1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
//===-- primary_test.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tests/scudo_unit_test.h"
#include "primary32.h"
#include "primary64.h"
#include "size_class_map.h"
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <random>
#include <stdlib.h>
#include <thread>
#include <vector>
// Note that with small enough regions, the SizeClassAllocator64 also works on
// 32-bit architectures. It's not something we want to encourage, but we still
// should ensure the tests pass.
template <typename SizeClassMapT> struct TestConfig1 {
static const bool MaySupportMemoryTagging = false;
struct Primary {
using SizeClassMap = SizeClassMapT;
static const scudo::uptr RegionSizeLog = 18U;
static const scudo::uptr GroupSizeLog = 18U;
static const scudo::s32 MinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 MaxReleaseToOsIntervalMs = INT32_MAX;
typedef scudo::uptr CompactPtrT;
static const scudo::uptr CompactPtrScale = 0;
static const bool EnableRandomOffset = true;
static const scudo::uptr MapSizeIncrement = 1UL << 18;
};
};
template <typename SizeClassMapT> struct TestConfig2 {
static const bool MaySupportMemoryTagging = false;
struct Primary {
using SizeClassMap = SizeClassMapT;
#if defined(__mips__)
// Unable to allocate greater size on QEMU-user.
static const scudo::uptr RegionSizeLog = 23U;
#else
static const scudo::uptr RegionSizeLog = 24U;
#endif
static const scudo::uptr GroupSizeLog = 20U;
static const scudo::s32 MinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 MaxReleaseToOsIntervalMs = INT32_MAX;
typedef scudo::uptr CompactPtrT;
static const scudo::uptr CompactPtrScale = 0;
static const bool EnableRandomOffset = true;
static const scudo::uptr MapSizeIncrement = 1UL << 18;
};
};
template <typename SizeClassMapT> struct TestConfig3 {
static const bool MaySupportMemoryTagging = true;
struct Primary {
using SizeClassMap = SizeClassMapT;
#if defined(__mips__)
// Unable to allocate greater size on QEMU-user.
static const scudo::uptr RegionSizeLog = 23U;
#else
static const scudo::uptr RegionSizeLog = 24U;
#endif
static const scudo::uptr GroupSizeLog = 20U;
static const scudo::s32 MinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 MaxReleaseToOsIntervalMs = INT32_MAX;
typedef scudo::uptr CompactPtrT;
static const scudo::uptr CompactPtrScale = 0;
static const bool EnableRandomOffset = true;
static const scudo::uptr MapSizeIncrement = 1UL << 18;
};
};
template <typename SizeClassMapT> struct TestConfig4 {
static const bool MaySupportMemoryTagging = true;
struct Primary {
using SizeClassMap = SizeClassMapT;
#if defined(__mips__)
// Unable to allocate greater size on QEMU-user.
static const scudo::uptr RegionSizeLog = 23U;
#else
static const scudo::uptr RegionSizeLog = 24U;
#endif
static const scudo::s32 MinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 MaxReleaseToOsIntervalMs = INT32_MAX;
static const scudo::uptr CompactPtrScale = 3U;
static const scudo::uptr GroupSizeLog = 20U;
typedef scudo::u32 CompactPtrT;
static const bool EnableRandomOffset = true;
static const scudo::uptr MapSizeIncrement = 1UL << 18;
};
};
template <template <typename> class BaseConfig, typename SizeClassMapT>
struct Config : public BaseConfig<SizeClassMapT> {};
template <template <typename> class BaseConfig, typename SizeClassMapT>
struct SizeClassAllocator
: public scudo::SizeClassAllocator64<Config<BaseConfig, SizeClassMapT>> {};
template <typename SizeClassMapT>
struct SizeClassAllocator<TestConfig1, SizeClassMapT>
: public scudo::SizeClassAllocator32<Config<TestConfig1, SizeClassMapT>> {};
template <template <typename> class BaseConfig, typename SizeClassMapT>
struct TestAllocator : public SizeClassAllocator<BaseConfig, SizeClassMapT> {
~TestAllocator() {
this->verifyAllBlocksAreReleasedTestOnly();
this->unmapTestOnly();
}
void *operator new(size_t size) {
void *p = nullptr;
EXPECT_EQ(0, posix_memalign(&p, alignof(TestAllocator), size));
return p;
}
void operator delete(void *ptr) { free(ptr); }
};
template <template <typename> class BaseConfig>
struct ScudoPrimaryTest : public Test {};
#if SCUDO_FUCHSIA
#define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig2) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig3)
#else
#define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig1) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig2) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig3) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig4)
#endif
#define SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TYPE) \
using FIXTURE##NAME##_##TYPE = FIXTURE##NAME<TYPE>; \
TEST_F(FIXTURE##NAME##_##TYPE, NAME) { FIXTURE##NAME<TYPE>::Run(); }
#define SCUDO_TYPED_TEST(FIXTURE, NAME) \
template <template <typename> class TypeParam> \
struct FIXTURE##NAME : public FIXTURE<TypeParam> { \
void Run(); \
}; \
SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
template <template <typename> class TypeParam> \
void FIXTURE##NAME<TypeParam>::Run()
SCUDO_TYPED_TEST(ScudoPrimaryTest, BasicPrimary) {
using Primary = TestAllocator<TypeParam, scudo::DefaultSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
const scudo::uptr NumberOfAllocations = 32U;
for (scudo::uptr I = 0; I <= 16U; I++) {
const scudo::uptr Size = 1UL << I;
if (!Primary::canAllocate(Size))
continue;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *Pointers[NumberOfAllocations];
for (scudo::uptr J = 0; J < NumberOfAllocations; J++) {
void *P = Cache.allocate(ClassId);
memset(P, 'B', Size);
Pointers[J] = P;
}
for (scudo::uptr J = 0; J < NumberOfAllocations; J++)
Cache.deallocate(ClassId, Pointers[J]);
}
Cache.destroy(nullptr);
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
struct SmallRegionsConfig {
static const bool MaySupportMemoryTagging = false;
struct Primary {
using SizeClassMap = scudo::DefaultSizeClassMap;
static const scudo::uptr RegionSizeLog = 21U;
static const scudo::s32 MinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 MaxReleaseToOsIntervalMs = INT32_MAX;
typedef scudo::uptr CompactPtrT;
static const scudo::uptr CompactPtrScale = 0;
static const bool EnableRandomOffset = true;
static const scudo::uptr MapSizeIncrement = 1UL << 18;
static const scudo::uptr GroupSizeLog = 20U;
};
};
// The 64-bit SizeClassAllocator can be easily OOM'd with small region sizes.
// For the 32-bit one, it requires actually exhausting memory, so we skip it.
TEST(ScudoPrimaryTest, Primary64OOM) {
using Primary = scudo::SizeClassAllocator64<SmallRegionsConfig>;
using TransferBatch = Primary::CacheT::TransferBatch;
Primary Allocator;
Allocator.init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
scudo::GlobalStats Stats;
Stats.init();
Cache.init(&Stats, &Allocator);
bool AllocationFailed = false;
std::vector<TransferBatch *> Batches;
const scudo::uptr ClassId = Primary::SizeClassMap::LargestClassId;
const scudo::uptr Size = Primary::getSizeByClassId(ClassId);
typename Primary::CacheT::CompactPtrT Blocks[TransferBatch::MaxNumCached];
for (scudo::uptr I = 0; I < 10000U; I++) {
TransferBatch *B = Allocator.popBatch(&Cache, ClassId);
if (!B) {
AllocationFailed = true;
break;
}
for (scudo::u16 J = 0; J < B->getCount(); J++)
memset(Allocator.decompactPtr(ClassId, B->get(J)), 'B', Size);
Batches.push_back(B);
}
while (!Batches.empty()) {
TransferBatch *B = Batches.back();
Batches.pop_back();
B->copyToArray(Blocks);
Allocator.pushBlocks(&Cache, ClassId, Blocks, B->getCount());
Cache.deallocate(Primary::SizeClassMap::BatchClassId, B);
}
Cache.destroy(nullptr);
Allocator.releaseToOS(scudo::ReleaseToOS::Force);
scudo::ScopedString Str;
Allocator.getStats(&Str);
Str.output();
EXPECT_EQ(AllocationFailed, true);
Allocator.unmapTestOnly();
}
SCUDO_TYPED_TEST(ScudoPrimaryTest, PrimaryIterate) {
using Primary = TestAllocator<TypeParam, scudo::DefaultSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
std::vector<std::pair<scudo::uptr, void *>> V;
for (scudo::uptr I = 0; I < 64U; I++) {
const scudo::uptr Size =
static_cast<scudo::uptr>(std::rand()) % Primary::SizeClassMap::MaxSize;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
V.push_back(std::make_pair(ClassId, P));
}
scudo::uptr Found = 0;
auto Lambda = [&V, &Found](scudo::uptr Block) {
for (const auto &Pair : V) {
if (Pair.second == reinterpret_cast<void *>(Block))
Found++;
}
};
Allocator->disable();
Allocator->iterateOverBlocks(Lambda);
Allocator->enable();
EXPECT_EQ(Found, V.size());
while (!V.empty()) {
auto Pair = V.back();
Cache.deallocate(Pair.first, Pair.second);
V.pop_back();
}
Cache.destroy(nullptr);
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
SCUDO_TYPED_TEST(ScudoPrimaryTest, PrimaryThreaded) {
using Primary = TestAllocator<TypeParam, scudo::SvelteSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
std::mutex Mutex;
std::condition_variable Cv;
bool Ready = false;
std::thread Threads[32];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++) {
Threads[I] = std::thread([&]() {
static thread_local typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
std::vector<std::pair<scudo::uptr, void *>> V;
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 256U; I++) {
const scudo::uptr Size = static_cast<scudo::uptr>(std::rand()) %
Primary::SizeClassMap::MaxSize / 4;
const scudo::uptr ClassId =
Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
if (P)
V.push_back(std::make_pair(ClassId, P));
}
// Try to interleave pushBlocks(), popBatch() and releaseToOS().
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
while (!V.empty()) {
auto Pair = V.back();
Cache.deallocate(Pair.first, Pair.second);
V.pop_back();
// This increases the chance of having non-full TransferBatches and it
// will jump into the code path of merging TransferBatches.
if (std::rand() % 8 == 0)
Cache.drain();
}
Cache.destroy(nullptr);
});
}
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
// Through a simple allocation that spans two pages, verify that releaseToOS
// actually releases some bytes (at least one page worth). This is a regression
// test for an error in how the release criteria were computed.
SCUDO_TYPED_TEST(ScudoPrimaryTest, ReleaseToOS) {
using Primary = TestAllocator<TypeParam, scudo::DefaultSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
const scudo::uptr Size = scudo::getPageSizeCached() * 2;
EXPECT_TRUE(Primary::canAllocate(Size));
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
EXPECT_NE(P, nullptr);
Cache.deallocate(ClassId, P);
Cache.destroy(nullptr);
EXPECT_GT(Allocator->releaseToOS(scudo::ReleaseToOS::ForceAll), 0U);
}
SCUDO_TYPED_TEST(ScudoPrimaryTest, MemoryGroup) {
using Primary = TestAllocator<TypeParam, scudo::DefaultSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
const scudo::uptr Size = 32U;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
// We will allocate 4 times the group size memory and release all of them. We
// expect the free blocks will be classified with groups. Then we will
// allocate the same amount of memory as group size and expect the blocks will
// have the max address difference smaller or equal to 2 times the group size.
// Note that it isn't necessary to be in the range of single group size
// because the way we get the group id is doing compact pointer shifting.
// According to configuration, the compact pointer may not align to group
// size. As a result, the blocks can cross two groups at most.
const scudo::uptr GroupSizeMem = (1ULL << Primary::GroupSizeLog);
const scudo::uptr PeakAllocationMem = 4 * GroupSizeMem;
const scudo::uptr PeakNumberOfAllocations = PeakAllocationMem / Size;
const scudo::uptr FinalNumberOfAllocations = GroupSizeMem / Size;
std::vector<scudo::uptr> Blocks;
std::mt19937 R;
for (scudo::uptr I = 0; I < PeakNumberOfAllocations; ++I)
Blocks.push_back(reinterpret_cast<scudo::uptr>(Cache.allocate(ClassId)));
std::shuffle(Blocks.begin(), Blocks.end(), R);
// Release all the allocated blocks, including those held by local cache.
while (!Blocks.empty()) {
Cache.deallocate(ClassId, reinterpret_cast<void *>(Blocks.back()));
Blocks.pop_back();
}
Cache.drain();
for (scudo::uptr I = 0; I < FinalNumberOfAllocations; ++I)
Blocks.push_back(reinterpret_cast<scudo::uptr>(Cache.allocate(ClassId)));
EXPECT_LE(*std::max_element(Blocks.begin(), Blocks.end()) -
*std::min_element(Blocks.begin(), Blocks.end()),
GroupSizeMem * 2);
while (!Blocks.empty()) {
Cache.deallocate(ClassId, reinterpret_cast<void *>(Blocks.back()));
Blocks.pop_back();
}
Cache.drain();
}
|