1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
|
//===--- Extract.cpp - ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the "extract" refactoring operation.
//
//===----------------------------------------------------------------------===//
#include "ExtractionUtils.h"
#include "RefactoringOperations.h"
#include "SourceLocationUtilities.h"
#include "StmtUtils.h"
#include "TypeUtils.h"
#include "clang/AST/AST.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Tooling/Refactor/RefactoringOptions.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Path.h"
#include <algorithm>
using namespace clang;
using namespace clang::tooling;
namespace {
struct CompoundStatementRange {
CompoundStmt::const_body_iterator First, Last;
const Stmt *getFirst() const {
// We must have selected just the child of the case, since a selection that
// includes the case is treated like a selection of the entire switch.
if (const auto *Case = dyn_cast<SwitchCase>(*First)) {
if (const Stmt *S = Case->getSubStmt())
return S;
}
return *First;
}
const Stmt *getLast() const { return *Last; }
// TODO: We might not want to iterate over the switch case if we've just
// selected its child. We should switch over to an array of nodes instead of
// an iterator pair instead.
CompoundStmt::const_body_iterator begin() const { return First; }
CompoundStmt::const_body_iterator end() const { return Last + 1; }
};
enum class ExtractionKind { Function, Method, Expression };
class ExtractOperation : public RefactoringOperation {
public:
struct CandidateInfo {
CandidateInfo(SourceRange Range, StringRef PreInsertedText = "",
const Stmt *AnalyzedStatement = nullptr)
: Range(Range), PreInsertedText(PreInsertedText),
AnalyzedStatement(AnalyzedStatement) {}
/// The candidate token range, i.e. the end location is the starting
/// location of the last token.
SourceRange Range;
/// The text that should be inserted before the call to the extracted
/// function.
StringRef PreInsertedText;
/// The expression that should be analyzed for captured variables and the
/// return value.
const Stmt *AnalyzedStatement;
};
ExtractOperation(const Stmt *S, const Stmt *ParentStmt,
const Decl *FunctionLikeParentDecl,
std::vector<std::string> Candidates,
std::optional<CompoundStatementRange> ExtractedStmtRange,
std::optional<CandidateInfo> FirstCandidateInfo,
ExtractionKind Kind)
: S(S), ParentStmt(ParentStmt),
FunctionLikeParentDecl(FunctionLikeParentDecl),
Candidates(std::move(Candidates)),
ExtractedStmtRange(ExtractedStmtRange), Kind(Kind) {
if (FirstCandidateInfo)
CandidateExtractionInfo.push_back(*FirstCandidateInfo);
}
const Stmt *getTransformedStmt() const override {
if (ExtractedStmtRange)
return ExtractedStmtRange->getFirst();
return S;
}
const Stmt *getLastTransformedStmt() const override {
if (ExtractedStmtRange)
return ExtractedStmtRange->getLast();
return nullptr;
}
std::vector<std::string> getRefactoringCandidates() override {
return Candidates;
}
std::vector<RefactoringActionType> getAvailableSubActions() override {
std::vector<RefactoringActionType> SubActions;
if (isa<CXXMethodDecl>(FunctionLikeParentDecl) ||
isa<ObjCMethodDecl>(FunctionLikeParentDecl))
SubActions.push_back(RefactoringActionType::Extract_Method);
if (isLexicalExpression(S, ParentStmt))
SubActions.push_back(RefactoringActionType::Extract_Expression);
return SubActions;
}
bool isMethodExtraction() const { return Kind == ExtractionKind::Method; }
bool isExpressionExtraction() const {
return Kind == ExtractionKind::Expression;
}
llvm::Expected<RefactoringResult> perform(ASTContext &Context, const Preprocessor &ThePreprocessor,
const RefactoringOptionSet &Options,
unsigned SelectedCandidateIndex) override;
llvm::Expected<RefactoringResult>
performExpressionExtraction(ASTContext &Context, PrintingPolicy &PP);
const Stmt *S, *ParentStmt;
const Decl *FunctionLikeParentDecl;
std::vector<std::string> Candidates;
/// A set of extraction candidates that correspond to the extracted code.
SmallVector<CandidateInfo, 2> CandidateExtractionInfo;
std::optional<CompoundStatementRange> ExtractedStmtRange;
ExtractionKind Kind;
};
} // end anonymous namespace
bool isSimpleExpression(const Expr *E) {
switch (E->IgnoreParenCasts()->getStmtClass()) {
case Stmt::DeclRefExprClass:
case Stmt::PredefinedExprClass:
case Stmt::IntegerLiteralClass:
case Stmt::FloatingLiteralClass:
case Stmt::ImaginaryLiteralClass:
case Stmt::CharacterLiteralClass:
case Stmt::StringLiteralClass:
return true;
default:
return false;
}
}
static bool isMultipleCandidateBinOp(BinaryOperatorKind Op) {
return Op == BO_Add || Op == BO_Sub;
}
/// Searches for the selected statement in the given CompoundStatement, looking
/// through things like PseudoObjectExpressions.
static CompoundStmt::const_body_iterator
findSelectedStmt(CompoundStmt::body_const_range Statements,
const Stmt *Target) {
return llvm::find_if(Statements, [=](const Stmt *S) {
if (S == Target)
return true;
if (const auto *POE = dyn_cast<PseudoObjectExpr>(S)) {
if (POE->getSyntacticForm() == Target)
return true;
}
return false;
});
}
/// Returns the first and the last statements that should be extracted from a
/// compound statement.
std::optional<CompoundStatementRange>
getExtractedStatements(const CompoundStmt *CS, const Stmt *Begin,
const Stmt *End) {
if (CS->body_empty())
return std::nullopt;
assert(Begin && End);
CompoundStatementRange Result;
Result.First = findSelectedStmt(CS->body(), Begin);
if (Result.First == CS->body_end())
return std::nullopt;
Result.Last = findSelectedStmt(
CompoundStmt::body_const_range(Result.First, CS->body_end()), End);
if (Result.Last == CS->body_end())
return std::nullopt;
return Result;
}
static RefactoringOperationResult
initiateAnyExtractOperation(ASTSlice &Slice, ASTContext &Context,
SourceLocation Location, SourceRange SelectionRange,
bool CreateOperation,
ExtractionKind Kind = ExtractionKind::Function) {
auto SelectedStmtsOpt = Slice.getSelectedStmtSet();
if (!SelectedStmtsOpt)
return std::nullopt;
SelectedStmtSet Stmts = *SelectedStmtsOpt;
// The selection range is contained entirely within this statement (without
// taking leading/trailing comments and whitespace into account).
const Stmt *Selected = Stmts.containsSelectionRange;
// We only want to perform the extraction if the selection range is entirely
// within a body of a function or method.
if (!Selected)
return std::nullopt;
const Decl *ParentDecl =
Slice.parentDeclForIndex(*Stmts.containsSelectionRangeIndex);
if (!ParentDecl ||
(!Stmts.isCompoundStatementPartiallySelected() &&
!Slice.isContainedInCompoundStmt(*Stmts.containsSelectionRangeIndex)))
return RefactoringOperationResult(
"the selected expression is not in a function");
if (isa<Expr>(Selected) && isSimpleExpression(cast<Expr>(Selected)))
return RefactoringOperationResult("the selected expression is too simple");
if (const auto *PRE = dyn_cast<ObjCPropertyRefExpr>(Selected)) {
if (!PRE->isMessagingGetter())
return RefactoringOperationResult("property setter can't be extracted");
}
const Stmt *ParentStmt =
Slice.parentStmtForIndex(*Stmts.containsSelectionRangeIndex);
if (Kind == ExtractionKind::Expression &&
!isLexicalExpression(Selected, ParentStmt))
return std::nullopt;
RefactoringOperationResult Result;
Result.Initiated = true;
if (!CreateOperation)
return Result;
std::optional<CompoundStatementRange> ExtractedStmtRange;
// Check if there are multiple candidates that can be extracted.
std::vector<std::string> Candidates;
std::optional<ExtractOperation::CandidateInfo> FirstCandidateInfo;
if (const auto *BinOp = dyn_cast<BinaryOperator>(Selected)) {
// Binary '+' and '-' operators allow multiple candidates when the
// selection range starts after the LHS expression but still overlaps
// with the RHS.
if (isMultipleCandidateBinOp(BinOp->getOpcode()) &&
(!Stmts.containsSelectionRangeStart ||
getPreciseTokenLocEnd(
BinOp->getLHS()->getEndLoc(), Context.getSourceManager(),
Context.getLangOpts()) == SelectionRange.getBegin()) &&
Stmts.containsSelectionRangeEnd) {
SourceRange FirstCandidateRange =
SourceRange(SelectionRange.getBegin(), BinOp->getEndLoc());
if (FirstCandidateRange.getEnd().isMacroID())
FirstCandidateRange.setEnd(Context.getSourceManager().getExpansionLoc(
FirstCandidateRange.getEnd()));
FirstCandidateInfo = ExtractOperation::CandidateInfo(
FirstCandidateRange, "+ ",
/*AnalyzedStatement=*/BinOp->getRHS());
Candidates.push_back(
std::string(Lexer::getSourceText(
CharSourceRange::getTokenRange(FirstCandidateRange),
Context.getSourceManager(), Context.getLangOpts())
.trim()));
Candidates.push_back(std::string(Lexer::getSourceText(
CharSourceRange::getTokenRange(BinOp->getSourceRange()),
Context.getSourceManager(), Context.getLangOpts())));
}
} else if (const auto *CS = dyn_cast<CompoundStmt>(Selected)) {
// We want to extract some child statements from a compound statement unless
// we've selected the entire compound statement including the opening and
// closing brace.
if (Stmts.containsSelectionRangeStart)
ExtractedStmtRange =
getExtractedStatements(CS, Stmts.containsSelectionRangeStart,
Stmts.containsSelectionRangeEnd);
}
auto Operation = std::make_unique<ExtractOperation>(
Selected, ParentStmt, ParentDecl, std::move(Candidates),
ExtractedStmtRange, FirstCandidateInfo, Kind);
auto &CandidateExtractionInfo = Operation->CandidateExtractionInfo;
SourceRange Range;
if (ExtractedStmtRange)
Range = SourceRange(ExtractedStmtRange->getFirst()->getBeginLoc(),
ExtractedStmtRange->getLast()->getEndLoc());
else
Range = Selected->getSourceRange();
bool IsBeginMacroArgument = false;
if (Range.getBegin().isMacroID()) {
if (Context.getSourceManager().isMacroArgExpansion(Range.getBegin())) {
Range.setBegin(
Context.getSourceManager().getSpellingLoc(Range.getBegin()));
IsBeginMacroArgument = true;
} else {
Range.setBegin(
Context.getSourceManager().getExpansionLoc(Range.getBegin()));
}
}
if (Range.getEnd().isMacroID()) {
if (IsBeginMacroArgument &&
Context.getSourceManager().isMacroArgExpansion(Range.getEnd()))
Range.setEnd(Context.getSourceManager().getSpellingLoc(Range.getEnd()));
else
Range.setEnd(Context.getSourceManager()
.getExpansionRange(Range.getEnd())
.getEnd());
}
CandidateExtractionInfo.push_back(ExtractOperation::CandidateInfo(Range));
Result.RefactoringOp = std::move(Operation);
return Result;
}
RefactoringOperationResult clang::tooling::initiateExtractOperation(
ASTSlice &Slice, ASTContext &Context, SourceLocation Location,
SourceRange SelectionRange, bool CreateOperation) {
return initiateAnyExtractOperation(Slice, Context, Location, SelectionRange,
CreateOperation);
}
RefactoringOperationResult clang::tooling::initiateExtractMethodOperation(
ASTSlice &Slice, ASTContext &Context, SourceLocation Location,
SourceRange SelectionRange, bool CreateOperation) {
// TODO: Verify that method extraction is actually possible.
return initiateAnyExtractOperation(Slice, Context, Location, SelectionRange,
CreateOperation, ExtractionKind::Method);
}
RefactoringOperationResult clang::tooling::initiateExtractExpressionOperation(
ASTSlice &Slice, ASTContext &Context, SourceLocation Location,
SourceRange SelectionRange, bool CreateOperation) {
RefactoringOperationResult R =
initiateAnyExtractOperation(Slice, Context, Location, SelectionRange,
CreateOperation, ExtractionKind::Expression);
return R;
}
using ReferencedEntity =
llvm::PointerUnion<const DeclRefExpr *, const FieldDecl *>;
/// Iterate over the entities (variables/instance variables) that are directly
/// referenced by the given expression \p E.
///
/// Note: Objective-C ivars are always captured via 'self'.
static void findEntitiesDirectlyReferencedInExpr(
const Expr *E,
llvm::function_ref<void(const ReferencedEntity &Entity)> Handler) {
E = E->IgnoreParenCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return Handler(DRE);
if (const auto *ME = dyn_cast<MemberExpr>(E)) {
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) {
if (const auto *FD = dyn_cast_or_null<FieldDecl>(ME->getMemberDecl()))
Handler(FD);
return;
}
if (const auto *MD = ME->getMemberDecl()) {
if (isa<FieldDecl>(MD) || isa<IndirectFieldDecl>(MD))
findEntitiesDirectlyReferencedInExpr(ME->getBase(), Handler);
}
return;
}
if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
findEntitiesDirectlyReferencedInExpr(CO->getTrueExpr(), Handler);
findEntitiesDirectlyReferencedInExpr(CO->getFalseExpr(), Handler);
return;
}
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Comma)
return findEntitiesDirectlyReferencedInExpr(BO->getRHS(), Handler);
}
}
template <typename T, typename Matcher>
static void
findMatchingParameters(Matcher &ParameterMatcher, const Stmt *S,
ASTContext &Context, StringRef Node,
llvm::function_ref<void(const T *E)> Handler) {
using namespace clang::ast_matchers;
auto Matches = match(findAll(callExpr(ParameterMatcher)), *S, Context);
for (const auto &Match : Matches)
Handler(Match.template getNodeAs<T>(Node));
Matches = match(findAll(cxxConstructExpr(ParameterMatcher)), *S, Context);
for (const auto &Match : Matches)
Handler(Match.template getNodeAs<T>(Node));
}
static void
findUseOfConstThis(const Stmt *S, ASTContext &Context,
llvm::function_ref<void(const CXXThisExpr *E)> Handler) {
using namespace clang::ast_matchers;
// Check the receiver in method call and member operator calls.
auto This = cxxThisExpr().bind("this");
auto ThisReceiver = ignoringParenCasts(
anyOf(This, unaryOperator(hasOperatorName("*"),
hasUnaryOperand(ignoringParenCasts(This)))));
auto ConstMethodCallee = callee(cxxMethodDecl(isConst()));
auto Matches = match(
findAll(expr(anyOf(cxxMemberCallExpr(ConstMethodCallee, on(ThisReceiver)),
cxxOperatorCallExpr(ConstMethodCallee,
hasArgument(0, ThisReceiver))))),
*S, Context);
for (const auto &Match : Matches)
Handler(Match.getNodeAs<CXXThisExpr>("this"));
// Check parameters in calls.
auto ConstPointee = pointee(qualType(isConstQualified()));
auto RefParameter = forEachArgumentWithParam(
ThisReceiver,
parmVarDecl(hasType(qualType(referenceType(ConstPointee)))));
findMatchingParameters(RefParameter, S, Context, "this", Handler);
auto PtrParameter = forEachArgumentWithParam(
ignoringParenCasts(This),
parmVarDecl(hasType(qualType(pointerType(ConstPointee)))));
findMatchingParameters(PtrParameter, S, Context, "this", Handler);
}
static void findArgumentsPassedByNonConstReference(
const Stmt *S, ASTContext &Context,
llvm::function_ref<void(const Expr *E)> Handler) {
using namespace clang::ast_matchers;
// Check the receiver in method call and member operator calls.
auto NonPointerReceiver =
expr(unless(hasType(qualType(pointerType())))).bind("arg");
auto NonConstMethodCallee = callee(cxxMethodDecl(unless(isConst())));
auto Matches = match(
traverse(
TK_AsIs,
findAll(expr(anyOf(
cxxMemberCallExpr(NonConstMethodCallee, on(NonPointerReceiver)),
cxxOperatorCallExpr(NonConstMethodCallee,
hasArgument(0, NonPointerReceiver)))))),
*S, Context);
for (const auto &Match : Matches)
Handler(Match.getNodeAs<Expr>("arg"));
// Check parameters in calls.
auto RefParameter = forEachArgumentWithParam(
expr().bind("arg"), parmVarDecl(hasType(qualType(referenceType(unless(
pointee(qualType(isConstQualified()))))))));
Matches =
match(traverse(TK_AsIs, findAll(callExpr(RefParameter))), *S, Context);
for (const auto &Match : Matches)
Handler(Match.getNodeAs<Expr>("arg"));
Matches = match(traverse(TK_AsIs, findAll(cxxConstructExpr(RefParameter))),
*S, Context);
for (const auto &Match : Matches)
Handler(Match.getNodeAs<Expr>("arg"));
}
static void findAddressExpressionsPassedByConstPointer(
const Stmt *S, ASTContext &Context,
llvm::function_ref<void(const UnaryOperator *E)> Handler) {
using namespace clang::ast_matchers;
auto ConstPtrParameter = forEachArgumentWithParam(
ignoringParenImpCasts(unaryOperator(hasOperatorName("&")).bind("arg")),
parmVarDecl(hasType(
qualType(pointerType(pointee(qualType(isConstQualified())))))));
auto Matches = match(traverse(TK_AsIs, findAll(callExpr(ConstPtrParameter))),
*S, Context);
for (const auto &Match : Matches)
Handler(Match.getNodeAs<UnaryOperator>("arg"));
Matches =
match(traverse(TK_AsIs, findAll(cxxConstructExpr(ConstPtrParameter))), *S,
Context);
for (const auto &Match : Matches)
Handler(Match.getNodeAs<UnaryOperator>("arg"));
}
static bool isImplicitInitializer(const VarDecl *VD) {
assert(VD->hasInit());
const auto *E = VD->getInit();
if (isa<ExprWithCleanups>(E))
return false;
const auto *Construct = dyn_cast<CXXConstructExpr>(E);
if (!Construct)
return E->getBeginLoc() == VD->getLocation();
return Construct->getParenOrBraceRange().isInvalid();
}
static const Expr *getInitializerExprWithLexicalRange(const Expr *E) {
if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
if (const auto *Construct = dyn_cast<CXXConstructExpr>(EWC->getSubExpr())) {
if (Construct->getNumArgs() == 1) {
if (const auto *ME =
dyn_cast<MaterializeTemporaryExpr>(Construct->getArg(0)))
return ME;
}
}
}
return E;
}
namespace {
class ExtractedCodeVisitor : public RecursiveASTVisitor<ExtractedCodeVisitor> {
int DefineOrdering = 0;
public:
struct CaptureInfo {
bool IsMutated = false;
bool IsDefined = false;
bool IsAddressTaken = false;
bool IsConstAddressTaken = false;
bool IsFieldCapturedWithThis = false;
bool IsUsed = false;
int DefineOrderingPriority = 0;
bool isPassedByRefOrPtr() const {
return IsMutated || IsAddressTaken || IsConstAddressTaken;
}
bool isRefOrPtrConst() const {
return IsConstAddressTaken && !IsMutated && !IsAddressTaken;
}
};
const ImplicitParamDecl *SelfDecl;
ExtractedCodeVisitor(const ImplicitParamDecl *SelfDecl)
: SelfDecl(SelfDecl) {}
bool HasReturnInExtracted = false;
CaptureInfo &captureVariable(const VarDecl *VD) {
CaptureInfo &Result = CapturedVariables[VD];
Result.IsUsed = true;
return Result;
}
CaptureInfo &captureField(const FieldDecl *FD) { return CapturedFields[FD]; }
bool VisitDeclRefExpr(const DeclRefExpr *E) {
const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
if (!VD)
return true;
if (VD == SelfDecl) {
CaptureSelf = true;
SelfType = VD->getType();
return true;
}
if (!VD->isLocalVarDeclOrParm())
return true;
captureVariable(VD);
return true;
}
void captureThisWithoutConstConcerns(const CXXThisExpr *E) {
CaptureThis = true;
ThisRecordType = E->getType()->getPointeeType();
}
bool VisitCXXThisExpr(const CXXThisExpr *E) {
captureThisWithoutConstConcerns(E);
ThisUsesWithUnknownConstness.insert(E);
return true;
}
bool TraverseMemberExpr(MemberExpr *E) {
const auto *Base = dyn_cast<CXXThisExpr>(E->getBase()->IgnoreParenCasts());
if (!Base)
return RecursiveASTVisitor::TraverseMemberExpr(E);
const FieldDecl *FD = dyn_cast_or_null<FieldDecl>(E->getMemberDecl());
if (!FD)
return RecursiveASTVisitor::TraverseMemberExpr(E);
CaptureInfo &Info = captureField(FD);
// Don't capture the implicit 'this' for private fields as we don't want to
// capture this if we only use the private fields.
if (FD->getAccess() == AS_public || !Base->isImplicit()) {
Info.IsFieldCapturedWithThis = true;
// The member might have an effect on the constness of the captured 'this'
// but this is checked via mutation/const tracking for the field itself,
// so we just capture 'this' without worrying about checking if it's used
// in a 'const' manner here.
captureThisWithoutConstConcerns(Base);
}
return true;
}
void captureSuper(QualType T) {
if (CaptureSuper)
return;
SuperType = T;
CaptureSuper = true;
}
bool TraverseObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
if (E->isSuperReceiver())
captureSuper(E->getSuperReceiverType());
// Base might be an opaque expression, so we have to visit it manually as
// we don't necessarily visit the setter/getter message sends if just the
// property was selected.
if (E->isObjectReceiver()) {
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E->getBase()))
TraverseStmt(OVE->getSourceExpr());
}
return RecursiveASTVisitor::TraverseObjCPropertyRefExpr(E);
}
bool TraverseBinaryOperator(BinaryOperator *S) {
if (S->getOpcode() != BO_Assign)
return RecursiveASTVisitor::TraverseBinaryOperator(S);
// RHS might be an opaque expression, if this is a property assignment. We
// have to visit it manually as we don't necessarily visit the setter/getter
// message sends if just the property was selected.
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(S->getRHS()))
TraverseStmt(OVE->getSourceExpr());
return RecursiveASTVisitor::TraverseBinaryOperator(S);
}
void findCapturedVariableOrFieldsInExpression(
const Expr *E, llvm::function_ref<void(CaptureInfo &)> Handler) {
findEntitiesDirectlyReferencedInExpr(
E, [&Handler, this](const ReferencedEntity &Entity) {
if (const auto *DRE = Entity.dyn_cast<const DeclRefExpr *>()) {
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
if (!VD || !VD->isLocalVarDeclOrParm() || VD->isImplicit())
return;
return Handler(captureVariable(VD));
}
return Handler(captureField(Entity.get<const FieldDecl *>()));
});
}
void
markDirectlyReferencedVariableOrFieldInExpressionAsMutated(const Expr *E) {
findCapturedVariableOrFieldsInExpression(
E, [](CaptureInfo &Capture) { Capture.IsMutated = true; });
}
bool VisitBinaryOperator(const BinaryOperator *E) {
if (E->isAssignmentOp())
markDirectlyReferencedVariableOrFieldInExpressionAsMutated(E->getLHS());
return true;
}
bool VisitUnaryOperator(const UnaryOperator *E) {
auto Op = E->getOpcode();
if (Op != UO_PreInc && Op != UO_PostInc && Op != UO_PreDec &&
Op != UO_PostDec) {
if (Op == UO_AddrOf) {
// Capture the entity with 'const' reference/pointer when its address is
// passed into a function that takes a 'const' pointer and no other
// mutations or non-const address/reference acquisitions occur.
if (AddressExpressionsPassedToConstPointerParameter.count(E))
findCapturedVariableOrFieldsInExpression(
E->getSubExpr(),
[](CaptureInfo &Capture) { Capture.IsConstAddressTaken = true; });
else
captureVariableOrFieldInExpressionByReference(E->getSubExpr());
}
return true;
}
markDirectlyReferencedVariableOrFieldInExpressionAsMutated(E->getSubExpr());
return true;
}
/// If the given expression refers to a local/instance variable or a
/// a member of such variable that variable is marked as captured by
/// reference.
void captureVariableOrFieldInExpressionByReference(const Expr *E) {
findCapturedVariableOrFieldsInExpression(
E, [](CaptureInfo &Capture) { Capture.IsAddressTaken = true; });
}
bool VisitObjCMessageExpr(const ObjCMessageExpr *E) {
if (E->getSuperLoc().isValid())
captureSuper(E->getSuperType());
const ObjCMethodDecl *MD = E->getMethodDecl();
if (!MD)
return true;
for (const auto &Param : llvm::enumerate(MD->parameters())) {
QualType T = Param.value()->getType();
if (Param.index() >= E->getNumArgs())
break;
if (T->isReferenceType() && !T->getPointeeType().isConstQualified())
captureVariableOrFieldInExpressionByReference(E->getArg(Param.index()));
if (T->isPointerType() && T->getPointeeType().isConstQualified()) {
// Check if this is an '&' passed into a const pointer parameter.
const Expr *Arg = E->getArg(Param.index());
if (const auto *Op =
dyn_cast<UnaryOperator>(Arg->IgnoreParenImpCasts())) {
if (Op->getOpcode() == UO_AddrOf)
AddressExpressionsPassedToConstPointerParameter.insert(Op);
}
}
}
return true;
}
bool VisitVarDecl(const VarDecl *VD) {
// Don't capture using the captureVariable method as we don't want to mark
// the declaration as a 'use'. This allows us to avoid passing in variables
// that are defined in extracted code, used afterwards, but never actually
// used in the extracted code.
CaptureInfo &Capture = CapturedVariables[VD];
Capture.IsDefined = true;
Capture.DefineOrderingPriority = ++DefineOrdering;
// Ensure the capture is marked as 'used' when the variable declaration has
// an explicit initialization expression. This allows us to pass it by
// reference when it's defined in extracted code, used afterwards, but never
// actually used in the extracted code. The main reason why we want to try
// to keep this initialization in the extracted code is to preserve
// semantics as the initialization expression might have side-effects.
if (!Capture.IsUsed && VD->hasInit() && !isImplicitInitializer(VD))
Capture.IsUsed = true;
QualType T = VD->getType();
if (T->isReferenceType() && !T->getPointeeType().isConstQualified() &&
VD->hasInit())
captureVariableOrFieldInExpressionByReference(VD->getInit());
return true;
}
bool VisitReturnStmt(const ReturnStmt *S) {
HasReturnInExtracted = true;
return true;
}
void InspectExtractedStmt(Stmt *S, ASTContext &Context) {
findAddressExpressionsPassedByConstPointer(
S, Context, [this](const UnaryOperator *Arg) {
AddressExpressionsPassedToConstPointerParameter.insert(Arg);
});
TraverseStmt(S);
findArgumentsPassedByNonConstReference(S, Context, [this](const Expr *Arg) {
captureVariableOrFieldInExpressionByReference(Arg);
});
if (CaptureThis && !ThisUsesWithUnknownConstness.empty()) {
// Compare the definite 'const' uses of 'this' to all the seen uses
// (except for the known field uses).
findUseOfConstThis(S, Context, [this](const CXXThisExpr *Arg) {
ThisUsesWithUnknownConstness.erase(Arg);
});
IsThisConstForNonCapturedFieldUses = ThisUsesWithUnknownConstness.empty();
}
}
llvm::DenseMap<const VarDecl *, CaptureInfo> CapturedVariables;
llvm::DenseMap<const FieldDecl *, CaptureInfo> CapturedFields;
llvm::SmallPtrSet<const UnaryOperator *, 8>
AddressExpressionsPassedToConstPointerParameter;
llvm::SmallPtrSet<const CXXThisExpr *, 16> ThisUsesWithUnknownConstness;
bool CaptureThis = false;
bool IsThisConstForNonCapturedFieldUses = true;
QualType ThisRecordType;
bool CaptureSelf = false, CaptureSuper = false;
QualType SelfType, SuperType;
};
/// Traverses the extracted code and finds the uses of captured variables
/// that are passed into the extracted function using a pointer.
class VariableDefinedInExtractedCodeUseAfterExtractionFinder
: public RecursiveASTVisitor<
VariableDefinedInExtractedCodeUseAfterExtractionFinder> {
bool IsAfterExtracted = false;
public:
const Stmt *LastExtractedStmt;
const llvm::SmallPtrSetImpl<const VarDecl *> &VariablesDefinedInExtractedCode;
llvm::SmallPtrSet<const VarDecl *, 4> VariablesUsedAfterExtraction;
VariableDefinedInExtractedCodeUseAfterExtractionFinder(
const Stmt *LastExtractedStmt,
const llvm::SmallPtrSetImpl<const VarDecl *>
&VariablesDefinedInExtractedCode)
: LastExtractedStmt(LastExtractedStmt),
VariablesDefinedInExtractedCode(VariablesDefinedInExtractedCode) {}
bool TraverseStmt(Stmt *S) {
RecursiveASTVisitor::TraverseStmt(S);
if (S == LastExtractedStmt)
IsAfterExtracted = true;
return true;
}
bool VisitDeclRefExpr(const DeclRefExpr *E) {
if (!IsAfterExtracted)
return true;
const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
if (!VD)
return true;
if (VariablesDefinedInExtractedCode.count(VD))
VariablesUsedAfterExtraction.insert(VD);
return true;
}
};
class PossibleShadowingVariableFinder
: public RecursiveASTVisitor<PossibleShadowingVariableFinder> {
const VarDecl *TargetVD;
PossibleShadowingVariableFinder(const VarDecl *TargetVD)
: TargetVD(TargetVD) {}
public:
bool VisitVarDecl(const VarDecl *VD) {
if (VD == TargetVD || VD->getName() != TargetVD->getName())
return true;
return false;
}
/// Returns true if the given statement \p S has a variable declaration whose
/// name is identical to the given variable declaration \p VD.
static bool hasShadowingVar(const VarDecl *VD, const Stmt *S) {
return !PossibleShadowingVariableFinder(VD).TraverseStmt(
const_cast<Stmt *>(S));
}
};
/// Traverses the extracted code and rewrites the 'return' statements to ensure
/// that they now return some value.
class ReturnRewriter : public RecursiveASTVisitor<ReturnRewriter> {
Rewriter &SourceRewriter;
std::string Text;
public:
ReturnRewriter(Rewriter &SourceRewriter, StringRef Text)
: SourceRewriter(SourceRewriter), Text(std::string(" ") + Text.str()) {}
bool VisitReturnStmt(const ReturnStmt *S) {
SourceRewriter.InsertText(
getPreciseTokenLocEnd(S->getEndLoc(), SourceRewriter.getSourceMgr(),
SourceRewriter.getLangOpts()),
Text);
return true;
}
};
/// Prints the given initializer expression using the original source code if
/// possible.
static void printInitializerExpressionUsingOriginalSyntax(
const VarDecl *VD, const Expr *E, bool IsDeclaration, const ASTContext &Ctx,
llvm::raw_ostream &OS, const PrintingPolicy &PP) {
E = getInitializerExprWithLexicalRange(E);
SourceRange Range = E->getSourceRange();
bool UseEquals = true;
bool UseTypeName = false;
if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) {
SourceRange SubRange = Construct->getParenOrBraceRange();
if (SubRange.isValid()) {
UseEquals = false;
UseTypeName = true;
Range = SubRange;
}
}
if (Range.getBegin().isMacroID())
Range.setBegin(Ctx.getSourceManager().getExpansionLoc(Range.getBegin()));
if (Range.getEnd().isMacroID())
Range.setEnd(Ctx.getSourceManager().getExpansionLoc(Range.getEnd()));
bool IsInvalid = false;
StringRef Text = Lexer::getSourceText(CharSourceRange::getTokenRange(Range),
Ctx.getSourceManager(),
Ctx.getLangOpts(), &IsInvalid);
if (IsDeclaration && UseEquals)
OS << " = ";
else if (!IsDeclaration && UseTypeName)
VD->getType().print(OS, PP);
if (IsInvalid)
E->printPretty(OS, nullptr, PP);
else
OS << Text;
}
/// Traverses the extracted code and rewrites the declaration statements that
/// declare variables that are used after the extracted code.
class DefinedInExtractedCodeDeclStmtRewriter
: public RecursiveASTVisitor<DefinedInExtractedCodeDeclStmtRewriter> {
public:
Rewriter &SourceRewriter;
const llvm::SmallPtrSetImpl<const VarDecl *> &VariablesUsedAfterExtraction;
const PrintingPolicy &PP;
DefinedInExtractedCodeDeclStmtRewriter(
Rewriter &SourceRewriter, const llvm::SmallPtrSetImpl<const VarDecl *>
&VariablesUsedAfterExtraction,
const PrintingPolicy &PP)
: SourceRewriter(SourceRewriter),
VariablesUsedAfterExtraction(VariablesUsedAfterExtraction), PP(PP) {}
/// When a declaration statement declares variables that are all used
/// after extraction, we can rewrite it completely into a set of assignments
/// while still preserving the original initializer expressions when we
/// can.
void rewriteAllVariableDeclarationsToAssignments(const DeclStmt *S) {
SourceLocation StartLoc = S->getBeginLoc();
for (const Decl *D : S->decls()) {
const auto *VD = dyn_cast<VarDecl>(D);
if (!VD || !VariablesUsedAfterExtraction.count(VD))
continue;
if (!VD->hasInit() || isImplicitInitializer(VD)) {
// Remove the variable declarations without explicit initializers.
// This can affect the semantics of the program if the implicit
// initialization expression has side effects.
SourceRange Range = SourceRange(
StartLoc, S->isSingleDecl() ? S->getEndLoc() : VD->getLocation());
SourceRewriter.RemoveText(Range);
continue;
}
std::string Str;
llvm::raw_string_ostream OS(Str);
if (StartLoc != S->getBeginLoc())
OS << "; ";
const ASTContext &Ctx = D->getASTContext();
// Dereference the variable unless the source uses C++.
if (!Ctx.getLangOpts().CPlusPlus)
OS << '*';
OS << VD->getName() << " = ";
const Expr *Init = getInitializerExprWithLexicalRange(VD->getInit());
SourceLocation End = Init->getBeginLoc();
if (const auto *Construct = dyn_cast<CXXConstructExpr>(Init)) {
SourceRange SubRange = Construct->getParenOrBraceRange();
if (SubRange.isValid()) {
End = SubRange.getBegin();
VD->getType().print(OS, PP);
}
}
if (End.isMacroID())
End = Ctx.getSourceManager().getExpansionLoc(End);
auto Range = CharSourceRange::getCharRange(StartLoc, End);
SourceRewriter.ReplaceText(StartLoc, SourceRewriter.getRangeSize(Range),
OS.str());
StartLoc = getPreciseTokenLocEnd(D->getEndLoc(), Ctx.getSourceManager(),
Ctx.getLangOpts());
}
}
/// When a declaration statement has variables that are both used after
/// extraction and not used after extraction, we create new declaration
/// statements that declare the unused variables, while creating assignment
/// statements that "initialize" the variables that are used after the
/// extraction. This way we can preserve the order of
/// initialization/assignment from the original declaration statement.
void rewriteMixedDeclarations(const DeclStmt *S) {
// Completely rewrite the declaration statement.
std::string Str;
llvm::raw_string_ostream OS(Str);
for (const Decl *D : S->decls()) {
const ASTContext &Ctx = D->getASTContext();
const VarDecl *VD = dyn_cast<VarDecl>(D);
bool IsLast = D == S->decl_end()[-1];
if (!VD) {
OS << "<<unsupported declaration>>;";
continue;
}
auto PrintInit = [&](bool IsDeclaration) {
printInitializerExpressionUsingOriginalSyntax(
VD, VD->getInit(), IsDeclaration, Ctx, OS, PP);
};
if (!VariablesUsedAfterExtraction.count(VD)) {
VD->getType().print(OS, PP);
OS << " " << VD->getName();
if (VD->hasInit() && !isImplicitInitializer(VD))
PrintInit(/*IsDeclaration=*/true);
OS << ";";
if (!IsLast)
OS << ' ';
continue;
}
if (VD->hasInit() && !isImplicitInitializer(VD)) {
// Dereference the variable unless the source uses C++.
if (!Ctx.getLangOpts().CPlusPlus)
OS << '*';
OS << VD->getName() << " = ";
PrintInit(/*IsDeclaration=*/false);
OS << ";";
if (!IsLast)
OS << ' ';
}
}
SourceRewriter.ReplaceText(S->getSourceRange(), OS.str());
}
bool VisitDeclStmt(const DeclStmt *S) {
bool AreAllUsed = true;
bool AreNoneUsed = true;
for (const Decl *D : S->decls()) {
const auto *VD = dyn_cast<VarDecl>(D);
if (!VD || !VariablesUsedAfterExtraction.count(VD)) {
AreAllUsed = false;
continue;
}
AreNoneUsed = false;
// Exit early when both flags were set in the loop.
if (!AreAllUsed)
break;
}
if (AreNoneUsed)
return true;
if (AreAllUsed)
rewriteAllVariableDeclarationsToAssignments(S);
else
rewriteMixedDeclarations(S);
return true;
}
};
/// Takes care of pseudo object expressions and Objective-C properties to avoid
/// duplicate rewrites and missing rewrites.
template <typename T>
class PseudoObjectRewriter : public RecursiveASTVisitor<T> {
typedef RecursiveASTVisitor<T> Base;
public:
bool TraversePseudoObjectExpr(PseudoObjectExpr *E) {
return Base::TraverseStmt(E->getSyntacticForm());
}
bool TraverseObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
// Base might be an opaque expression, so we have to visit it manually as
// we don't necessarily visit the setter/getter message sends if just the
// property was selected.
if (E->isObjectReceiver()) {
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E->getBase()))
Base::TraverseStmt(OVE->getSourceExpr());
}
return Base::TraverseObjCPropertyRefExpr(E);
}
bool TraverseBinaryOperator(BinaryOperator *S) {
if (S->getOpcode() != BO_Assign)
return Base::TraverseBinaryOperator(S);
// RHS might be an opaque expression, if this is a property assignment. We
// have to visit it manually as we don't necessarily visit the setter/getter
// message sends if just the property was selected.
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(S->getRHS()))
Base::TraverseStmt(OVE->getSourceExpr());
return Base::TraverseBinaryOperator(S);
}
};
/// Traverses the extracted code and rewrites the uses of captured variables
/// that are passed into the extracted function using a pointer.
class CapturedVariableCaptureByPointerRewriter
: public PseudoObjectRewriter<CapturedVariableCaptureByPointerRewriter> {
public:
const VarDecl *TargetVD;
Rewriter &SourceRewriter;
CapturedVariableCaptureByPointerRewriter(const VarDecl *VD,
Rewriter &SourceRewriter)
: TargetVD(VD), SourceRewriter(SourceRewriter) {}
bool isTargetDeclRefExpr(const Expr *E) {
const auto *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE)
return false;
return dyn_cast<VarDecl>(DRE->getDecl()) == TargetVD;
}
void dereferenceTargetVar(const Expr *E, bool WrapInParens = false) {
SourceRewriter.InsertTextBefore(E->getBeginLoc(),
WrapInParens ? "(*" : "*");
if (WrapInParens)
SourceRewriter.InsertTextAfterToken(E->getEndLoc(), ")");
}
bool VisitDeclRefExpr(const DeclRefExpr *E) {
const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
if (VD != TargetVD)
return true;
dereferenceTargetVar(E);
return true;
}
bool TraverseUnaryOperator(UnaryOperator *E) {
if (E->getOpcode() != UO_AddrOf)
return RecursiveASTVisitor::TraverseUnaryOperator(E);
if (const auto *DRE =
dyn_cast<DeclRefExpr>(E->getSubExpr()->IgnoreParenCasts())) {
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
if (VD == TargetVD) {
// Remove the '&' as the variable is now a pointer.
SourceRewriter.RemoveText(
CharSourceRange::getTokenRange(E->getBeginLoc(), E->getBeginLoc()));
return true;
}
}
return RecursiveASTVisitor::TraverseUnaryOperator(E);
}
bool TraverseMemberExpr(MemberExpr *E) {
if (!E->isArrow()) {
if (const auto *DRE =
dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenCasts())) {
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
if (VD == TargetVD) {
// Replace '.' with '->'.
SourceRewriter.ReplaceText(E->getOperatorLoc(), 1, "->");
return true;
}
}
} else if (isTargetDeclRefExpr(E->getBase()->IgnoreImpCasts())) {
// Ensure the variable is wrapped in parenthesis when it's the base of
// '->' operator.
dereferenceTargetVar(E->getBase(), /*WrapInParens=*/true);
return true;
}
return RecursiveASTVisitor::TraverseMemberExpr(E);
}
};
/// Traverses the extracted code and rewrites the uses of 'this' that can be
/// rewritten as references.
class CapturedThisReferenceRewriter
: public PseudoObjectRewriter<CapturedThisReferenceRewriter> {
public:
Rewriter &SourceRewriter;
llvm::SmallPtrSet<const CXXThisExpr *, 8> RewrittenExpressions;
CapturedThisReferenceRewriter(Rewriter &SourceRewriter)
: SourceRewriter(SourceRewriter) {}
void rewriteThis(const CXXThisExpr *E) {
RewrittenExpressions.insert(E);
if (!E->isImplicit())
SourceRewriter.ReplaceText(E->getBeginLoc(), 4, "object");
else
SourceRewriter.InsertText(E->getBeginLoc(), "object");
}
bool VisitMemberExpr(const MemberExpr *E) {
const auto *This =
dyn_cast<CXXThisExpr>(E->getBase()->IgnoreParenImpCasts());
if (This) {
rewriteThis(This);
if (!This->isImplicit() && E->isArrow())
SourceRewriter.ReplaceText(E->getOperatorLoc(), 2, ".");
else
SourceRewriter.InsertText(E->getBase()->getEndLoc(), ".");
}
return true;
}
};
/// Traverses the extracted code and rewrites the uses of 'this' into '&object'.
class CapturedThisPointerRewriter
: public PseudoObjectRewriter<CapturedThisPointerRewriter> {
public:
Rewriter &SourceRewriter;
const llvm::SmallPtrSetImpl<const CXXThisExpr *> &RewrittenExpressions;
CapturedThisPointerRewriter(
Rewriter &SourceRewriter,
const llvm::SmallPtrSetImpl<const CXXThisExpr *> &RewrittenExpressions)
: SourceRewriter(SourceRewriter),
RewrittenExpressions(RewrittenExpressions) {}
void replace(const CXXThisExpr *E, StringRef Text) {
SourceRewriter.ReplaceText(E->getBeginLoc(), 4, Text);
}
bool VisitCXXThisExpr(const CXXThisExpr *E) {
if (RewrittenExpressions.count(E))
return true;
if (!E->isImplicit())
replace(E, "&object");
return true;
}
bool TraverseUnaryOperator(UnaryOperator *E) {
if (E->getOpcode() != UO_Deref)
return RecursiveASTVisitor::TraverseUnaryOperator(E);
if (const auto *This =
dyn_cast<CXXThisExpr>(E->getSubExpr()->IgnoreParenImpCasts())) {
if (!This->isImplicit()) {
// Remove the '*' as the variable is now a reference.
SourceRewriter.RemoveText(
CharSourceRange::getTokenRange(E->getBeginLoc(), E->getBeginLoc()));
replace(This, "object");
return true;
}
}
return RecursiveASTVisitor::TraverseUnaryOperator(E);
}
};
/// Traverses the extracted code and rewrites the uses of 'self' into 'object'.
class CapturedSelfRewriter : public PseudoObjectRewriter<CapturedSelfRewriter> {
public:
Rewriter &SourceRewriter;
const ImplicitParamDecl *SelfDecl;
CapturedSelfRewriter(Rewriter &SourceRewriter,
const ImplicitParamDecl *SelfDecl)
: SourceRewriter(SourceRewriter), SelfDecl(SelfDecl) {
assert(SelfDecl);
}
bool VisitDeclRefExpr(const DeclRefExpr *E) {
const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
if (!VD || VD != SelfDecl)
return true;
if (E->getBeginLoc().isInvalid())
return true;
SourceRewriter.ReplaceText(E->getBeginLoc(), 4, "object");
return true;
}
void insertObjectForImplicitSelf(const Expr *E, SourceLocation Loc,
StringRef Text) {
const auto *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE)
return;
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
if (!VD || VD != SelfDecl || DRE->getBeginLoc().isValid())
return;
SourceRewriter.InsertText(Loc, Text);
}
bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) {
insertObjectForImplicitSelf(E->getBase()->IgnoreImpCasts(),
E->getBeginLoc(), "object->");
return true;
}
};
/// Traverses the extracted code and rewrites the uses of 'self' into the name
/// of the class.
class CapturedClassSelfRewriter
: public PseudoObjectRewriter<CapturedClassSelfRewriter> {
public:
Rewriter &SourceRewriter;
StringRef ClassName;
const ImplicitParamDecl *SelfDecl;
CapturedClassSelfRewriter(Rewriter &SourceRewriter, StringRef ClassName,
const ImplicitParamDecl *SelfDecl)
: SourceRewriter(SourceRewriter), ClassName(ClassName),
SelfDecl(SelfDecl) {
assert(SelfDecl);
}
bool VisitDeclRefExpr(const DeclRefExpr *E) {
const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
if (!VD || VD != SelfDecl || E->getBeginLoc().isInvalid())
return true;
SourceRewriter.ReplaceText(E->getBeginLoc(), 4, ClassName);
return true;
}
};
/// Traverses the extracted code and rewrites the uses of 'super' into
/// 'superObject' or the name of the super class.
class CapturedSuperRewriter
: public PseudoObjectRewriter<CapturedSuperRewriter> {
public:
Rewriter &SourceRewriter;
StringRef ReplacementString;
CapturedSuperRewriter(Rewriter &SourceRewriter, StringRef ReplacementString)
: SourceRewriter(SourceRewriter), ReplacementString(ReplacementString) {}
void rewriteSuper(SourceLocation Loc) {
SourceRewriter.ReplaceText(Loc, strlen("super"), ReplacementString);
}
bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
if (E->isSuperReceiver())
rewriteSuper(E->getReceiverLocation());
return true;
}
bool VisitObjCMessageExpr(const ObjCMessageExpr *E) {
if (E->getSuperLoc().isValid())
rewriteSuper(E->getSuperLoc());
return true;
}
};
struct ExtractionSemicolonPolicy {
bool IsNeededInExtractedFunction;
bool IsNeededInOriginalFunction;
static ExtractionSemicolonPolicy neededInExtractedFunction() {
return {true, false};
}
static ExtractionSemicolonPolicy neededInOriginalFunction() {
return {false, true};
}
static ExtractionSemicolonPolicy neededInBoth() { return {true, true}; }
};
} // end anonymous namespace
ExtractionSemicolonPolicy
computeSemicolonExtractionPolicy(const Stmt *S, SourceRange &ExtractedRange,
const SourceManager &SM,
const LangOptions &LangOpts) {
if (isa<Expr>(S))
return ExtractionSemicolonPolicy::neededInExtractedFunction();
bool NeedsSemi = isSemicolonRequiredAfter(S);
if (!NeedsSemi)
return ExtractionSemicolonPolicy::neededInOriginalFunction();
SourceLocation End = ExtractedRange.getEnd();
if (isSemicolonAtLocation(End, SM, LangOpts))
return ExtractionSemicolonPolicy::neededInOriginalFunction();
SourceLocation NextTokenLoc =
Lexer::findNextTokenLocationAfterTokenAt(End, SM, LangOpts);
if (NextTokenLoc.isValid() &&
isSemicolonAtLocation(NextTokenLoc, SM, LangOpts) &&
areOnSameLine(NextTokenLoc, End, SM)) {
ExtractedRange.setEnd(NextTokenLoc);
return ExtractionSemicolonPolicy::neededInOriginalFunction();
}
return ExtractionSemicolonPolicy::neededInBoth();
}
PrintingPolicy getPrintingPolicy(const ASTContext &Context,
const Preprocessor &PP) {
PrintingPolicy Policy = Context.getPrintingPolicy();
// Our printing policy is copied over the ASTContext printing policy whenever
// a diagnostic is emitted, so recompute it.
Policy.Bool = Context.getLangOpts().Bool;
// FIXME: This is duplicated with Sema.cpp. When upstreaming this should be
// cleaned up.
if (!Policy.Bool) {
if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) {
Policy.Bool = BoolMacro->isObjectLike() &&
BoolMacro->getNumTokens() == 1 &&
BoolMacro->getReplacementToken(0).is(tok::kw__Bool);
}
}
return Policy;
}
static QualType getFunctionLikeParentDeclReturnType(const Decl *D) {
// FIXME: might need to handle ObjC blocks in the future.
if (const auto *M = dyn_cast<ObjCMethodDecl>(D))
return M->getReturnType();
return cast<FunctionDecl>(D)->getReturnType();
}
static const Stmt *getEnclosingDeclBody(const Decl *D) {
// FIXME: might need to handle ObjC blocks in the future.
if (const auto *M = dyn_cast<ObjCMethodDecl>(D))
return M->getBody();
return cast<FunctionDecl>(D)->getBody();
}
static bool isEnclosingMethodConst(const Decl *D) {
if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
return MD->isConst();
return false;
}
static bool isEnclosingMethodStatic(const Decl *D) {
if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
return MD->isStatic();
return false;
}
static bool isEnclosingMethodOutOfLine(const Decl *D) {
const auto *MD = dyn_cast<CXXMethodDecl>(D);
if (!MD)
return false;
return MD->isOutOfLine();
}
static void printEnclosingMethodScope(const Decl *D, llvm::raw_ostream &OS,
const PrintingPolicy &PP) {
const auto *MD = dyn_cast<CXXMethodDecl>(D);
if (!MD)
return;
if (!MD->isOutOfLine() || !MD->getQualifier())
return;
MD->getQualifier()->print(OS, PP);
}
static SourceLocation
computeFunctionExtractionLocation(const Decl *D, bool IsMethodExtraction) {
if (!IsMethodExtraction && isa<CXXMethodDecl>(D)) {
// Code from methods that defined in class bodies should be extracted to a
// function defined just before the class.
while (const auto *RD = dyn_cast<CXXRecordDecl>(D->getLexicalDeclContext()))
D = RD;
}
return D->getBeginLoc();
}
namespace {
enum class MethodDeclarationPlacement { After, Before };
/// \brief Represents an entity captured from the original function that's
/// passed into the new function/method.
struct CapturedVariable {
const VarDecl *VD;
const FieldDecl *FD;
QualType ThisType;
bool PassByRefOrPtr;
bool IsRefOrPtrConst;
bool IsThisSelf = false;
bool IsThisSuper = false;
bool TakeAddress = false;
QualType ParameterType;
CapturedVariable(const VarDecl *VD, bool PassByRefOrPtr, bool IsRefOrPtrConst)
: VD(VD), FD(nullptr), PassByRefOrPtr(PassByRefOrPtr),
IsRefOrPtrConst(IsRefOrPtrConst) {}
CapturedVariable(const FieldDecl *FD, bool PassByRefOrPtr,
bool IsRefOrPtrConst)
: VD(nullptr), FD(FD), PassByRefOrPtr(PassByRefOrPtr),
IsRefOrPtrConst(IsRefOrPtrConst) {}
CapturedVariable(QualType ThisType, bool PassByRefOrPtr, bool IsConst)
: VD(nullptr), FD(nullptr), ThisType(ThisType),
PassByRefOrPtr(PassByRefOrPtr), IsRefOrPtrConst(IsConst) {}
static CapturedVariable getThis(QualType T, bool IsConst) {
return CapturedVariable(T, /*PassByRefOrPtr=*/true, /*IsConst*/ IsConst);
}
static CapturedVariable getSelf(QualType T) {
auto Result =
CapturedVariable(T, /*PassByRefOrPtr=*/false, /*IsConst*/ false);
Result.IsThisSelf = true;
return Result;
}
static CapturedVariable getSuper(QualType T) {
auto Result =
CapturedVariable(T, /*PassByRefOrPtr=*/false, /*IsConst*/ false);
Result.IsThisSuper = true;
return Result;
}
StringRef getName() const {
return VD ? VD->getName()
: FD ? FD->getName() : IsThisSuper ? "superObject" : "object";
}
StringRef getExpr() const {
return ThisType.isNull()
? getName()
: IsThisSelf ? "self" : IsThisSuper ? "super.self" : "*this";
}
QualType getType() const {
return VD ? VD->getType() : FD ? FD->getType() : ThisType;
}
};
} // end anonymous namespace
static std::pair<SourceLocation, MethodDeclarationPlacement>
computeAppropriateExtractionLocationForMethodDeclaration(
const CXXMethodDecl *D) {
const CXXRecordDecl *RD = D->getParent();
// Try to put the new declaration after the last method, or just before the
// end of the class.
SourceLocation Loc;
for (const CXXMethodDecl *M : RD->methods()) {
if (M->isImplicit())
continue;
Loc = M->getEndLoc();
}
return Loc.isValid() ? std::make_pair(Loc, MethodDeclarationPlacement::After)
: std::make_pair(RD->getEndLoc(),
MethodDeclarationPlacement::Before);
}
static bool isInHeader(SourceLocation Loc, const SourceManager &SM) {
// Base the header decision on the filename.
StringRef Extension = llvm::sys::path::extension(SM.getFilename(Loc));
if (Extension.empty())
return false;
return llvm::StringSwitch<bool>(Extension.drop_front())
.Case("h", true)
.Case("hpp", true)
.Case("hh", true)
.Case("h++", true)
.Case("hxx", true)
.Case("inl", true)
.Case("def", true)
.Default(false);
}
llvm::Expected<RefactoringResult>
ExtractOperation::performExpressionExtraction(ASTContext &Context,
PrintingPolicy &PP) {
assert(isExpressionExtraction() && "Not an expression extraction");
std::vector<RefactoringReplacement> Replacements;
const Expr *E = cast<Expr>(S);
QualType VarType = findExpressionLexicalType(FunctionLikeParentDecl, E,
E->getType(), PP, Context);
StringRef VarName = "extractedExpr";
auto CreatedSymbol = std::make_unique<RefactoringResultAssociatedSymbol>(
SymbolName(VarName, /*IsObjectiveCSelector=*/false));
SourceRange ExtractedTokenRange = CandidateExtractionInfo[0].Range;
SourceRange ExtractedCharRange = SourceRange(
ExtractedTokenRange.getBegin(),
getPreciseTokenLocEnd(ExtractedTokenRange.getEnd(),
Context.getSourceManager(), Context.getLangOpts()));
// Create the variable that will hold the value of the duplicate expression.
std::string VariableDeclarationString;
llvm::raw_string_ostream OS(VariableDeclarationString);
VarType.print(OS, PP, /*PlaceHolder*/ VarName);
// FIXME: We should hook into the TypePrinter when moving over to llvm.org
// instead and get the offset from it.
unsigned NameOffset = StringRef(OS.str()).find(VarName);
OS << " = ";
OS << Lexer::getSourceText(CharSourceRange::getCharRange(ExtractedCharRange),
Context.getSourceManager(), Context.getLangOpts());
OS << ";\n";
// Variable declaration.
SourceLocation InsertionLoc =
extract::locationForExtractedVariableDeclaration(
E, FunctionLikeParentDecl, Context.getSourceManager());
Replacements.push_back(RefactoringReplacement(
SourceRange(InsertionLoc, InsertionLoc), OS.str(), CreatedSymbol.get(),
RefactoringReplacement::AssociatedSymbolLocation(
ArrayRef(NameOffset), /*IsDeclaration=*/true)));
// Replace the expression with the variable.
Replacements.push_back(
RefactoringReplacement(ExtractedCharRange, VarName, CreatedSymbol.get(),
/*NameOffset=*/ArrayRef(unsigned(0))));
RefactoringResult Result(std::move(Replacements));
Result.AssociatedSymbols.push_back(std::move(CreatedSymbol));
return std::move(Result);
}
llvm::Expected<RefactoringResult> ExtractOperation::perform(
ASTContext &Context, const Preprocessor &ThePreprocessor,
const RefactoringOptionSet &Options, unsigned SelectedCandidateIndex) {
std::vector<RefactoringReplacement> Replacements;
SourceManager &SM = Context.getSourceManager();
const LangOptions &LangOpts = Context.getLangOpts();
Rewriter SourceRewriter(SM, LangOpts);
PrintingPolicy PP = getPrintingPolicy(Context, ThePreprocessor);
PP.UseStdFunctionForLambda = true;
PP.SuppressStrongLifetime = true;
PP.SuppressLifetimeQualifiers = true;
PP.SuppressUnwrittenScope = true;
if (isExpressionExtraction())
return performExpressionExtraction(Context, PP);
const Stmt *S =
CandidateExtractionInfo[SelectedCandidateIndex].AnalyzedStatement
? CandidateExtractionInfo[SelectedCandidateIndex].AnalyzedStatement
: this->S;
const auto *EnclosingObjCMethod =
dyn_cast<ObjCMethodDecl>(FunctionLikeParentDecl);
// Find the variables that are captured by the extracted code.
ExtractedCodeVisitor Visitor(/*SelfDecl=*/EnclosingObjCMethod
? EnclosingObjCMethod->getSelfDecl()
: nullptr);
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
Visitor.InspectExtractedStmt(const_cast<Stmt *>(S), Context);
} else
Visitor.InspectExtractedStmt(const_cast<Stmt *>(S), Context);
// Compute the return type.
bool IsExpr = isLexicalExpression(S, ParentStmt);
QualType ReturnType;
if (IsExpr || Visitor.HasReturnInExtracted) {
if (const auto *E = dyn_cast<Expr>(S)) {
assert(!ExtractedStmtRange);
ReturnType = findExpressionLexicalType(FunctionLikeParentDecl, E,
E->getType(), PP, Context);
} else
ReturnType = getFunctionLikeParentDeclReturnType(FunctionLikeParentDecl);
} else
ReturnType = Context.VoidTy;
// Sort the captured variables.
std::vector<CapturedVariable> CapturedVariables;
llvm::SmallPtrSet<const VarDecl *, 4> VariablesDefinedInExtractedCode;
CapturedVariables.reserve(Visitor.CapturedVariables.size() +
Visitor.CapturedFields.size());
for (const auto &I : Visitor.CapturedVariables) {
if (I.getSecond().IsDefined) {
VariablesDefinedInExtractedCode.insert(I.getFirst());
continue;
}
CapturedVariables.push_back(
CapturedVariable(I.getFirst(), I.getSecond().isPassedByRefOrPtr(),
I.getSecond().isRefOrPtrConst()));
}
// Take a look at the variables that are defined in the extracted code.
VariableDefinedInExtractedCodeUseAfterExtractionFinder
UsedAfterExtractionFinder(ExtractedStmtRange ? *ExtractedStmtRange->Last
: S,
VariablesDefinedInExtractedCode);
UsedAfterExtractionFinder.TraverseStmt(
const_cast<Stmt *>(getEnclosingDeclBody(FunctionLikeParentDecl)));
struct RedeclaredVariable {
const VarDecl *VD;
int OrderingPriority;
};
llvm::SmallVector<RedeclaredVariable, 4> RedeclaredVariables;
bool CanUseReturnForVariablesUsedAfterwards =
!isa<Expr>(S) && ReturnType->isVoidType() &&
UsedAfterExtractionFinder.VariablesUsedAfterExtraction.size() == 1;
if (CanUseReturnForVariablesUsedAfterwards) {
// Avoid using the return value for the variable that's used afterwards as
// another variable might shadow it at the point of a 'return' that we
// have to rewrite to 'return var'.
const VarDecl *VD =
*UsedAfterExtractionFinder.VariablesUsedAfterExtraction.begin();
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange) {
if (PossibleShadowingVariableFinder::hasShadowingVar(VD, S)) {
CanUseReturnForVariablesUsedAfterwards = false;
break;
}
}
} else
CanUseReturnForVariablesUsedAfterwards =
!PossibleShadowingVariableFinder::hasShadowingVar(VD, S);
}
if (CanUseReturnForVariablesUsedAfterwards) {
for (const auto &I : Visitor.CapturedVariables) {
if (!I.getSecond().IsDefined ||
!UsedAfterExtractionFinder.VariablesUsedAfterExtraction.count(
I.getFirst()))
continue;
RedeclaredVariables.push_back(
{I.getFirst(), I.getSecond().DefineOrderingPriority});
ReturnType = I.getFirst()->getType();
// Const qualifier can be dropped as we don't want to declare the return
// type as 'const'.
if (ReturnType.isConstQualified())
ReturnType.removeLocalConst();
break;
}
if (Visitor.HasReturnInExtracted) {
ReturnRewriter ReturnsRewriter(SourceRewriter,
RedeclaredVariables.front().VD->getName());
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
ReturnsRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
ReturnsRewriter.TraverseStmt(const_cast<Stmt *>(S));
}
} else {
for (const auto &I : Visitor.CapturedVariables) {
if (!I.getSecond().IsDefined ||
!UsedAfterExtractionFinder.VariablesUsedAfterExtraction.count(
I.getFirst()))
continue;
RedeclaredVariables.push_back(
{I.getFirst(), I.getSecond().DefineOrderingPriority});
if (!I.getSecond().IsUsed)
continue;
// Pass the variable that's defined in the extracted code but used
// afterwards as a parameter only when it's actually used in the extracted
// code.
CapturedVariables.push_back(CapturedVariable(I.getFirst(),
/*PassByRefOrPtr=*/true,
/*IsRefOrPtrConst=*/false));
}
std::sort(RedeclaredVariables.begin(), RedeclaredVariables.end(),
[](const RedeclaredVariable &X, const RedeclaredVariable &Y) {
return X.OrderingPriority < Y.OrderingPriority;
});
DefinedInExtractedCodeDeclStmtRewriter DeclRewriter(
SourceRewriter, UsedAfterExtractionFinder.VariablesUsedAfterExtraction,
PP);
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
DeclRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
DeclRewriter.TraverseStmt(const_cast<Stmt *>(S));
}
// Capture any fields if necessary.
bool IsThisConstInCapturedFieldUses = true;
if (!isMethodExtraction()) {
for (const auto &I : Visitor.CapturedFields) {
if (I.getSecond().isPassedByRefOrPtr() &&
!I.getSecond().isRefOrPtrConst())
IsThisConstInCapturedFieldUses = false;
// Private fields that use explicit 'this' should be captured using 'this'
// even if they might end up being inaccessible in the extracted function.
if (I.getSecond().IsFieldCapturedWithThis)
continue;
CapturedVariables.push_back(
CapturedVariable(I.getFirst(), I.getSecond().isPassedByRefOrPtr(),
I.getSecond().isRefOrPtrConst()));
}
}
std::sort(CapturedVariables.begin(), CapturedVariables.end(),
[](const CapturedVariable &X, const CapturedVariable &Y) {
return X.getName() < Y.getName();
});
// 'This'/'self' should be passed-in first.
if (!isMethodExtraction() && Visitor.CaptureThis) {
CapturedVariables.insert(
CapturedVariables.begin(),
CapturedVariable::getThis(
Visitor.ThisRecordType,
IsThisConstInCapturedFieldUses &&
Visitor.IsThisConstForNonCapturedFieldUses));
CapturedThisReferenceRewriter ThisRewriter(SourceRewriter);
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
ThisRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
ThisRewriter.TraverseStmt(const_cast<Stmt *>(S));
CapturedThisPointerRewriter PtrThisRewriter(
SourceRewriter, ThisRewriter.RewrittenExpressions);
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
PtrThisRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
PtrThisRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else if (!isMethodExtraction() && Visitor.CaptureSelf &&
EnclosingObjCMethod) {
if (EnclosingObjCMethod->isInstanceMethod()) {
// Instance methods rewrite 'self' into an 'object' parameter.
CapturedVariables.insert(CapturedVariables.begin(),
CapturedVariable::getSelf(Visitor.SelfType));
CapturedSelfRewriter SelfRewriter(SourceRewriter,
EnclosingObjCMethod->getSelfDecl());
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
SelfRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
SelfRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else {
// Class methods rewrite 'self' into the class name and don't pass 'self'
// as a parameter.
CapturedClassSelfRewriter SelfRewriter(
SourceRewriter, EnclosingObjCMethod->getClassInterface()->getName(),
EnclosingObjCMethod->getSelfDecl());
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
SelfRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
SelfRewriter.TraverseStmt(const_cast<Stmt *>(S));
}
}
if (!isMethodExtraction() && Visitor.CaptureSuper && EnclosingObjCMethod) {
if (EnclosingObjCMethod->isInstanceMethod())
// Instance methods rewrite 'super' into an 'superObject' parameter.
CapturedVariables.insert(Visitor.CaptureSelf
? CapturedVariables.begin() + 1
: CapturedVariables.begin(),
CapturedVariable::getSuper(Visitor.SuperType));
CapturedSuperRewriter SuperRewriter(
SourceRewriter, EnclosingObjCMethod->isInstanceMethod()
? "superObject"
: EnclosingObjCMethod->getClassInterface()
->getSuperClass()
->getName());
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
SuperRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
SuperRewriter.TraverseStmt(const_cast<Stmt *>(S));
}
// Compute the parameter types.
for (auto &Var : CapturedVariables) {
QualType T = Var.getType();
// Array types are passed into the extracted function using a pointer.
if (const auto *AT = Context.getAsArrayType(T))
T = Context.getPointerType(AT->getElementType());
// Captured records and other mutated variables are passed into the
// extracted function either using a reference (C++) or a pointer.
if ((T->isRecordType() || Var.PassByRefOrPtr) && !T->isReferenceType()) {
// Add a 'const' qualifier to the record when it's not mutated in the
// extracted code or when we are taking the address of the captured
// variable for just a 'const' use.
if (!Var.PassByRefOrPtr || Var.IsRefOrPtrConst)
T.addConst();
if (LangOpts.CPlusPlus)
T = Context.getLValueReferenceType(T);
else {
T = Context.getPointerType(T);
CapturedVariableCaptureByPointerRewriter UseRewriter(Var.VD,
SourceRewriter);
if (ExtractedStmtRange) {
for (const Stmt *S : *ExtractedStmtRange)
UseRewriter.TraverseStmt(const_cast<Stmt *>(S));
} else
UseRewriter.TraverseStmt(const_cast<Stmt *>(S));
Var.TakeAddress = true;
}
}
// Const qualifier can be dropped as we don't want to declare the parameter
// as 'const'.
else if (T.isLocalConstQualified())
T.removeLocalConst();
Var.ParameterType = T;
}
// TODO: Choose a better name if there are collisions.
StringRef ExtractedName = "extracted";
llvm::SmallVector<StringRef, 4> ExtractedNamePieces;
ExtractedNamePieces.push_back(ExtractedName);
if (isMethodExtraction() && EnclosingObjCMethod &&
!CapturedVariables.empty()) {
for (const auto &Var : ArrayRef(CapturedVariables).drop_front())
ExtractedNamePieces.push_back(Var.getName());
}
std::unique_ptr<RefactoringResultAssociatedSymbol> CreatedSymbol =
std::make_unique<RefactoringResultAssociatedSymbol>(
SymbolName(ExtractedNamePieces));
SourceLocation FunctionExtractionLoc = computeFunctionExtractionLocation(
FunctionLikeParentDecl, isMethodExtraction());
FunctionExtractionLoc =
getLocationOfPrecedingComment(FunctionExtractionLoc, SM, LangOpts);
// Create the replacement that contains the new function.
auto PrintFunctionHeader =
[&](llvm::raw_string_ostream &OS,
bool IsDefinition =
true) -> RefactoringReplacement::AssociatedSymbolLocation {
if (isMethodExtraction() && EnclosingObjCMethod) {
OS << (EnclosingObjCMethod->isClassMethod() ? '+' : '-') << " (";
ReturnType.print(OS, PP);
OS << ')';
llvm::SmallVector<unsigned, 4> NameOffsets;
NameOffsets.push_back(OS.str().size());
OS << ExtractedName;
bool IsFirst = true;
for (const auto &Var : CapturedVariables) {
if (!IsFirst) {
OS << ' ';
NameOffsets.push_back(OS.str().size());
OS << Var.getName();
}
IsFirst = false;
OS << ":(";
Var.ParameterType.print(OS, PP);
OS << ')' << Var.getName();
}
return RefactoringReplacement::AssociatedSymbolLocation(
NameOffsets, /*IsDeclaration=*/true);
}
auto *FD = dyn_cast<FunctionDecl>(FunctionLikeParentDecl);
if (isMethodExtraction() && IsDefinition &&
!FD->getDescribedFunctionTemplate()) {
// Print the class template parameter lists for an out-of-line method.
for (unsigned I = 0,
NumTemplateParams = FD->getNumTemplateParameterLists();
I < NumTemplateParams; ++I) {
FD->getTemplateParameterList(I)->print(OS, Context, PP);
OS << "\n";
}
}
if (isMethodExtraction() && isEnclosingMethodStatic(FunctionLikeParentDecl))
OS << "static ";
else if (!isMethodExtraction())
OS << (isInHeader(FunctionExtractionLoc, SM) ? "inline " : "static ");
std::string QualifiedName;
llvm::raw_string_ostream NameOS(QualifiedName);
if (isMethodExtraction() && IsDefinition)
printEnclosingMethodScope(FunctionLikeParentDecl, NameOS, PP);
NameOS << ExtractedName;
NameOS << '(';
bool IsFirst = true;
for (const auto &Var : CapturedVariables) {
if (!IsFirst)
NameOS << ", ";
IsFirst = false;
Var.ParameterType.print(NameOS, PP, /*PlaceHolder=*/Var.getName());
}
NameOS << ')';
ReturnType.print(OS, PP, NameOS.str());
unsigned NameOffset = OS.str().find(std::string(ExtractedName));
if (isMethodExtraction() && isEnclosingMethodConst(FunctionLikeParentDecl))
OS << " const";
return RefactoringReplacement::AssociatedSymbolLocation(
NameOffset, /*IsDeclaration=*/true);
;
};
if (isMethodExtraction() &&
isEnclosingMethodOutOfLine(FunctionLikeParentDecl)) {
// The location of the declaration should be either before the original
// declararation, or, if this method has not declaration, somewhere
// appropriate in the class.
MethodDeclarationPlacement Placement;
SourceLocation DeclarationLoc;
if (FunctionLikeParentDecl->getCanonicalDecl() != FunctionLikeParentDecl) {
DeclarationLoc = computeFunctionExtractionLocation(
FunctionLikeParentDecl->getCanonicalDecl(), isMethodExtraction());
Placement = MethodDeclarationPlacement::Before;
} else {
auto LocAndPlacement =
computeAppropriateExtractionLocationForMethodDeclaration(
cast<CXXMethodDecl>(FunctionLikeParentDecl));
DeclarationLoc = LocAndPlacement.first;
Placement = LocAndPlacement.second;
}
if (Placement == MethodDeclarationPlacement::Before)
DeclarationLoc =
getLocationOfPrecedingComment(DeclarationLoc, SM, LangOpts);
else
DeclarationLoc = getLastLineLocationUnlessItHasOtherTokens(
getPreciseTokenLocEnd(DeclarationLoc, SM, LangOpts), SM, LangOpts);
// Add a replacement for the method declaration if necessary.
std::string DeclarationString;
llvm::raw_string_ostream OS(DeclarationString);
if (Placement == MethodDeclarationPlacement::After)
OS << "\n\n";
RefactoringReplacement::AssociatedSymbolLocation SymbolLoc =
PrintFunctionHeader(OS, /*IsDefinition=*/false);
OS << ";\n";
if (Placement == MethodDeclarationPlacement::Before)
OS << "\n";
Replacements.push_back(RefactoringReplacement(
SourceRange(DeclarationLoc, DeclarationLoc), std::move(OS.str()),
CreatedSymbol.get(), SymbolLoc));
}
std::string ExtractedCode;
llvm::raw_string_ostream ExtractedOS(ExtractedCode);
RefactoringReplacement::AssociatedSymbolLocation SymbolLoc =
PrintFunctionHeader(ExtractedOS);
ExtractedOS << " {\n";
if (IsExpr && !ReturnType->isVoidType())
ExtractedOS << "return ";
SourceRange ExtractedTokenRange =
CandidateExtractionInfo[SelectedCandidateIndex].Range;
auto Semicolons = computeSemicolonExtractionPolicy(
ExtractedStmtRange ? *(ExtractedStmtRange->Last) : S, ExtractedTokenRange,
SM, LangOpts);
bool ShouldCopyBlock = false;
if (IsExpr && !LangOpts.ObjCAutoRefCount &&
ReturnType->isBlockPointerType()) {
// We can't return local blocks directly without ARC; they should be copied.
// FIXME: This is overly pessimistic, as we only need the copy for local
// blocks.
ExtractedOS << "[(";
ShouldCopyBlock = true;
}
ExtractedOS << SourceRewriter.getRewrittenText(ExtractedTokenRange);
if (ShouldCopyBlock)
ExtractedOS << ") copy]";
if (Semicolons.IsNeededInExtractedFunction)
ExtractedOS << ';';
if (CanUseReturnForVariablesUsedAfterwards)
ExtractedOS << "\nreturn " << RedeclaredVariables.front().VD->getName()
<< ";";
ExtractedOS << "\n}\n\n";
Replacements.push_back(RefactoringReplacement(
SourceRange(FunctionExtractionLoc, FunctionExtractionLoc),
std::move(ExtractedOS.str()), CreatedSymbol.get(), SymbolLoc));
// Create a replacements that removes the extracted code in favor of the
// function call.
std::string InsertedCode;
llvm::raw_string_ostream InsertedOS(InsertedCode);
// We might have to declare variables that were declared in the extracted code
// but still used afterwards.
if (CanUseReturnForVariablesUsedAfterwards) {
const auto &Var = RedeclaredVariables.front();
Var.VD->getType().print(InsertedOS, PP);
InsertedOS << ' ' << Var.VD->getName() << " = ";
} else {
for (const auto &Var : RedeclaredVariables) {
Var.VD->getType().print(InsertedOS, PP);
InsertedOS << ' ' << Var.VD->getName() << ";\n";
}
}
InsertedOS << CandidateExtractionInfo[SelectedCandidateIndex].PreInsertedText;
llvm::SmallVector<unsigned, 4> NameOffsets;
if (isMethodExtraction() && EnclosingObjCMethod) {
InsertedOS << "[self ";
NameOffsets.push_back(InsertedOS.str().size());
InsertedOS << ExtractedName;
bool IsFirst = true;
for (const auto &Var : CapturedVariables) {
if (!IsFirst) {
InsertedOS << ' ';
NameOffsets.push_back(InsertedOS.str().size());
InsertedOS << Var.getName();
}
IsFirst = false;
InsertedOS << ':';
if (Var.TakeAddress)
InsertedOS << '&';
InsertedOS << Var.getExpr();
}
InsertedOS << ']';
} else {
NameOffsets.push_back(InsertedOS.str().size());
InsertedOS << ExtractedName << '(';
bool IsFirst = true;
for (const auto &Var : CapturedVariables) {
if (!IsFirst)
InsertedOS << ", ";
IsFirst = false;
if (Var.TakeAddress)
InsertedOS << '&';
InsertedOS << Var.getExpr();
}
InsertedOS << ')';
}
if (Semicolons.IsNeededInOriginalFunction)
InsertedOS << ';';
SourceRange ExtractedCharRange = SourceRange(
ExtractedTokenRange.getBegin(),
getPreciseTokenLocEnd(ExtractedTokenRange.getEnd(), SM, LangOpts));
Replacements.push_back(RefactoringReplacement(
ExtractedCharRange, std::move(InsertedOS.str()), CreatedSymbol.get(),
ArrayRef(NameOffsets)));
RefactoringResult Result(std::move(Replacements));
Result.AssociatedSymbols.push_back(std::move(CreatedSymbol));
return std::move(Result);
}
|