LoadS, checkerContext.getASTContext()))
return;
ProgramStateRef state = checkerContext.getState();
SValBuilder &svalBuilder = checkerContext.getSValBuilder();
const std::optional<RegionRawOffsetV2> &RawOffset =
RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
if (!RawOffset)
return;
NonLoc ByteOffset = RawOffset->getByteOffset();
// CHECK LOWER BOUND
const MemSpaceRegion *SR = RawOffset->getRegion()->getMemorySpace();
if (!llvm::isa<UnknownSpaceRegion>(SR)) {
// A pointer to UnknownSpaceRegion may point to the middle of
// an allocated region.
auto [state_precedesLowerBound, state_withinLowerBound] =
compareValueToThreshold(state, ByteOffset,
svalBuilder.makeZeroArrayIndex(), svalBuilder);
if (state_precedesLowerBound && !state_withinLowerBound) {
// We know that the index definitely precedes the lower bound.
reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
return;
}
if (state_withinLowerBound)
state = state_withinLowerBound;
}
// CHECK UPPER BOUND
DefinedOrUnknownSVal Size =
getDynamicExtent(state, RawOffset->getRegion(), svalBuilder);
if (auto KnownSize = Size.getAs<NonLoc>()) {
auto [state_withinUpperBound, state_exceedsUpperBound] =
compareValueToThreshold(state, ByteOffset, *KnownSize, svalBuilder);
if (state_exceedsUpperBound) {
if (!state_withinUpperBound) {
// We know that the index definitely exceeds the upper bound.
reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
return;
}
if (isTainted(state, ByteOffset)) {
// Both cases are possible, but the index is tainted, so report.
reportTaintOOB(checkerContext, state_exceedsUpperBound, ByteOffset);
return;
}
}
if (state_withinUpperBound)
state = state_withinUpperBound;
}
checkerContext.addTransition(state);
}
void ArrayBoundCheckerV2::reportTaintOOB(CheckerContext &checkerContext,
ProgramStateRef errorState,
SVal TaintedSVal) const {
ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
if (!errorNode)
return;
if (!TaintBT)
TaintBT.reset(
new BugType(this, "Out-of-bound access", categories::TaintedData));
SmallString<256> buf;
llvm::raw_svector_ostream os(buf);
os << "Out of bound memory access (index is tainted)";
auto BR =
std::make_unique<PathSensitiveBugReport>(*TaintBT, os.str(), errorNode);
// Track back the propagation of taintedness.
for (SymbolRef Sym : getTaintedSymbols(errorState, TaintedSVal)) {
BR->markInteresting(Sym);
}
checkerContext.emitReport(std::move(BR));
}
void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext,
ProgramStateRef errorState,
OOB_Kind kind) const {
ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
if (!errorNode)
return;
if (!BT)
BT.reset(new BuiltinBug(this, "Out-of-bound access"));
// FIXME: This diagnostics are preliminary. We should get far better
// diagnostics for explaining buffer overruns.
SmallString<256> buf;
llvm::raw_svector_ostream os(buf);
os << "Out of bound memory access ";
switch (kind) {
case OOB_Precedes:
os << "(accessed memory precedes memory block)";
break;
case OOB_Excedes:
os << "(access exceeds upper limit of memory block)";
break;
}
auto BR = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), errorNode);
checkerContext.emitReport(std::move(BR));
}
bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
SourceLocation Loc = S->getBeginLoc();
if (!Loc.isMacroID())
return false;
StringRef MacroName = Lexer::getImmediateMacroName(
Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
return false;
return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
(MacroName == "isblank") || (MacroName == "isdigit") ||
(MacroName == "isgraph") || (MacroName == "islower") ||
(MacroName == "isnctrl") || (MacroName == "isprint") ||
(MacroName == "ispunct") || (MacroName == "isspace") ||
(MacroName == "isupper") || (MacroName == "isxdigit"));
}
#ifndef NDEBUG
LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const {
dumpToStream(llvm::errs());
}
void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
}
#endif
/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
std::optional<RegionRawOffsetV2>
RegionRawOffsetV2::computeOffset(ProgramStateRef State, SValBuilder &SVB,
SVal Location) {
QualType T = SVB.getArrayIndexType();
auto Calc = [&SVB, State, T](BinaryOperatorKind Op, NonLoc LHS, NonLoc RHS) {
// We will use this utility to add and multiply values.
return SVB.evalBinOpNN(State, Op, LHS, RHS, T).getAs<NonLoc>();
};
const MemRegion *Region = Location.getAsRegion();
NonLoc Offset = SVB.makeZeroArrayIndex();
while (Region) {
if (const auto *ERegion = dyn_cast<ElementRegion>(Region)) {
if (const auto Index = ERegion->getIndex().getAs<NonLoc>()) {
QualType ElemType = ERegion->getElementType();
// If the element is an incomplete type, go no further.
if (ElemType->isIncompleteType())
return std::nullopt;
// Perform Offset += Index * sizeof(ElemType); then continue the offset
// calculations with SuperRegion:
NonLoc Size = SVB.makeArrayIndex(
SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
if (auto Delta = Calc(BO_Mul, *Index, Size)) {
if (auto NewOffset = Calc(BO_Add, Offset, *Delta)) {
Offset = *NewOffset;
Region = ERegion->getSuperRegion();
continue;
}
}
}
} else if (const auto *SRegion = dyn_cast<SubRegion>(Region)) {
// NOTE: The dyn_cast<>() is expected to succeed, it'd be very surprising
// to see a MemSpaceRegion at this point.
// FIXME: We may return with {<Region>, 0} even if we didn't handle any
// ElementRegion layers. I think that this behavior was introduced
// accidentally by 8a4c760c204546aba566e302f299f7ed2e00e287 in 2011, so
// it may be useful to review it in the future.
return RegionRawOffsetV2(SRegion, Offset);
}
return std::nullopt;
}
return std::nullopt;
}
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundCheckerV2>();
}
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
return true;
}
|