1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
//===-- local_cache.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_LOCAL_CACHE_H_
#define SCUDO_LOCAL_CACHE_H_
#include "internal_defs.h"
#include "list.h"
#include "platform.h"
#include "report.h"
#include "stats.h"
#include "string_utils.h"
namespace scudo {
template <class SizeClassAllocator> struct SizeClassAllocatorLocalCache {
typedef typename SizeClassAllocator::SizeClassMap SizeClassMap;
typedef typename SizeClassAllocator::CompactPtrT CompactPtrT;
struct TransferBatch {
static const u16 MaxNumCached = SizeClassMap::MaxNumCachedHint;
void setFromArray(CompactPtrT *Array, u16 N) {
DCHECK_LE(N, MaxNumCached);
Count = N;
memcpy(Batch, Array, sizeof(Batch[0]) * Count);
}
void appendFromArray(CompactPtrT *Array, u16 N) {
DCHECK_LE(N, MaxNumCached - Count);
memcpy(Batch + Count, Array, sizeof(Batch[0]) * N);
// u16 will be promoted to int by arithmetic type conversion.
Count = static_cast<u16>(Count + N);
}
void appendFromTransferBatch(TransferBatch *B, u16 N) {
DCHECK_LE(N, MaxNumCached - Count);
DCHECK_GE(B->Count, N);
// Append from the back of `B`.
memcpy(Batch + Count, B->Batch + (B->Count - N), sizeof(Batch[0]) * N);
// u16 will be promoted to int by arithmetic type conversion.
Count = static_cast<u16>(Count + N);
B->Count = static_cast<u16>(B->Count - N);
}
void clear() { Count = 0; }
void add(CompactPtrT P) {
DCHECK_LT(Count, MaxNumCached);
Batch[Count++] = P;
}
void copyToArray(CompactPtrT *Array) const {
memcpy(Array, Batch, sizeof(Batch[0]) * Count);
}
u16 getCount() const { return Count; }
bool isEmpty() const { return Count == 0U; }
CompactPtrT get(u16 I) const {
DCHECK_LE(I, Count);
return Batch[I];
}
static u16 getMaxCached(uptr Size) {
return Min(MaxNumCached, SizeClassMap::getMaxCachedHint(Size));
}
TransferBatch *Next;
private:
CompactPtrT Batch[MaxNumCached];
u16 Count;
};
// A BatchGroup is used to collect blocks. Each group has a group id to
// identify the group kind of contained blocks.
struct BatchGroup {
// `Next` is used by IntrusiveList.
BatchGroup *Next;
// The compact base address of each group
uptr CompactPtrGroupBase;
// Cache value of TransferBatch::getMaxCached()
u16 MaxCachedPerBatch;
// Number of blocks pushed into this group. This is an increment-only
// counter.
uptr PushedBlocks;
// This is used to track how many bytes are not in-use since last time we
// tried to release pages.
uptr BytesInBGAtLastCheckpoint;
// Blocks are managed by TransferBatch in a list.
SinglyLinkedList<TransferBatch> Batches;
};
static_assert(sizeof(BatchGroup) <= sizeof(TransferBatch),
"BatchGroup uses the same class size as TransferBatch");
void init(GlobalStats *S, SizeClassAllocator *A) {
DCHECK(isEmpty());
Stats.init();
if (LIKELY(S))
S->link(&Stats);
Allocator = A;
}
void destroy(GlobalStats *S) {
drain();
if (LIKELY(S))
S->unlink(&Stats);
}
void *allocate(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
if (C->Count == 0) {
if (UNLIKELY(!refill(C, ClassId)))
return nullptr;
DCHECK_GT(C->Count, 0);
}
// We read ClassSize first before accessing Chunks because it's adjacent to
// Count, while Chunks might be further off (depending on Count). That keeps
// the memory accesses in close quarters.
const uptr ClassSize = C->ClassSize;
CompactPtrT CompactP = C->Chunks[--C->Count];
Stats.add(StatAllocated, ClassSize);
Stats.sub(StatFree, ClassSize);
return Allocator->decompactPtr(ClassId, CompactP);
}
bool deallocate(uptr ClassId, void *P) {
CHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
// We still have to initialize the cache in the event that the first heap
// operation in a thread is a deallocation.
initCacheMaybe(C);
// If the cache is full, drain half of blocks back to the main allocator.
const bool NeedToDrainCache = C->Count == C->MaxCount;
if (NeedToDrainCache)
drain(C, ClassId);
// See comment in allocate() about memory accesses.
const uptr ClassSize = C->ClassSize;
C->Chunks[C->Count++] =
Allocator->compactPtr(ClassId, reinterpret_cast<uptr>(P));
Stats.sub(StatAllocated, ClassSize);
Stats.add(StatFree, ClassSize);
return NeedToDrainCache;
}
bool isEmpty() const {
for (uptr I = 0; I < NumClasses; ++I)
if (PerClassArray[I].Count)
return false;
return true;
}
void drain() {
// Drain BatchClassId last as createBatch can refill it.
for (uptr I = 0; I < NumClasses; ++I) {
if (I == BatchClassId)
continue;
while (PerClassArray[I].Count > 0)
drain(&PerClassArray[I], I);
}
while (PerClassArray[BatchClassId].Count > 0)
drain(&PerClassArray[BatchClassId], BatchClassId);
DCHECK(isEmpty());
}
TransferBatch *createBatch(uptr ClassId, void *B) {
if (ClassId != BatchClassId)
B = allocate(BatchClassId);
if (UNLIKELY(!B))
reportOutOfMemory(SizeClassAllocator::getSizeByClassId(BatchClassId));
return reinterpret_cast<TransferBatch *>(B);
}
BatchGroup *createGroup() {
void *Ptr = allocate(BatchClassId);
if (UNLIKELY(!Ptr))
reportOutOfMemory(SizeClassAllocator::getSizeByClassId(BatchClassId));
return reinterpret_cast<BatchGroup *>(Ptr);
}
LocalStats &getStats() { return Stats; }
void getStats(ScopedString *Str) {
bool EmptyCache = true;
for (uptr I = 0; I < NumClasses; ++I) {
if (PerClassArray[I].Count == 0)
continue;
EmptyCache = false;
// The size of BatchClass is set to 0 intentionally. See the comment in
// initCache() for more details.
const uptr ClassSize = I == BatchClassId
? SizeClassAllocator::getSizeByClassId(I)
: PerClassArray[I].ClassSize;
// Note that the string utils don't support printing u16 thus we cast it
// to a common use type uptr.
Str->append(" %02zu (%6zu): cached: %4zu max: %4zu\n", I, ClassSize,
static_cast<uptr>(PerClassArray[I].Count),
static_cast<uptr>(PerClassArray[I].MaxCount));
}
if (EmptyCache)
Str->append(" No block is cached.\n");
}
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr BatchClassId = SizeClassMap::BatchClassId;
struct alignas(SCUDO_CACHE_LINE_SIZE) PerClass {
u16 Count;
u16 MaxCount;
// Note: ClassSize is zero for the transfer batch.
uptr ClassSize;
CompactPtrT Chunks[2 * TransferBatch::MaxNumCached];
};
PerClass PerClassArray[NumClasses] = {};
LocalStats Stats;
SizeClassAllocator *Allocator = nullptr;
ALWAYS_INLINE void initCacheMaybe(PerClass *C) {
if (LIKELY(C->MaxCount))
return;
initCache();
DCHECK_NE(C->MaxCount, 0U);
}
NOINLINE void initCache() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *P = &PerClassArray[I];
const uptr Size = SizeClassAllocator::getSizeByClassId(I);
P->MaxCount = static_cast<u16>(2 * TransferBatch::getMaxCached(Size));
if (I != BatchClassId) {
P->ClassSize = Size;
} else {
// ClassSize in this struct is only used for malloc/free stats, which
// should only track user allocations, not internal movements.
P->ClassSize = 0;
}
}
}
void destroyBatch(uptr ClassId, void *B) {
if (ClassId != BatchClassId)
deallocate(BatchClassId, B);
}
NOINLINE bool refill(PerClass *C, uptr ClassId) {
initCacheMaybe(C);
TransferBatch *B = Allocator->popBatch(this, ClassId);
if (UNLIKELY(!B))
return false;
DCHECK_GT(B->getCount(), 0);
C->Count = B->getCount();
B->copyToArray(C->Chunks);
B->clear();
destroyBatch(ClassId, B);
return true;
}
NOINLINE void drain(PerClass *C, uptr ClassId) {
const u16 Count = Min(static_cast<u16>(C->MaxCount / 2), C->Count);
Allocator->pushBlocks(this, ClassId, &C->Chunks[0], Count);
// u16 will be promoted to int by arithmetic type conversion.
C->Count = static_cast<u16>(C->Count - Count);
for (u16 I = 0; I < C->Count; I++)
C->Chunks[I] = C->Chunks[I + Count];
}
};
} // namespace scudo
#endif // SCUDO_LOCAL_CACHE_H_
|