1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
/// FreeBSD-specific code.
///
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
# include <dlfcn.h>
# include <elf.h>
# include <errno.h>
# include <link.h>
# include <pthread.h>
# include <signal.h>
# include <stdio.h>
# include <stdlib.h>
# include <sys/prctl.h>
# include <sys/resource.h>
# include <sys/time.h>
# include <unistd.h>
# include <unwind.h>
# include "hwasan.h"
# include "hwasan_dynamic_shadow.h"
# include "hwasan_interface_internal.h"
# include "hwasan_mapping.h"
# include "hwasan_report.h"
# include "hwasan_thread.h"
# include "hwasan_thread_list.h"
# include "sanitizer_common/sanitizer_common.h"
# include "sanitizer_common/sanitizer_procmaps.h"
# include "sanitizer_common/sanitizer_stackdepot.h"
// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
//
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
// Not currently tested.
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
// Integration tests downstream exist.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
// Tested with check-hwasan on x86_64-linux.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
// Tested with check-hwasan on aarch64-linux-android.
# if !SANITIZER_ANDROID
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL uptr __hwasan_tls;
# endif
namespace __hwasan {
// With the zero shadow base we can not actually map pages starting from 0.
// This constant is somewhat arbitrary.
constexpr uptr kZeroBaseShadowStart = 0;
constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
static void ProtectGap(uptr addr, uptr size) {
__sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
kZeroBaseMaxShadowStart);
}
uptr kLowMemStart;
uptr kLowMemEnd;
uptr kHighMemStart;
uptr kHighMemEnd;
static void PrintRange(uptr start, uptr end, const char *name) {
Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
}
static void PrintAddressSpaceLayout() {
PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
if (kHighShadowEnd + 1 < kHighMemStart)
PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
else
CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
if (kLowShadowEnd + 1 < kHighShadowStart)
PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
else
CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
if (kLowMemEnd + 1 < kLowShadowStart)
PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
else
CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
CHECK_EQ(0, kLowMemStart);
}
static uptr GetHighMemEnd() {
// HighMem covers the upper part of the address space.
uptr max_address = GetMaxUserVirtualAddress();
// Adjust max address to make sure that kHighMemEnd and kHighMemStart are
// properly aligned:
max_address |= (GetMmapGranularity() << kShadowScale) - 1;
return max_address;
}
static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
__hwasan_shadow_memory_dynamic_address =
FindDynamicShadowStart(shadow_size_bytes);
}
static void MaybeDieIfNoTaggingAbi(const char *message) {
if (!flags()->fail_without_syscall_abi)
return;
Printf("FATAL: %s\n", message);
Die();
}
# define PR_SET_TAGGED_ADDR_CTRL 55
# define PR_GET_TAGGED_ADDR_CTRL 56
# define PR_TAGGED_ADDR_ENABLE (1UL << 0)
# define ARCH_GET_UNTAG_MASK 0x4001
# define ARCH_ENABLE_TAGGED_ADDR 0x4002
# define ARCH_GET_MAX_TAG_BITS 0x4003
static bool CanUseTaggingAbi() {
# if defined(__x86_64__)
unsigned long num_bits = 0;
// Check for x86 LAM support. This API is based on a currently unsubmitted
// patch to the Linux kernel (as of August 2022) and is thus subject to
// change. The patch is here:
// https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
//
// arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
// bits the user can request, or zero if LAM is not supported by the hardware.
if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
reinterpret_cast<uptr>(&num_bits))))
return false;
// The platform must provide enough bits for HWASan tags.
if (num_bits < kTagBits)
return false;
return true;
# else
// Check for ARM TBI support.
return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
# endif // __x86_64__
}
static bool EnableTaggingAbi() {
# if defined(__x86_64__)
// Enable x86 LAM tagging for the process.
//
// arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
// tag bits requested by the user does not exceed that provided by the system.
// arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
// address bits. It is ~0ULL if either LAM is disabled for the process or LAM
// is not supported by the hardware.
if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
return false;
unsigned long mask = 0;
// Make sure the tag bits are where we expect them to be.
if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
reinterpret_cast<uptr>(&mask))))
return false;
// @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
// bits. Therefore these masks must not overlap.
if (mask & kAddressTagMask)
return false;
return true;
# else
// Enable ARM TBI tagging for the process. If for some reason tagging is not
// supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
// -EINVAL.
if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
return false;
// Ensure that TBI is enabled.
if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
PR_TAGGED_ADDR_ENABLE)
return false;
return true;
# endif // __x86_64__
}
void InitializeOsSupport() {
// Check we're running on a kernel that can use the tagged address ABI.
bool has_abi = CanUseTaggingAbi();
if (!has_abi) {
# if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
// Some older Android kernels have the tagged pointer ABI on
// unconditionally, and hence don't have the tagged-addr prctl while still
// allow the ABI.
// If targeting Android and the prctl is not around we assume this is the
// case.
return;
# else
MaybeDieIfNoTaggingAbi(
"HWAddressSanitizer requires a kernel with tagged address ABI.");
# endif
}
if (EnableTaggingAbi())
return;
# if SANITIZER_ANDROID
MaybeDieIfNoTaggingAbi(
"HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
"Check the `sysctl abi.tagged_addr_disabled` configuration.");
# else
MaybeDieIfNoTaggingAbi(
"HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
# endif
}
bool InitShadow() {
// Define the entire memory range.
kHighMemEnd = GetHighMemEnd();
// Determine shadow memory base offset.
InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
// Place the low memory first.
kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
kLowMemStart = 0;
// Define the low shadow based on the already placed low memory.
kLowShadowEnd = MemToShadow(kLowMemEnd);
kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
// High shadow takes whatever memory is left up there (making sure it is not
// interfering with low memory in the fixed case).
kHighShadowEnd = MemToShadow(kHighMemEnd);
kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
// High memory starts where allocated shadow allows.
kHighMemStart = ShadowToMem(kHighShadowStart);
// Check the sanity of the defined memory ranges (there might be gaps).
CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
CHECK_GT(kHighMemStart, kHighShadowEnd);
CHECK_GT(kHighShadowEnd, kHighShadowStart);
CHECK_GT(kHighShadowStart, kLowMemEnd);
CHECK_GT(kLowMemEnd, kLowMemStart);
CHECK_GT(kLowShadowEnd, kLowShadowStart);
CHECK_GT(kLowShadowStart, kLowMemEnd);
if (Verbosity())
PrintAddressSpaceLayout();
// Reserve shadow memory.
ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
// Protect all the gaps.
ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
if (kLowMemEnd + 1 < kLowShadowStart)
ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
if (kLowShadowEnd + 1 < kHighShadowStart)
ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
if (kHighShadowEnd + 1 < kHighMemStart)
ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
return true;
}
void InitThreads() {
CHECK(__hwasan_shadow_memory_dynamic_address);
uptr guard_page_size = GetMmapGranularity();
uptr thread_space_start =
__hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
uptr thread_space_end =
__hwasan_shadow_memory_dynamic_address - guard_page_size;
ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
"hwasan threads", /*madvise_shadow*/ false);
ProtectGap(thread_space_end,
__hwasan_shadow_memory_dynamic_address - thread_space_end);
InitThreadList(thread_space_start, thread_space_end - thread_space_start);
hwasanThreadList().CreateCurrentThread();
}
bool MemIsApp(uptr p) {
// Memory outside the alias range has non-zero tags.
# if !defined(HWASAN_ALIASING_MODE)
CHECK_EQ(GetTagFromPointer(p), 0);
# endif
return (p >= kHighMemStart && p <= kHighMemEnd) ||
(p >= kLowMemStart && p <= kLowMemEnd);
}
void InstallAtExitHandler() { atexit(HwasanAtExit); }
// ---------------------- TSD ---------------- {{{1
extern "C" void __hwasan_thread_enter() {
hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
}
extern "C" void __hwasan_thread_exit() {
Thread *t = GetCurrentThread();
// Make sure that signal handler can not see a stale current thread pointer.
atomic_signal_fence(memory_order_seq_cst);
if (t) {
// Block async signals on the thread as the handler can be instrumented.
// After this point instrumented code can't access essential data from TLS
// and will crash.
// Bionic already calls __hwasan_thread_exit with blocked signals.
if (SANITIZER_GLIBC)
BlockSignals();
hwasanThreadList().ReleaseThread(t);
}
}
# if HWASAN_WITH_INTERCEPTORS
static pthread_key_t tsd_key;
static bool tsd_key_inited = false;
void HwasanTSDThreadInit() {
if (tsd_key_inited)
CHECK_EQ(0, pthread_setspecific(tsd_key,
(void *)GetPthreadDestructorIterations()));
}
void HwasanTSDDtor(void *tsd) {
uptr iterations = (uptr)tsd;
if (iterations > 1) {
CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
return;
}
__hwasan_thread_exit();
}
void HwasanTSDInit() {
CHECK(!tsd_key_inited);
tsd_key_inited = true;
CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
}
# else
void HwasanTSDInit() {}
void HwasanTSDThreadInit() {}
# endif
# if SANITIZER_ANDROID
uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
# else
uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
# endif
# if SANITIZER_ANDROID
void AndroidTestTlsSlot() {
uptr kMagicValue = 0x010203040A0B0C0D;
uptr *tls_ptr = GetCurrentThreadLongPtr();
uptr old_value = *tls_ptr;
*tls_ptr = kMagicValue;
dlerror();
if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
Printf(
"ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
"for dlerror().\n");
Die();
}
*tls_ptr = old_value;
}
# else
void AndroidTestTlsSlot() {}
# endif
static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
// Access type is passed in a platform dependent way (see below) and encoded
// as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
// recoverable. Valid values of Y are 0 to 4, which are interpreted as
// log2(access_size), and 0xF, which means that access size is passed via
// platform dependent register (see below).
# if defined(__aarch64__)
// Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
// access size is stored in X1 register. Access address is always in X0
// register.
uptr pc = (uptr)info->si_addr;
const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
if ((code & 0xff00) != 0x900)
return AccessInfo{}; // Not ours.
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const uptr addr = uc->uc_mcontext.regs[0];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not ours.
const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
# elif defined(__x86_64__)
// Access type is encoded in the instruction following INT3 as
// NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
// RSI register. Access address is always in RDI register.
uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
uint8_t *nop = (uint8_t *)pc;
if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
*(nop + 3) < 0x40)
return AccessInfo{}; // Not ours.
const unsigned code = *(nop + 3);
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not ours.
const uptr size =
size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
# elif SANITIZER_RISCV64
// Access type is encoded in the instruction following EBREAK as
// ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
// X11 register. Access address is always in X10 register.
uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
uint8_t byte1 = *((u8 *)(pc + 0));
uint8_t byte2 = *((u8 *)(pc + 1));
uint8_t byte3 = *((u8 *)(pc + 2));
uint8_t byte4 = *((u8 *)(pc + 3));
uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
bool isFaultShort = false;
bool isEbreak = (ebreak == 0x100073);
bool isShortEbreak = false;
# if defined(__riscv_compressed)
isFaultShort = ((ebreak & 0x3) != 0x3);
isShortEbreak = ((ebreak & 0xffff) == 0x9002);
# endif
// faulted insn is not ebreak, not our case
if (!(isEbreak || isShortEbreak))
return AccessInfo{};
// advance pc to point after ebreak and reconstruct addi instruction
pc += isFaultShort ? 2 : 4;
byte1 = *((u8 *)(pc + 0));
byte2 = *((u8 *)(pc + 1));
byte3 = *((u8 *)(pc + 2));
byte4 = *((u8 *)(pc + 3));
// reconstruct instruction
uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
// check if this is really 32 bit instruction
// code is encoded in top 12 bits, since instruction is supposed to be with
// imm
const unsigned code = (instr >> 20) & 0xffff;
const uptr addr = uc->uc_mcontext.__gregs[10];
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not our case
const uptr size =
size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
# else
# error Unsupported architecture
# endif
return AccessInfo{addr, size, is_store, !is_store, recover};
}
static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
AccessInfo ai = GetAccessInfo(info, uc);
if (!ai.is_store && !ai.is_load)
return false;
SignalContext sig{info, uc};
HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
# if defined(__aarch64__)
uc->uc_mcontext.pc += 4;
# elif defined(__x86_64__)
# elif SANITIZER_RISCV64
// pc points to EBREAK which is 2 bytes long
uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
uint8_t byte1 = (uint8_t)(*(exception_source + 0));
uint8_t byte2 = (uint8_t)(*(exception_source + 1));
uint8_t byte3 = (uint8_t)(*(exception_source + 2));
uint8_t byte4 = (uint8_t)(*(exception_source + 3));
uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
bool isFaultShort = false;
# if defined(__riscv_compressed)
isFaultShort = ((faulted & 0x3) != 0x3);
# endif
uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
# else
# error Unsupported architecture
# endif
return true;
}
static void OnStackUnwind(const SignalContext &sig, const void *,
BufferedStackTrace *stack) {
stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
common_flags()->fast_unwind_on_fatal);
}
void HwasanOnDeadlySignal(int signo, void *info, void *context) {
// Probably a tag mismatch.
if (signo == SIGTRAP)
if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
return;
HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
}
void Thread::InitStackAndTls(const InitState *) {
uptr tls_size;
uptr stack_size;
GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
&tls_size);
stack_top_ = stack_bottom_ + stack_size;
tls_end_ = tls_begin_ + tls_size;
}
uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
CHECK(IsAligned(p, kShadowAlignment));
CHECK(IsAligned(size, kShadowAlignment));
uptr shadow_start = MemToShadow(p);
uptr shadow_size = MemToShadowSize(size);
uptr page_size = GetPageSizeCached();
uptr page_start = RoundUpTo(shadow_start, page_size);
uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
uptr threshold = common_flags()->clear_shadow_mmap_threshold;
if (SANITIZER_LINUX &&
UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
internal_memset((void *)shadow_start, tag, page_start - shadow_start);
internal_memset((void *)page_end, tag,
shadow_start + shadow_size - page_end);
// For an anonymous private mapping MADV_DONTNEED will return a zero page on
// Linux.
ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
} else {
internal_memset((void *)shadow_start, tag, shadow_size);
}
return AddTagToPointer(p, tag);
}
void HwasanInstallAtForkHandler() {
auto before = []() {
HwasanAllocatorLock();
StackDepotLockAll();
};
auto after = []() {
StackDepotUnlockAll();
HwasanAllocatorUnlock();
};
pthread_atfork(before, after, after);
}
void InstallAtExitCheckLeaks() {
if (CAN_SANITIZE_LEAKS) {
if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
if (flags()->halt_on_error)
Atexit(__lsan::DoLeakCheck);
else
Atexit(__lsan::DoRecoverableLeakCheckVoid);
}
}
}
} // namespace __hwasan
#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
|