1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
|
//===--- FrontendActions.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Frontend/FrontendActions.h"
#include "flang/Common/default-kinds.h"
#include "flang/Frontend/CompilerInstance.h"
#include "flang/Frontend/CompilerInvocation.h"
#include "flang/Frontend/FrontendOptions.h"
#include "flang/Frontend/PreprocessorOptions.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Support/Verifier.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/InitFIR.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/parsing.h"
#include "flang/Parser/provenance.h"
#include "flang/Parser/source.h"
#include "flang/Parser/unparse.h"
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/unparse-with-symbols.h"
#include "flang/Tools/CrossToolHelpers.h"
#include "mlir/IR/Dialect.h"
#include "mlir/Parser/Parser.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/Import.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticFrontend.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <memory>
#include <system_error>
using namespace Fortran::frontend;
// Declare plugin extension function declarations.
#define HANDLE_EXTENSION(Ext) \
llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
#include "llvm/Support/Extension.def"
/// Save the given \c mlirModule to a temporary .mlir file, in a location
/// decided by the -save-temps flag. No files are produced if the flag is not
/// specified.
static bool saveMLIRTempFile(const CompilerInvocation &ci,
mlir::ModuleOp mlirModule,
llvm::StringRef inputFile,
llvm::StringRef outputTag) {
if (!ci.getCodeGenOpts().SaveTempsDir.has_value())
return true;
const llvm::StringRef compilerOutFile = ci.getFrontendOpts().outputFile;
const llvm::StringRef saveTempsDir = ci.getCodeGenOpts().SaveTempsDir.value();
auto dir = llvm::StringSwitch<llvm::StringRef>(saveTempsDir)
.Case("cwd", "")
.Case("obj", llvm::sys::path::parent_path(compilerOutFile))
.Default(saveTempsDir);
// Build path from the compiler output file name, triple, cpu and OpenMP
// information
llvm::SmallString<256> path(dir);
llvm::sys::path::append(path, llvm::sys::path::stem(inputFile) + "-" +
outputTag + ".mlir");
std::error_code ec;
llvm::ToolOutputFile out(path, ec, llvm::sys::fs::OF_Text);
if (ec)
return false;
mlirModule->print(out.os());
out.os().close();
out.keep();
return true;
}
//===----------------------------------------------------------------------===//
// Custom BeginSourceFileAction
//===----------------------------------------------------------------------===//
bool PrescanAction::beginSourceFileAction() { return runPrescan(); }
bool PrescanAndParseAction::beginSourceFileAction() {
return runPrescan() && runParse();
}
bool PrescanAndSemaAction::beginSourceFileAction() {
return runPrescan() && runParse() && runSemanticChecks() &&
generateRtTypeTables();
}
bool PrescanAndSemaDebugAction::beginSourceFileAction() {
// This is a "debug" action for development purposes. To facilitate this, the
// semantic checks are made to succeed unconditionally to prevent this action
// from exiting early (i.e. in the presence of semantic errors). We should
// never do this in actions intended for end-users or otherwise regular
// compiler workflows!
return runPrescan() && runParse() && (runSemanticChecks() || true) &&
(generateRtTypeTables() || true);
}
// Get feature string which represents combined explicit target features
// for AMD GPU and the target features specified by the user
static std::string
getExplicitAndImplicitAMDGPUTargetFeatures(CompilerInstance &ci,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
// Get the set of implicit target features
llvm::AMDGPU::fillAMDGPUFeatureMap(cpu, triple, implicitFeaturesMap);
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
std::string userKeyString = userFeature.substr(1);
implicitFeaturesMap[userKeyString] = (userFeature[0] == '+');
}
if (!llvm::AMDGPU::insertWaveSizeFeature(cpu, triple, implicitFeaturesMap,
errorMsg)) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Unsupported feature ID: %0");
ci.getDiagnostics().Report(diagID) << errorMsg.data();
return std::string();
}
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
// Produces the string which represents target feature
static std::string getTargetFeatures(CompilerInstance &ci) {
const TargetOptions &targetOpts = ci.getInvocation().getTargetOpts();
const llvm::Triple triple(targetOpts.triple);
// Clang does not append all target features to the clang -cc1 invocation.
// Some target features are parsed implicitly by clang::TargetInfo child
// class. Clang::TargetInfo classes are the basic clang classes and
// they cannot be reused by Flang.
// That's why we need to extract implicit target features and add
// them to the target features specified by the user
if (triple.isAMDGPU()) {
return getExplicitAndImplicitAMDGPUTargetFeatures(ci, targetOpts, triple);
}
return llvm::join(targetOpts.featuresAsWritten.begin(),
targetOpts.featuresAsWritten.end(), ",");
}
static void setMLIRDataLayout(mlir::ModuleOp &mlirModule,
const llvm::DataLayout &dl) {
mlir::MLIRContext *context = mlirModule.getContext();
mlirModule->setAttr(
mlir::LLVM::LLVMDialect::getDataLayoutAttrName(),
mlir::StringAttr::get(context, dl.getStringRepresentation()));
mlir::DataLayoutSpecInterface dlSpec = mlir::translateDataLayout(dl, context);
mlirModule->setAttr(mlir::DLTIDialect::kDataLayoutAttrName, dlSpec);
}
bool CodeGenAction::beginSourceFileAction() {
llvmCtx = std::make_unique<llvm::LLVMContext>();
CompilerInstance &ci = this->getInstance();
// If the input is an LLVM file, just parse it and return.
if (this->getCurrentInput().getKind().getLanguage() == Language::LLVM_IR) {
llvm::SMDiagnostic err;
llvmModule = llvm::parseIRFile(getCurrentInput().getFile(), err, *llvmCtx);
if (!llvmModule || llvm::verifyModule(*llvmModule, &llvm::errs())) {
err.print("flang-new", llvm::errs());
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse IR");
ci.getDiagnostics().Report(diagID);
return false;
}
return true;
}
// Load the MLIR dialects required by Flang
mlir::DialectRegistry registry;
mlirCtx = std::make_unique<mlir::MLIRContext>(registry);
fir::support::registerNonCodegenDialects(registry);
fir::support::loadNonCodegenDialects(*mlirCtx);
fir::support::loadDialects(*mlirCtx);
fir::support::registerLLVMTranslation(*mlirCtx);
// If the input is an MLIR file, just parse it and return.
if (this->getCurrentInput().getKind().getLanguage() == Language::MLIR) {
llvm::SourceMgr sourceMgr;
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(getCurrentInput().getFile());
sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), llvm::SMLoc());
mlir::OwningOpRef<mlir::ModuleOp> module =
mlir::parseSourceFile<mlir::ModuleOp>(sourceMgr, mlirCtx.get());
if (!module || mlir::failed(module->verifyInvariants())) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse FIR");
ci.getDiagnostics().Report(diagID);
return false;
}
mlirModule = std::make_unique<mlir::ModuleOp>(module.release());
if (!setUpTargetMachine())
return false;
const llvm::DataLayout &dl = tm->createDataLayout();
setMLIRDataLayout(*mlirModule, dl);
return true;
}
// Otherwise, generate an MLIR module from the input Fortran source
if (getCurrentInput().getKind().getLanguage() != Language::Fortran) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"Invalid input type - expecting a Fortran file");
ci.getDiagnostics().Report(diagID);
return false;
}
bool res = runPrescan() && runParse() && runSemanticChecks() &&
generateRtTypeTables();
if (!res)
return res;
// Create a LoweringBridge
const common::IntrinsicTypeDefaultKinds &defKinds =
ci.getInvocation().getSemanticsContext().defaultKinds();
fir::KindMapping kindMap(mlirCtx.get(), llvm::ArrayRef<fir::KindTy>{
fir::fromDefaultKinds(defKinds)});
lower::LoweringBridge lb = Fortran::lower::LoweringBridge::create(
*mlirCtx, ci.getInvocation().getSemanticsContext(), defKinds,
ci.getInvocation().getSemanticsContext().intrinsics(),
ci.getInvocation().getSemanticsContext().targetCharacteristics(),
ci.getParsing().allCooked(), ci.getInvocation().getTargetOpts().triple,
kindMap, ci.getInvocation().getLoweringOpts(),
ci.getInvocation().getFrontendOpts().envDefaults);
// Fetch module from lb, so we can set
mlirModule = std::make_unique<mlir::ModuleOp>(lb.getModule());
if (!setUpTargetMachine())
return false;
if (ci.getInvocation().getFrontendOpts().features.IsEnabled(
Fortran::common::LanguageFeature::OpenMP)) {
setOffloadModuleInterfaceAttributes(*mlirModule,
ci.getInvocation().getLangOpts());
setOffloadModuleInterfaceTargetAttribute(*mlirModule, tm->getTargetCPU(),
tm->getTargetFeatureString());
setOpenMPVersionAttribute(*mlirModule,
ci.getInvocation().getLangOpts().OpenMPVersion);
}
const llvm::DataLayout &dl = tm->createDataLayout();
setMLIRDataLayout(*mlirModule, dl);
// Create a parse tree and lower it to FIR
Fortran::parser::Program &parseTree{*ci.getParsing().parseTree()};
lb.lower(parseTree, ci.getInvocation().getSemanticsContext());
// run the default passes.
mlir::PassManager pm((*mlirModule)->getName(),
mlir::OpPassManager::Nesting::Implicit);
// Add OpenMP-related passes
// WARNING: These passes must be run immediately after the lowering to ensure
// that the FIR is correct with respect to OpenMP operations/attributes.
if (ci.getInvocation().getFrontendOpts().features.IsEnabled(
Fortran::common::LanguageFeature::OpenMP)) {
bool isDevice = false;
if (auto offloadMod = llvm::dyn_cast<mlir::omp::OffloadModuleInterface>(
mlirModule->getOperation()))
isDevice = offloadMod.getIsTargetDevice();
pm.addPass(fir::createOMPMarkDeclareTargetPass());
if (isDevice) {
pm.addPass(fir::createOMPEarlyOutliningPass());
// FIXME: This should eventually be moved out of the
// if, so that it also functions for host, however,
// we must fix the filtering to function reasonably
// for host first.
pm.addPass(fir::createOMPFunctionFilteringPass());
}
}
pm.enableVerifier(/*verifyPasses=*/true);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
if (mlir::failed(pm.run(*mlirModule))) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"verification of lowering to FIR failed");
ci.getDiagnostics().Report(diagID);
return false;
}
// Print initial full MLIR module, before lowering or transformations, if
// -save-temps has been specified.
if (!saveMLIRTempFile(ci.getInvocation(), *mlirModule, getCurrentFile(),
"fir")) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Saving MLIR temp file failed");
ci.getDiagnostics().Report(diagID);
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Custom ExecuteAction
//===----------------------------------------------------------------------===//
void InputOutputTestAction::executeAction() {
CompilerInstance &ci = getInstance();
// Create a stream for errors
std::string buf;
llvm::raw_string_ostream errorStream{buf};
// Read the input file
Fortran::parser::AllSources &allSources{ci.getAllSources()};
std::string path{getCurrentFileOrBufferName()};
const Fortran::parser::SourceFile *sf;
if (path == "-")
sf = allSources.ReadStandardInput(errorStream);
else
sf = allSources.Open(path, errorStream, std::optional<std::string>{"."s});
llvm::ArrayRef<char> fileContent = sf->content();
// Output file descriptor to receive the contents of the input file.
std::unique_ptr<llvm::raw_ostream> os;
// Copy the contents from the input file to the output file
if (!ci.isOutputStreamNull()) {
// An output stream (outputStream_) was set earlier
ci.writeOutputStream(fileContent.data());
} else {
// No pre-set output stream - create an output file
os = ci.createDefaultOutputFile(
/*binary=*/true, getCurrentFileOrBufferName(), "txt");
if (!os)
return;
(*os) << fileContent.data();
}
}
void PrintPreprocessedAction::executeAction() {
std::string buf;
llvm::raw_string_ostream outForPP{buf};
// Format or dump the prescanner's output
CompilerInstance &ci = this->getInstance();
if (ci.getInvocation().getPreprocessorOpts().noReformat) {
ci.getParsing().DumpCookedChars(outForPP);
} else {
ci.getParsing().EmitPreprocessedSource(
outForPP, !ci.getInvocation().getPreprocessorOpts().noLineDirectives);
}
// Print getDiagnostics from the prescanner
ci.getParsing().messages().Emit(llvm::errs(), ci.getAllCookedSources());
// If a pre-defined output stream exists, dump the preprocessed content there
if (!ci.isOutputStreamNull()) {
// Send the output to the pre-defined output buffer.
ci.writeOutputStream(outForPP.str());
return;
}
// Create a file and save the preprocessed output there
std::unique_ptr<llvm::raw_pwrite_stream> os{ci.createDefaultOutputFile(
/*Binary=*/true, /*InFile=*/getCurrentFileOrBufferName())};
if (!os) {
return;
}
(*os) << outForPP.str();
}
void DebugDumpProvenanceAction::executeAction() {
this->getInstance().getParsing().DumpProvenance(llvm::outs());
}
void ParseSyntaxOnlyAction::executeAction() {}
void DebugUnparseNoSemaAction::executeAction() {
auto &invoc = this->getInstance().getInvocation();
auto &parseTree{getInstance().getParsing().parseTree()};
// TODO: Options should come from CompilerInvocation
Unparse(llvm::outs(), *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.getUseAnalyzedObjectsForUnparse() ? &invoc.getAsFortran()
: nullptr);
}
void DebugUnparseAction::executeAction() {
auto &invoc = this->getInstance().getInvocation();
auto &parseTree{getInstance().getParsing().parseTree()};
CompilerInstance &ci = this->getInstance();
auto os{ci.createDefaultOutputFile(
/*Binary=*/false, /*InFile=*/getCurrentFileOrBufferName())};
// TODO: Options should come from CompilerInvocation
Unparse(*os, *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.getUseAnalyzedObjectsForUnparse() ? &invoc.getAsFortran()
: nullptr);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugUnparseWithSymbolsAction::executeAction() {
auto &parseTree{*getInstance().getParsing().parseTree()};
Fortran::semantics::UnparseWithSymbols(
llvm::outs(), parseTree, /*encoding=*/Fortran::parser::Encoding::UTF_8);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugDumpSymbolsAction::executeAction() {
CompilerInstance &ci = this->getInstance();
if (!ci.getRtTyTables().schemata) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.getDiagnostics().Report(diagID);
llvm::errs() << "\n";
return;
}
// Dump symbols
ci.getSemantics().DumpSymbols(llvm::outs());
}
void DebugDumpAllAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Dump parse tree
auto &parseTree{getInstance().getParsing().parseTree()};
llvm::outs() << "========================";
llvm::outs() << " Flang: parse tree dump ";
llvm::outs() << "========================\n";
Fortran::parser::DumpTree(llvm::outs(), parseTree,
&ci.getInvocation().getAsFortran());
if (!ci.getRtTyTables().schemata) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.getDiagnostics().Report(diagID);
llvm::errs() << "\n";
return;
}
// Dump symbols
llvm::outs() << "=====================";
llvm::outs() << " Flang: symbols dump ";
llvm::outs() << "=====================\n";
ci.getSemantics().DumpSymbols(llvm::outs());
}
void DebugDumpParseTreeNoSemaAction::executeAction() {
auto &parseTree{getInstance().getParsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree,
&this->getInstance().getInvocation().getAsFortran());
}
void DebugDumpParseTreeAction::executeAction() {
auto &parseTree{getInstance().getParsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree,
&this->getInstance().getInvocation().getAsFortran());
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugMeasureParseTreeAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Parse. In case of failure, report and return.
ci.getParsing().Parse(llvm::outs());
if (!ci.getParsing().messages().empty() &&
(ci.getInvocation().getWarnAsErr() ||
ci.getParsing().messages().AnyFatalError())) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse %0");
ci.getDiagnostics().Report(diagID) << getCurrentFileOrBufferName();
ci.getParsing().messages().Emit(llvm::errs(),
this->getInstance().getAllCookedSources());
return;
}
// Report the getDiagnostics from parsing
ci.getParsing().messages().Emit(llvm::errs(), ci.getAllCookedSources());
auto &parseTree{*ci.getParsing().parseTree()};
// Measure the parse tree
MeasurementVisitor visitor;
Fortran::parser::Walk(parseTree, visitor);
llvm::outs() << "Parse tree comprises " << visitor.objects
<< " objects and occupies " << visitor.bytes
<< " total bytes.\n";
}
void DebugPreFIRTreeAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
auto &parseTree{*ci.getParsing().parseTree()};
// Dump pre-FIR tree
if (auto ast{Fortran::lower::createPFT(
parseTree, ci.getInvocation().getSemanticsContext())}) {
Fortran::lower::dumpPFT(llvm::outs(), *ast);
} else {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Pre FIR Tree is NULL.");
ci.getDiagnostics().Report(diagID);
}
}
void DebugDumpParsingLogAction::executeAction() {
CompilerInstance &ci = this->getInstance();
ci.getParsing().Parse(llvm::errs());
ci.getParsing().DumpParsingLog(llvm::outs());
}
void GetDefinitionAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
parser::AllCookedSources &cs = ci.getAllCookedSources();
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Symbol not found");
auto gdv = ci.getInvocation().getFrontendOpts().getDefVals;
auto charBlock{cs.GetCharBlockFromLineAndColumns(gdv.line, gdv.startColumn,
gdv.endColumn)};
if (!charBlock) {
ci.getDiagnostics().Report(diagID);
return;
}
llvm::outs() << "String range: >" << charBlock->ToString() << "<\n";
auto *symbol{ci.getInvocation()
.getSemanticsContext()
.FindScope(*charBlock)
.FindSymbol(*charBlock)};
if (!symbol) {
ci.getDiagnostics().Report(diagID);
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
auto sourceInfo{cs.GetSourcePositionRange(symbol->name())};
if (!sourceInfo) {
llvm_unreachable(
"Failed to obtain SourcePosition."
"TODO: Please, write a test and replace this with a diagnostic!");
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
llvm::outs() << symbol->name().ToString() << ": " << sourceInfo->first.path
<< ", " << sourceInfo->first.line << ", "
<< sourceInfo->first.column << "-" << sourceInfo->second.column
<< "\n";
}
void GetSymbolsSourcesAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
ci.getSemantics().DumpSymbolsSources(llvm::outs());
}
//===----------------------------------------------------------------------===//
// CodeGenActions
//===----------------------------------------------------------------------===//
CodeGenAction::~CodeGenAction() = default;
#include "flang/Tools/CLOptions.inc"
static llvm::OptimizationLevel
mapToLevel(const Fortran::frontend::CodeGenOptions &opts) {
switch (opts.OptimizationLevel) {
default:
llvm_unreachable("Invalid optimization level!");
case 0:
return llvm::OptimizationLevel::O0;
case 1:
return llvm::OptimizationLevel::O1;
case 2:
return llvm::OptimizationLevel::O2;
case 3:
return llvm::OptimizationLevel::O3;
}
}
// Lower using HLFIR then run the FIR to HLFIR pipeline
void CodeGenAction::lowerHLFIRToFIR() {
assert(mlirModule && "The MLIR module has not been generated yet.");
CompilerInstance &ci = this->getInstance();
auto opts = ci.getInvocation().getCodeGenOpts();
llvm::OptimizationLevel level = mapToLevel(opts);
fir::support::loadDialects(*mlirCtx);
// Set-up the MLIR pass manager
mlir::PassManager pm((*mlirModule)->getName(),
mlir::OpPassManager::Nesting::Implicit);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
pm.enableVerifier(/*verifyPasses=*/true);
// Create the pass pipeline
fir::createHLFIRToFIRPassPipeline(pm, level);
(void)mlir::applyPassManagerCLOptions(pm);
if (!mlir::succeeded(pm.run(*mlirModule))) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Lowering to FIR failed");
ci.getDiagnostics().Report(diagID);
}
}
// Lower the previously generated MLIR module into an LLVM IR module
void CodeGenAction::generateLLVMIR() {
assert(mlirModule && "The MLIR module has not been generated yet.");
CompilerInstance &ci = this->getInstance();
auto opts = ci.getInvocation().getCodeGenOpts();
llvm::OptimizationLevel level = mapToLevel(opts);
fir::support::loadDialects(*mlirCtx);
fir::support::registerLLVMTranslation(*mlirCtx);
// Set-up the MLIR pass manager
mlir::PassManager pm((*mlirModule)->getName(),
mlir::OpPassManager::Nesting::Implicit);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
pm.enableVerifier(/*verifyPasses=*/true);
// Create the pass pipeline
fir::createMLIRToLLVMPassPipeline(pm, level, opts.StackArrays,
opts.Underscoring, opts.LoopVersioning,
opts.getDebugInfo());
(void)mlir::applyPassManagerCLOptions(pm);
// run the pass manager
if (!mlir::succeeded(pm.run(*mlirModule))) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Lowering to LLVM IR failed");
ci.getDiagnostics().Report(diagID);
}
// Print final MLIR module, just before translation into LLVM IR, if
// -save-temps has been specified.
if (!saveMLIRTempFile(ci.getInvocation(), *mlirModule, getCurrentFile(),
"llvmir")) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Saving MLIR temp file failed");
ci.getDiagnostics().Report(diagID);
return;
}
// Translate to LLVM IR
std::optional<llvm::StringRef> moduleName = mlirModule->getName();
llvmModule = mlir::translateModuleToLLVMIR(
*mlirModule, *llvmCtx, moduleName ? *moduleName : "FIRModule");
if (!llvmModule) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the LLVM module");
ci.getDiagnostics().Report(diagID);
return;
}
// Set PIC/PIE level LLVM module flags.
if (opts.PICLevel > 0) {
llvmModule->setPICLevel(static_cast<llvm::PICLevel::Level>(opts.PICLevel));
if (opts.IsPIE)
llvmModule->setPIELevel(
static_cast<llvm::PIELevel::Level>(opts.PICLevel));
}
}
bool CodeGenAction::setUpTargetMachine() {
CompilerInstance &ci = this->getInstance();
const TargetOptions &targetOpts = ci.getInvocation().getTargetOpts();
const std::string &theTriple = targetOpts.triple;
// Create `Target`
std::string error;
const llvm::Target *theTarget =
llvm::TargetRegistry::lookupTarget(theTriple, error);
if (!theTarget) {
ci.getDiagnostics().Report(clang::diag::err_fe_unable_to_create_target)
<< error;
return false;
}
// Create `TargetMachine`
const auto &CGOpts = ci.getInvocation().getCodeGenOpts();
std::optional<llvm::CodeGenOpt::Level> OptLevelOrNone =
llvm::CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
assert(OptLevelOrNone && "Invalid optimization level!");
llvm::CodeGenOpt::Level OptLevel = *OptLevelOrNone;
std::string featuresStr = getTargetFeatures(ci);
tm.reset(theTarget->createTargetMachine(
theTriple, /*CPU=*/targetOpts.cpu,
/*Features=*/featuresStr, llvm::TargetOptions(),
/*Reloc::Model=*/CGOpts.getRelocationModel(),
/*CodeModel::Model=*/std::nullopt, OptLevel));
assert(tm && "Failed to create TargetMachine");
return true;
}
static std::unique_ptr<llvm::raw_pwrite_stream>
getOutputStream(CompilerInstance &ci, llvm::StringRef inFile,
BackendActionTy action) {
switch (action) {
case BackendActionTy::Backend_EmitAssembly:
return ci.createDefaultOutputFile(
/*Binary=*/false, inFile, /*extension=*/"s");
case BackendActionTy::Backend_EmitLL:
return ci.createDefaultOutputFile(
/*Binary=*/false, inFile, /*extension=*/"ll");
case BackendActionTy::Backend_EmitFIR:
LLVM_FALLTHROUGH;
case BackendActionTy::Backend_EmitHLFIR:
return ci.createDefaultOutputFile(
/*Binary=*/false, inFile, /*extension=*/"mlir");
case BackendActionTy::Backend_EmitBC:
return ci.createDefaultOutputFile(
/*Binary=*/true, inFile, /*extension=*/"bc");
case BackendActionTy::Backend_EmitObj:
return ci.createDefaultOutputFile(
/*Binary=*/true, inFile, /*extension=*/"o");
}
llvm_unreachable("Invalid action!");
}
/// Generate target-specific machine-code or assembly file from the input LLVM
/// module.
///
/// \param [in] diags Diagnostics engine for reporting errors
/// \param [in] tm Target machine to aid the code-gen pipeline set-up
/// \param [in] act Backend act to run (assembly vs machine-code generation)
/// \param [in] llvmModule LLVM module to lower to assembly/machine-code
/// \param [out] os Output stream to emit the generated code to
static void generateMachineCodeOrAssemblyImpl(clang::DiagnosticsEngine &diags,
llvm::TargetMachine &tm,
BackendActionTy act,
llvm::Module &llvmModule,
llvm::raw_pwrite_stream &os) {
assert(((act == BackendActionTy::Backend_EmitObj) ||
(act == BackendActionTy::Backend_EmitAssembly)) &&
"Unsupported action");
// Set-up the pass manager, i.e create an LLVM code-gen pass pipeline.
// Currently only the legacy pass manager is supported.
// TODO: Switch to the new PM once it's available in the backend.
llvm::legacy::PassManager codeGenPasses;
codeGenPasses.add(
createTargetTransformInfoWrapperPass(tm.getTargetIRAnalysis()));
llvm::Triple triple(llvmModule.getTargetTriple());
std::unique_ptr<llvm::TargetLibraryInfoImpl> tlii =
std::make_unique<llvm::TargetLibraryInfoImpl>(triple);
assert(tlii && "Failed to create TargetLibraryInfo");
codeGenPasses.add(new llvm::TargetLibraryInfoWrapperPass(*tlii));
llvm::CodeGenFileType cgft = (act == BackendActionTy::Backend_EmitAssembly)
? llvm::CodeGenFileType::CGFT_AssemblyFile
: llvm::CodeGenFileType::CGFT_ObjectFile;
if (tm.addPassesToEmitFile(codeGenPasses, os, nullptr, cgft)) {
unsigned diagID =
diags.getCustomDiagID(clang::DiagnosticsEngine::Error,
"emission of this file type is not supported");
diags.Report(diagID);
return;
}
// Run the passes
codeGenPasses.run(llvmModule);
}
void CodeGenAction::runOptimizationPipeline(llvm::raw_pwrite_stream &os) {
auto opts = getInstance().getInvocation().getCodeGenOpts();
auto &diags = getInstance().getDiagnostics();
llvm::OptimizationLevel level = mapToLevel(opts);
// Create the analysis managers.
llvm::LoopAnalysisManager lam;
llvm::FunctionAnalysisManager fam;
llvm::CGSCCAnalysisManager cgam;
llvm::ModuleAnalysisManager mam;
// Create the pass manager builder.
llvm::PassInstrumentationCallbacks pic;
llvm::PipelineTuningOptions pto;
std::optional<llvm::PGOOptions> pgoOpt;
llvm::StandardInstrumentations si(llvmModule->getContext(),
opts.DebugPassManager);
si.registerCallbacks(pic, &mam);
llvm::PassBuilder pb(tm.get(), pto, pgoOpt, &pic);
// Attempt to load pass plugins and register their callbacks with PB.
for (auto &pluginFile : opts.LLVMPassPlugins) {
auto passPlugin = llvm::PassPlugin::Load(pluginFile);
if (passPlugin) {
passPlugin->registerPassBuilderCallbacks(pb);
} else {
diags.Report(clang::diag::err_fe_unable_to_load_plugin)
<< pluginFile << passPlugin.takeError();
}
}
// Register static plugin extensions.
#define HANDLE_EXTENSION(Ext) \
get##Ext##PluginInfo().RegisterPassBuilderCallbacks(pb);
#include "llvm/Support/Extension.def"
// Register all the basic analyses with the managers.
pb.registerModuleAnalyses(mam);
pb.registerCGSCCAnalyses(cgam);
pb.registerFunctionAnalyses(fam);
pb.registerLoopAnalyses(lam);
pb.crossRegisterProxies(lam, fam, cgam, mam);
// Create the pass manager.
llvm::ModulePassManager mpm;
if (opts.PrepareForFullLTO)
mpm = pb.buildLTOPreLinkDefaultPipeline(level);
else if (opts.PrepareForThinLTO)
mpm = pb.buildThinLTOPreLinkDefaultPipeline(level);
else
mpm = pb.buildPerModuleDefaultPipeline(level);
if (action == BackendActionTy::Backend_EmitBC)
mpm.addPass(llvm::BitcodeWriterPass(os));
// Run the passes.
mpm.run(*llvmModule, mam);
}
void CodeGenAction::embedOffloadObjects() {
CompilerInstance &ci = this->getInstance();
const auto &cgOpts = ci.getInvocation().getCodeGenOpts();
for (llvm::StringRef offloadObject : cgOpts.OffloadObjects) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> objectOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(offloadObject);
if (std::error_code ec = objectOrErr.getError()) {
auto diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "could not open '%0' for embedding");
ci.getDiagnostics().Report(diagID) << offloadObject;
return;
}
llvm::embedBufferInModule(
*llvmModule, **objectOrErr, ".llvm.offloading",
llvm::Align(llvm::object::OffloadBinary::getAlignment()));
}
}
void CodeGenAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// If the output stream is a file, generate it and define the corresponding
// output stream. If a pre-defined output stream is available, we will use
// that instead.
//
// NOTE: `os` is a smart pointer that will be destroyed at the end of this
// method. However, it won't be written to until `codeGenPasses` is
// destroyed. By defining `os` before `codeGenPasses`, we make sure that the
// output stream won't be destroyed before it is written to. This only
// applies when an output file is used (i.e. there is no pre-defined output
// stream).
// TODO: Revisit once the new PM is ready (i.e. when `codeGenPasses` is
// updated to use it).
std::unique_ptr<llvm::raw_pwrite_stream> os;
if (ci.isOutputStreamNull()) {
os = getOutputStream(ci, getCurrentFileOrBufferName(), action);
if (!os) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the output file");
ci.getDiagnostics().Report(diagID);
return;
}
}
if (action == BackendActionTy::Backend_EmitFIR) {
if (ci.getInvocation().getLoweringOpts().getLowerToHighLevelFIR()) {
lowerHLFIRToFIR();
}
mlirModule->print(ci.isOutputStreamNull() ? *os : ci.getOutputStream());
return;
}
if (action == BackendActionTy::Backend_EmitHLFIR) {
assert(ci.getInvocation().getLoweringOpts().getLowerToHighLevelFIR() &&
"Lowering must have been configured to emit HLFIR");
mlirModule->print(ci.isOutputStreamNull() ? *os : ci.getOutputStream());
return;
}
// Generate an LLVM module if it's not already present (it will already be
// present if the input file is an LLVM IR/BC file).
if (!llvmModule)
generateLLVMIR();
// Set the triple based on the targetmachine (this comes compiler invocation
// and the command-line target option if specified, or the default if not
// given on the command-line).
if (!setUpTargetMachine())
return;
const std::string &theTriple = tm->getTargetTriple().str();
if (llvmModule->getTargetTriple() != theTriple) {
ci.getDiagnostics().Report(clang::diag::warn_fe_override_module)
<< theTriple;
}
// Always set the triple and data layout, to make sure they match and are set.
// Note that this overwrites any datalayout stored in the LLVM-IR. This avoids
// an assert for incompatible data layout when the code-generation happens.
llvmModule->setTargetTriple(theTriple);
llvmModule->setDataLayout(tm->createDataLayout());
// Embed offload objects specified with -fembed-offload-object
if (!ci.getInvocation().getCodeGenOpts().OffloadObjects.empty())
embedOffloadObjects();
// Run LLVM's middle-end (i.e. the optimizer).
runOptimizationPipeline(ci.isOutputStreamNull() ? *os : ci.getOutputStream());
if (action == BackendActionTy::Backend_EmitLL) {
llvmModule->print(ci.isOutputStreamNull() ? *os : ci.getOutputStream(),
/*AssemblyAnnotationWriter=*/nullptr);
return;
}
if (action == BackendActionTy::Backend_EmitBC) {
// This action has effectively been completed in runOptimizationPipeline.
return;
}
// Run LLVM's backend and generate either assembly or machine code
if (action == BackendActionTy::Backend_EmitAssembly ||
action == BackendActionTy::Backend_EmitObj) {
generateMachineCodeOrAssemblyImpl(
ci.getDiagnostics(), *tm, action, *llvmModule,
ci.isOutputStreamNull() ? *os : ci.getOutputStream());
return;
}
}
void InitOnlyAction::executeAction() {
CompilerInstance &ci = this->getInstance();
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Warning,
"Use `-init-only` for testing purposes only");
ci.getDiagnostics().Report(diagID);
}
void PluginParseTreeAction::executeAction() {}
void DebugDumpPFTAction::executeAction() {
CompilerInstance &ci = this->getInstance();
if (auto ast = Fortran::lower::createPFT(*ci.getParsing().parseTree(),
ci.getSemantics().context())) {
Fortran::lower::dumpPFT(llvm::outs(), *ast);
return;
}
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Pre FIR Tree is NULL.");
ci.getDiagnostics().Report(diagID);
}
Fortran::parser::Parsing &PluginParseTreeAction::getParsing() {
return getInstance().getParsing();
}
std::unique_ptr<llvm::raw_pwrite_stream>
PluginParseTreeAction::createOutputFile(llvm::StringRef extension = "") {
std::unique_ptr<llvm::raw_pwrite_stream> os{
getInstance().createDefaultOutputFile(
/*Binary=*/false, /*InFile=*/getCurrentFileOrBufferName(),
extension)};
return os;
}
|