1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
|
//===-- CallInterface.cpp -- Procedure call interface ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/CallInterface.h"
#include "flang/Evaluate/fold.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include <optional>
//===----------------------------------------------------------------------===//
// BIND(C) mangling helpers
//===----------------------------------------------------------------------===//
// Return the binding label (from BIND(C...)) or the mangled name of a symbol.
static std::string getMangledName(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &symbol) {
const std::string *bindName = symbol.GetBindName();
// TODO: update GetBindName so that it does not return a label for internal
// procedures.
if (bindName && Fortran::semantics::ClassifyProcedure(symbol) ==
Fortran::semantics::ProcedureDefinitionClass::Internal)
TODO(converter.getCurrentLocation(), "BIND(C) internal procedures");
return bindName ? *bindName : converter.mangleName(symbol);
}
mlir::Type Fortran::lower::getUntypedBoxProcType(mlir::MLIRContext *context) {
llvm::SmallVector<mlir::Type> resultTys;
llvm::SmallVector<mlir::Type> inputTys;
auto untypedFunc = mlir::FunctionType::get(context, inputTys, resultTys);
return fir::BoxProcType::get(context, untypedFunc);
}
/// Return the type of a dummy procedure given its characteristic (if it has
/// one).
static mlir::Type getProcedureDesignatorType(
const Fortran::evaluate::characteristics::Procedure *,
Fortran::lower::AbstractConverter &converter) {
// TODO: Get actual function type of the dummy procedure, at least when an
// interface is given. The result type should be available even if the arity
// and type of the arguments is not.
// In general, that is a nice to have but we cannot guarantee to find the
// function type that will match the one of the calls, we may not even know
// how many arguments the dummy procedure accepts (e.g. if a procedure
// pointer is only transiting through the current procedure without being
// called), so a function type cast must always be inserted.
return Fortran::lower::getUntypedBoxProcType(&converter.getMLIRContext());
}
//===----------------------------------------------------------------------===//
// Caller side interface implementation
//===----------------------------------------------------------------------===//
bool Fortran::lower::CallerInterface::hasAlternateReturns() const {
return procRef.hasAlternateReturns();
}
std::string Fortran::lower::CallerInterface::getMangledName() const {
const Fortran::evaluate::ProcedureDesignator &proc = procRef.proc();
if (const Fortran::semantics::Symbol *symbol = proc.GetSymbol())
return ::getMangledName(converter, symbol->GetUltimate());
assert(proc.GetSpecificIntrinsic() &&
"expected intrinsic procedure in designator");
return proc.GetName();
}
const Fortran::semantics::Symbol *
Fortran::lower::CallerInterface::getProcedureSymbol() const {
return procRef.proc().GetSymbol();
}
bool Fortran::lower::CallerInterface::isIndirectCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
return Fortran::semantics::IsPointer(*symbol) ||
Fortran::semantics::IsDummy(*symbol);
return false;
}
bool Fortran::lower::CallerInterface::requireDispatchCall() const {
// calls with NOPASS attribute still have their component so check if it is
// polymorphic.
if (const Fortran::evaluate::Component *component =
procRef.proc().GetComponent()) {
if (Fortran::semantics::IsPolymorphic(component->GetFirstSymbol()))
return true;
}
// calls with PASS attribute have the passed-object already set in its
// arguments. Just check if their is one.
std::optional<unsigned> passArg = getPassArgIndex();
if (passArg)
return true;
return false;
}
std::optional<unsigned>
Fortran::lower::CallerInterface::getPassArgIndex() const {
unsigned passArgIdx = 0;
std::optional<unsigned> passArg;
for (const auto &arg : getCallDescription().arguments()) {
if (arg && arg->isPassedObject()) {
passArg = passArgIdx;
break;
}
++passArgIdx;
}
if (!passArg)
return passArg;
// Take into account result inserted as arguments.
if (std::optional<Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity>
resultArg = getPassedResult()) {
if (resultArg->passBy == PassEntityBy::AddressAndLength)
passArg = *passArg + 2;
else if (resultArg->passBy == PassEntityBy::BaseAddress)
passArg = *passArg + 1;
}
return passArg;
}
const Fortran::semantics::Symbol *
Fortran::lower::CallerInterface::getIfIndirectCallSymbol() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
if (Fortran::semantics::IsPointer(*symbol) ||
Fortran::semantics::IsDummy(*symbol))
return symbol;
return nullptr;
}
mlir::Location Fortran::lower::CallerInterface::getCalleeLocation() const {
const Fortran::evaluate::ProcedureDesignator &proc = procRef.proc();
// FIXME: If the callee is defined in the same file but after the current
// unit we cannot get its location here and the funcOp is created at the
// wrong location (i.e, the caller location).
if (const Fortran::semantics::Symbol *symbol = proc.GetSymbol())
return converter.genLocation(symbol->name());
// Use current location for intrinsics.
return converter.getCurrentLocation();
}
// Get dummy argument characteristic for a procedure with implicit interface
// from the actual argument characteristic. The actual argument may not be a F77
// entity. The attribute must be dropped and the shape, if any, must be made
// explicit.
static Fortran::evaluate::characteristics::DummyDataObject
asImplicitArg(Fortran::evaluate::characteristics::DummyDataObject &&dummy) {
Fortran::evaluate::Shape shape =
dummy.type.attrs().none() ? dummy.type.shape()
: Fortran::evaluate::Shape(dummy.type.Rank());
return Fortran::evaluate::characteristics::DummyDataObject(
Fortran::evaluate::characteristics::TypeAndShape(dummy.type.type(),
std::move(shape)));
}
static Fortran::evaluate::characteristics::DummyArgument
asImplicitArg(Fortran::evaluate::characteristics::DummyArgument &&dummy) {
return std::visit(
Fortran::common::visitors{
[&](Fortran::evaluate::characteristics::DummyDataObject &obj) {
return Fortran::evaluate::characteristics::DummyArgument(
std::move(dummy.name), asImplicitArg(std::move(obj)));
},
[&](Fortran::evaluate::characteristics::DummyProcedure &proc) {
return Fortran::evaluate::characteristics::DummyArgument(
std::move(dummy.name), std::move(proc));
},
[](Fortran::evaluate::characteristics::AlternateReturn &x) {
return Fortran::evaluate::characteristics::DummyArgument(
std::move(x));
}},
dummy.u);
}
static bool isExternalDefinedInSameCompilationUnit(
const Fortran::evaluate::ProcedureDesignator &proc) {
if (const auto *symbol{proc.GetSymbol()})
return symbol->has<Fortran::semantics::SubprogramDetails>() &&
symbol->owner().IsGlobal();
return false;
}
Fortran::evaluate::characteristics::Procedure
Fortran::lower::CallerInterface::characterize() const {
Fortran::evaluate::FoldingContext &foldingContext =
converter.getFoldingContext();
std::optional<Fortran::evaluate::characteristics::Procedure> characteristic =
Fortran::evaluate::characteristics::Procedure::Characterize(
procRef.proc(), foldingContext);
assert(characteristic && "Failed to get characteristic from procRef");
// The characteristic may not contain the argument characteristic if the
// ProcedureDesignator has no interface, or may mismatch in case of implicit
// interface.
if (!characteristic->HasExplicitInterface() ||
(converter.getLoweringOptions().getLowerToHighLevelFIR() &&
isExternalDefinedInSameCompilationUnit(procRef.proc()) &&
characteristic->CanBeCalledViaImplicitInterface())) {
// In HLFIR lowering, calls to subprogram with implicit interfaces are
// always prepared according to the actual arguments. This is to support
// cases where the implicit interfaces are "abused" in old and not so old
// Fortran code (e.g, passing REAL(8) to CHARACTER(8), passing object
// pointers to procedure dummies, passing regular procedure dummies to
// character procedure dummies, omitted arguments....).
// In all those case, if the subprogram definition is in the same
// compilation unit, the "characteristic" from Characterize will be the one
// from the definition, in case of "abuses" (for which semantics raise a
// warning), lowering will be placed in a difficult position if it is given
// the dummy characteristic from the definition and an actual that has
// seemingly nothing to do with it: it would need to battle to anticipate
// and handle these mismatches (e.g., be able to prepare a fir.boxchar<>
// from a fir.real<> and so one). This was the approach of the lowering to
// FIR, and usually lead to compiler bug every time a new "abuse" was met in
// the wild.
// Instead, in HLFIR, the dummy characteristic is always computed from the
// actual for subprogram with implicit interfaces, and in case of call site
// vs fun.func MLIR function type signature mismatch, a function cast is
// done before placing the call. This is a hammer that should cover all
// cases and behave like existing compiler that "do not see" the definition
// when placing the call.
characteristic->dummyArguments.clear();
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
procRef.arguments()) {
// "arg" may be null if this is a call with missing arguments compared
// to the subprogram definition. Do not compute any characteristic
// in this case.
if (arg.has_value()) {
if (arg.value().isAlternateReturn()) {
characteristic->dummyArguments.emplace_back(
Fortran::evaluate::characteristics::AlternateReturn{});
} else {
// Argument cannot be optional with implicit interface
const Fortran::lower::SomeExpr *expr = arg.value().UnwrapExpr();
assert(expr && "argument in call with implicit interface cannot be "
"assumed type");
std::optional<Fortran::evaluate::characteristics::DummyArgument>
argCharacteristic =
Fortran::evaluate::characteristics::DummyArgument::FromActual(
"actual", *expr, foldingContext);
assert(argCharacteristic &&
"failed to characterize argument in implicit call");
characteristic->dummyArguments.emplace_back(
asImplicitArg(std::move(*argCharacteristic)));
}
}
}
}
return *characteristic;
}
void Fortran::lower::CallerInterface::placeInput(
const PassedEntity &passedEntity, mlir::Value arg) {
assert(static_cast<int>(actualInputs.size()) > passedEntity.firArgument &&
passedEntity.firArgument >= 0 &&
passedEntity.passBy != CallInterface::PassEntityBy::AddressAndLength &&
"bad arg position");
actualInputs[passedEntity.firArgument] = arg;
}
void Fortran::lower::CallerInterface::placeAddressAndLengthInput(
const PassedEntity &passedEntity, mlir::Value addr, mlir::Value len) {
assert(static_cast<int>(actualInputs.size()) > passedEntity.firArgument &&
static_cast<int>(actualInputs.size()) > passedEntity.firLength &&
passedEntity.firArgument >= 0 && passedEntity.firLength >= 0 &&
passedEntity.passBy == CallInterface::PassEntityBy::AddressAndLength &&
"bad arg position");
actualInputs[passedEntity.firArgument] = addr;
actualInputs[passedEntity.firLength] = len;
}
bool Fortran::lower::CallerInterface::verifyActualInputs() const {
if (getNumFIRArguments() != actualInputs.size())
return false;
for (mlir::Value arg : actualInputs) {
if (!arg)
return false;
}
return true;
}
void Fortran::lower::CallerInterface::walkResultLengths(
ExprVisitor visitor) const {
assert(characteristic && "characteristic was not computed");
const Fortran::evaluate::characteristics::FunctionResult &result =
characteristic->functionResult.value();
const Fortran::evaluate::characteristics::TypeAndShape *typeAndShape =
result.GetTypeAndShape();
assert(typeAndShape && "no result type");
Fortran::evaluate::DynamicType dynamicType = typeAndShape->type();
// Visit result length specification expressions that are explicit.
if (dynamicType.category() == Fortran::common::TypeCategory::Character) {
if (std::optional<Fortran::evaluate::ExtentExpr> length =
dynamicType.GetCharLength())
visitor(toEvExpr(*length));
} else if (dynamicType.category() == common::TypeCategory::Derived &&
!dynamicType.IsUnlimitedPolymorphic()) {
const Fortran::semantics::DerivedTypeSpec &derivedTypeSpec =
dynamicType.GetDerivedTypeSpec();
if (Fortran::semantics::CountLenParameters(derivedTypeSpec) > 0)
TODO(converter.getCurrentLocation(),
"function result with derived type length parameters");
}
}
// Compute extent expr from shapeSpec of an explicit shape.
// TODO: Allow evaluate shape analysis to work in a mode where it disregards
// the non-constant aspects when building the shape to avoid having this here.
static Fortran::evaluate::ExtentExpr
getExtentExpr(const Fortran::semantics::ShapeSpec &shapeSpec) {
const auto &ubound = shapeSpec.ubound().GetExplicit();
const auto &lbound = shapeSpec.lbound().GetExplicit();
assert(lbound && ubound && "shape must be explicit");
return Fortran::common::Clone(*ubound) - Fortran::common::Clone(*lbound) +
Fortran::evaluate::ExtentExpr{1};
}
void Fortran::lower::CallerInterface::walkResultExtents(
ExprVisitor visitor) const {
// Walk directly the result symbol shape (the characteristic shape may contain
// descriptor inquiries to it that would fail to lower on the caller side).
const Fortran::semantics::SubprogramDetails *interfaceDetails =
getInterfaceDetails();
if (interfaceDetails) {
const Fortran::semantics::Symbol &result = interfaceDetails->result();
if (const auto *objectDetails =
result.detailsIf<Fortran::semantics::ObjectEntityDetails>())
if (objectDetails->shape().IsExplicitShape())
for (const Fortran::semantics::ShapeSpec &shapeSpec :
objectDetails->shape())
visitor(Fortran::evaluate::AsGenericExpr(getExtentExpr(shapeSpec)));
} else {
if (procRef.Rank() != 0)
fir::emitFatalError(
converter.getCurrentLocation(),
"only scalar functions may not have an interface symbol");
}
}
bool Fortran::lower::CallerInterface::mustMapInterfaceSymbols() const {
assert(characteristic && "characteristic was not computed");
const std::optional<Fortran::evaluate::characteristics::FunctionResult>
&result = characteristic->functionResult;
if (!result || result->CanBeReturnedViaImplicitInterface() ||
!getInterfaceDetails())
return false;
bool allResultSpecExprConstant = true;
auto visitor = [&](const Fortran::lower::SomeExpr &e) {
allResultSpecExprConstant &= Fortran::evaluate::IsConstantExpr(e);
};
walkResultLengths(visitor);
walkResultExtents(visitor);
return !allResultSpecExprConstant;
}
mlir::Value Fortran::lower::CallerInterface::getArgumentValue(
const semantics::Symbol &sym) const {
mlir::Location loc = converter.getCurrentLocation();
const Fortran::semantics::SubprogramDetails *ifaceDetails =
getInterfaceDetails();
if (!ifaceDetails)
fir::emitFatalError(
loc, "mapping actual and dummy arguments requires an interface");
const std::vector<Fortran::semantics::Symbol *> &dummies =
ifaceDetails->dummyArgs();
auto it = std::find(dummies.begin(), dummies.end(), &sym);
if (it == dummies.end())
fir::emitFatalError(loc, "symbol is not a dummy in this call");
FirValue mlirArgIndex = passedArguments[it - dummies.begin()].firArgument;
return actualInputs[mlirArgIndex];
}
mlir::Type Fortran::lower::CallerInterface::getResultStorageType() const {
if (passedResult)
return fir::dyn_cast_ptrEleTy(inputs[passedResult->firArgument].type);
assert(saveResult && !outputs.empty());
return outputs[0].type;
}
const Fortran::semantics::Symbol &
Fortran::lower::CallerInterface::getResultSymbol() const {
mlir::Location loc = converter.getCurrentLocation();
const Fortran::semantics::SubprogramDetails *ifaceDetails =
getInterfaceDetails();
if (!ifaceDetails)
fir::emitFatalError(
loc, "mapping actual and dummy arguments requires an interface");
return ifaceDetails->result();
}
const Fortran::semantics::SubprogramDetails *
Fortran::lower::CallerInterface::getInterfaceDetails() const {
if (const Fortran::semantics::Symbol *iface =
procRef.proc().GetInterfaceSymbol())
return iface->GetUltimate()
.detailsIf<Fortran::semantics::SubprogramDetails>();
return nullptr;
}
//===----------------------------------------------------------------------===//
// Callee side interface implementation
//===----------------------------------------------------------------------===//
bool Fortran::lower::CalleeInterface::hasAlternateReturns() const {
return !funit.isMainProgram() &&
Fortran::semantics::HasAlternateReturns(funit.getSubprogramSymbol());
}
std::string Fortran::lower::CalleeInterface::getMangledName() const {
if (funit.isMainProgram())
return fir::NameUniquer::doProgramEntry().str();
return ::getMangledName(converter, funit.getSubprogramSymbol());
}
const Fortran::semantics::Symbol *
Fortran::lower::CalleeInterface::getProcedureSymbol() const {
if (funit.isMainProgram())
return funit.getMainProgramSymbol();
return &funit.getSubprogramSymbol();
}
mlir::Location Fortran::lower::CalleeInterface::getCalleeLocation() const {
// FIXME: do NOT use unknown for the anonymous PROGRAM case. We probably
// should just stash the location in the funit regardless.
return converter.genLocation(funit.getStartingSourceLoc());
}
Fortran::evaluate::characteristics::Procedure
Fortran::lower::CalleeInterface::characterize() const {
Fortran::evaluate::FoldingContext &foldingContext =
converter.getFoldingContext();
std::optional<Fortran::evaluate::characteristics::Procedure> characteristic =
Fortran::evaluate::characteristics::Procedure::Characterize(
funit.getSubprogramSymbol(), foldingContext);
assert(characteristic && "Fail to get characteristic from symbol");
return *characteristic;
}
bool Fortran::lower::CalleeInterface::isMainProgram() const {
return funit.isMainProgram();
}
mlir::func::FuncOp
Fortran::lower::CalleeInterface::addEntryBlockAndMapArguments() {
// Check for bugs in the front end. The front end must not present multiple
// definitions of the same procedure.
if (!func.getBlocks().empty())
fir::emitFatalError(func.getLoc(),
"cannot process subprogram that was already processed");
// On the callee side, directly map the mlir::value argument of the function
// block to the Fortran symbols.
func.addEntryBlock();
mapPassedEntities();
return func;
}
bool Fortran::lower::CalleeInterface::hasHostAssociated() const {
return funit.parentHasTupleHostAssoc();
}
mlir::Type Fortran::lower::CalleeInterface::getHostAssociatedTy() const {
assert(hasHostAssociated());
return funit.parentHostAssoc().getArgumentType(converter);
}
mlir::Value Fortran::lower::CalleeInterface::getHostAssociatedTuple() const {
assert(hasHostAssociated() || !funit.getHostAssoc().empty());
return converter.hostAssocTupleValue();
}
void Fortran::lower::CalleeInterface::setFuncAttrs(
mlir::func::FuncOp func) const {
if (funit.parentHasHostAssoc())
func->setAttr(fir::getInternalProcedureAttrName(),
mlir::UnitAttr::get(func->getContext()));
}
//===----------------------------------------------------------------------===//
// CallInterface implementation: this part is common to both caller and callee.
//===----------------------------------------------------------------------===//
static void addSymbolAttribute(mlir::func::FuncOp func,
const Fortran::semantics::Symbol &sym,
mlir::MLIRContext &mlirContext) {
// Only add this on bind(C) functions for which the symbol is not reflected in
// the current context.
if (!Fortran::semantics::IsBindCProcedure(sym))
return;
std::string name =
Fortran::lower::mangle::mangleName(sym, /*keepExternalInScope=*/true);
func->setAttr(fir::getSymbolAttrName(),
mlir::StringAttr::get(&mlirContext, name));
}
/// Declare drives the different actions to be performed while analyzing the
/// signature and building/finding the mlir::func::FuncOp.
template <typename T>
void Fortran::lower::CallInterface<T>::declare() {
if (!side().isMainProgram()) {
characteristic.emplace(side().characterize());
bool isImplicit = characteristic->CanBeCalledViaImplicitInterface();
determineInterface(isImplicit, *characteristic);
}
// No input/output for main program
// Create / get funcOp for direct calls. For indirect calls (only meaningful
// on the caller side), no funcOp has to be created here. The mlir::Value
// holding the indirection is used when creating the fir::CallOp.
if (!side().isIndirectCall()) {
std::string name = side().getMangledName();
mlir::ModuleOp module = converter.getModuleOp();
func = fir::FirOpBuilder::getNamedFunction(module, name);
if (!func) {
mlir::Location loc = side().getCalleeLocation();
mlir::FunctionType ty = genFunctionType();
func = fir::FirOpBuilder::createFunction(loc, module, name, ty);
if (const Fortran::semantics::Symbol *sym = side().getProcedureSymbol()) {
if (side().isMainProgram()) {
func->setAttr(fir::getSymbolAttrName(),
mlir::StringAttr::get(&converter.getMLIRContext(),
sym->name().ToString()));
} else {
addSymbolAttribute(func, *sym, converter.getMLIRContext());
}
}
for (const auto &placeHolder : llvm::enumerate(inputs))
if (!placeHolder.value().attributes.empty())
func.setArgAttrs(placeHolder.index(), placeHolder.value().attributes);
side().setFuncAttrs(func);
}
}
}
/// Once the signature has been analyzed and the mlir::func::FuncOp was
/// built/found, map the fir inputs to Fortran entities (the symbols or
/// expressions).
template <typename T>
void Fortran::lower::CallInterface<T>::mapPassedEntities() {
// map back fir inputs to passed entities
if constexpr (std::is_same_v<T, Fortran::lower::CalleeInterface>) {
assert(inputs.size() == func.front().getArguments().size() &&
"function previously created with different number of arguments");
for (auto [fst, snd] : llvm::zip(inputs, func.front().getArguments()))
mapBackInputToPassedEntity(fst, snd);
} else {
// On the caller side, map the index of the mlir argument position
// to Fortran ActualArguments.
int firPosition = 0;
for (const FirPlaceHolder &placeHolder : inputs)
mapBackInputToPassedEntity(placeHolder, firPosition++);
}
}
template <typename T>
void Fortran::lower::CallInterface<T>::mapBackInputToPassedEntity(
const FirPlaceHolder &placeHolder, FirValue firValue) {
PassedEntity &passedEntity =
placeHolder.passedEntityPosition == FirPlaceHolder::resultEntityPosition
? passedResult.value()
: passedArguments[placeHolder.passedEntityPosition];
if (placeHolder.property == Property::CharLength)
passedEntity.firLength = firValue;
else
passedEntity.firArgument = firValue;
}
/// Helpers to access ActualArgument/Symbols
static const Fortran::evaluate::ActualArguments &
getEntityContainer(const Fortran::evaluate::ProcedureRef &proc) {
return proc.arguments();
}
static const std::vector<Fortran::semantics::Symbol *> &
getEntityContainer(Fortran::lower::pft::FunctionLikeUnit &funit) {
return funit.getSubprogramSymbol()
.get<Fortran::semantics::SubprogramDetails>()
.dummyArgs();
}
static const Fortran::evaluate::ActualArgument *getDataObjectEntity(
const std::optional<Fortran::evaluate::ActualArgument> &arg) {
if (arg)
return &*arg;
return nullptr;
}
static const Fortran::semantics::Symbol &
getDataObjectEntity(const Fortran::semantics::Symbol *arg) {
assert(arg && "expect symbol for data object entity");
return *arg;
}
static const Fortran::evaluate::ActualArgument *
getResultEntity(const Fortran::evaluate::ProcedureRef &) {
return nullptr;
}
static const Fortran::semantics::Symbol &
getResultEntity(Fortran::lower::pft::FunctionLikeUnit &funit) {
return funit.getSubprogramSymbol()
.get<Fortran::semantics::SubprogramDetails>()
.result();
}
/// Bypass helpers to manipulate entities since they are not any symbol/actual
/// argument to associate. See SignatureBuilder below.
using FakeEntity = bool;
using FakeEntities = llvm::SmallVector<FakeEntity>;
static FakeEntities
getEntityContainer(const Fortran::evaluate::characteristics::Procedure &proc) {
FakeEntities enities(proc.dummyArguments.size());
return enities;
}
static const FakeEntity &getDataObjectEntity(const FakeEntity &e) { return e; }
static FakeEntity
getResultEntity(const Fortran::evaluate::characteristics::Procedure &proc) {
return false;
}
/// This is the actual part that defines the FIR interface based on the
/// characteristic. It directly mutates the CallInterface members.
template <typename T>
class Fortran::lower::CallInterfaceImpl {
using CallInterface = Fortran::lower::CallInterface<T>;
using PassEntityBy = typename CallInterface::PassEntityBy;
using PassedEntity = typename CallInterface::PassedEntity;
using FirValue = typename CallInterface::FirValue;
using FortranEntity = typename CallInterface::FortranEntity;
using FirPlaceHolder = typename CallInterface::FirPlaceHolder;
using Property = typename CallInterface::Property;
using TypeAndShape = Fortran::evaluate::characteristics::TypeAndShape;
using DummyCharacteristics =
Fortran::evaluate::characteristics::DummyArgument;
public:
CallInterfaceImpl(CallInterface &i)
: interface(i), mlirContext{i.converter.getMLIRContext()} {}
void buildImplicitInterface(
const Fortran::evaluate::characteristics::Procedure &procedure) {
// Handle result
if (const std::optional<Fortran::evaluate::characteristics::FunctionResult>
&result = procedure.functionResult)
handleImplicitResult(*result, procedure.IsBindC());
else if (interface.side().hasAlternateReturns())
addFirResult(mlir::IndexType::get(&mlirContext),
FirPlaceHolder::resultEntityPosition, Property::Value);
// Handle arguments
const auto &argumentEntities =
getEntityContainer(interface.side().getCallDescription());
for (auto pair : llvm::zip(procedure.dummyArguments, argumentEntities)) {
const Fortran::evaluate::characteristics::DummyArgument
&argCharacteristics = std::get<0>(pair);
std::visit(
Fortran::common::visitors{
[&](const auto &dummy) {
const auto &entity = getDataObjectEntity(std::get<1>(pair));
handleImplicitDummy(&argCharacteristics, dummy, entity);
},
[&](const Fortran::evaluate::characteristics::AlternateReturn &) {
// nothing to do
},
},
argCharacteristics.u);
}
}
void buildExplicitInterface(
const Fortran::evaluate::characteristics::Procedure &procedure) {
bool isBindC = procedure.IsBindC();
// Handle result
if (const std::optional<Fortran::evaluate::characteristics::FunctionResult>
&result = procedure.functionResult) {
if (result->CanBeReturnedViaImplicitInterface())
handleImplicitResult(*result, isBindC);
else
handleExplicitResult(*result);
} else if (interface.side().hasAlternateReturns()) {
addFirResult(mlir::IndexType::get(&mlirContext),
FirPlaceHolder::resultEntityPosition, Property::Value);
}
// Handle arguments
const auto &argumentEntities =
getEntityContainer(interface.side().getCallDescription());
for (auto pair : llvm::zip(procedure.dummyArguments, argumentEntities)) {
const Fortran::evaluate::characteristics::DummyArgument
&argCharacteristics = std::get<0>(pair);
std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::characteristics::DummyDataObject
&dummy) {
const auto &entity = getDataObjectEntity(std::get<1>(pair));
if (dummy.CanBePassedViaImplicitInterface())
handleImplicitDummy(&argCharacteristics, dummy, entity);
else
handleExplicitDummy(&argCharacteristics, dummy, entity,
isBindC);
},
[&](const Fortran::evaluate::characteristics::DummyProcedure
&dummy) {
const auto &entity = getDataObjectEntity(std::get<1>(pair));
handleImplicitDummy(&argCharacteristics, dummy, entity);
},
[&](const Fortran::evaluate::characteristics::AlternateReturn &) {
// nothing to do
},
},
argCharacteristics.u);
}
}
void appendHostAssocTupleArg(mlir::Type tupTy) {
mlir::MLIRContext *ctxt = tupTy.getContext();
addFirOperand(tupTy, nextPassedArgPosition(), Property::BaseAddress,
{mlir::NamedAttribute{
mlir::StringAttr::get(ctxt, fir::getHostAssocAttrName()),
mlir::UnitAttr::get(ctxt)}});
interface.passedArguments.emplace_back(
PassedEntity{PassEntityBy::BaseAddress, std::nullopt,
interface.side().getHostAssociatedTuple(), emptyValue()});
}
static std::optional<Fortran::evaluate::DynamicType> getResultDynamicType(
const Fortran::evaluate::characteristics::Procedure &procedure) {
if (const std::optional<Fortran::evaluate::characteristics::FunctionResult>
&result = procedure.functionResult)
if (const auto *resultTypeAndShape = result->GetTypeAndShape())
return resultTypeAndShape->type();
return std::nullopt;
}
static bool mustPassLengthWithDummyProcedure(
const Fortran::evaluate::characteristics::Procedure &procedure) {
// When passing a character function designator `bar` as dummy procedure to
// `foo` (e.g. `foo(bar)`), pass the result length of `bar` to `foo` so that
// `bar` can be called inside `foo` even if its length is assumed there.
// From an ABI perspective, the extra length argument must be handled
// exactly as if passing a character object. Using an argument of
// fir.boxchar type gives the expected behavior: after codegen, the
// fir.boxchar lengths are added after all the arguments as extra value
// arguments (the extra arguments order is the order of the fir.boxchar).
// This ABI is compatible with ifort, nag, nvfortran, and xlf, but not
// gfortran. Gfortran does not pass the length and is therefore unable to
// handle later call to `bar` in `foo` where the length would be assumed. If
// the result is an array, nag and ifort and xlf still pass the length, but
// not nvfortran (and gfortran). It is not clear it is possible to call an
// array function with assumed length (f18 forbides defining such
// interfaces). Hence, passing the length is most likely useless, but stick
// with ifort/nag/xlf interface here.
if (std::optional<Fortran::evaluate::DynamicType> type =
getResultDynamicType(procedure))
return type->category() == Fortran::common::TypeCategory::Character;
return false;
}
private:
void handleImplicitResult(
const Fortran::evaluate::characteristics::FunctionResult &result,
bool isBindC) {
if (result.IsProcedurePointer())
TODO(interface.converter.getCurrentLocation(),
"procedure pointer result not yet handled");
const Fortran::evaluate::characteristics::TypeAndShape *typeAndShape =
result.GetTypeAndShape();
assert(typeAndShape && "expect type for non proc pointer result");
Fortran::evaluate::DynamicType dynamicType = typeAndShape->type();
// Character result allocated by caller and passed as hidden arguments
if (dynamicType.category() == Fortran::common::TypeCategory::Character) {
if (isBindC) {
mlir::Type mlirType = translateDynamicType(dynamicType);
addFirResult(mlirType, FirPlaceHolder::resultEntityPosition,
Property::Value);
} else {
handleImplicitCharacterResult(dynamicType);
}
} else if (dynamicType.category() ==
Fortran::common::TypeCategory::Derived) {
if (!dynamicType.GetDerivedTypeSpec().IsVectorType()) {
// Derived result need to be allocated by the caller and the result
// value must be saved. Derived type in implicit interface cannot have
// length parameters.
setSaveResult();
}
mlir::Type mlirType = translateDynamicType(dynamicType);
addFirResult(mlirType, FirPlaceHolder::resultEntityPosition,
Property::Value);
} else {
// All result other than characters/derived are simply returned by value
// in implicit interfaces
mlir::Type mlirType =
getConverter().genType(dynamicType.category(), dynamicType.kind());
addFirResult(mlirType, FirPlaceHolder::resultEntityPosition,
Property::Value);
}
}
void
handleImplicitCharacterResult(const Fortran::evaluate::DynamicType &type) {
int resultPosition = FirPlaceHolder::resultEntityPosition;
setPassedResult(PassEntityBy::AddressAndLength,
getResultEntity(interface.side().getCallDescription()));
mlir::Type lenTy = mlir::IndexType::get(&mlirContext);
std::optional<std::int64_t> constantLen = type.knownLength();
fir::CharacterType::LenType len =
constantLen ? *constantLen : fir::CharacterType::unknownLen();
mlir::Type charRefTy = fir::ReferenceType::get(
fir::CharacterType::get(&mlirContext, type.kind(), len));
mlir::Type boxCharTy = fir::BoxCharType::get(&mlirContext, type.kind());
addFirOperand(charRefTy, resultPosition, Property::CharAddress);
addFirOperand(lenTy, resultPosition, Property::CharLength);
/// For now, also return it by boxchar
addFirResult(boxCharTy, resultPosition, Property::BoxChar);
}
/// Return a vector with an attribute with the name of the argument if this
/// is a callee interface and the name is available. Otherwise, just return
/// an empty vector.
llvm::SmallVector<mlir::NamedAttribute>
dummyNameAttr(const FortranEntity &entity) {
if constexpr (std::is_same_v<FortranEntity,
std::optional<Fortran::common::Reference<
const Fortran::semantics::Symbol>>>) {
if (entity.has_value()) {
const Fortran::semantics::Symbol *argument = &*entity.value();
// "fir.bindc_name" is used for arguments for the sake of consistency
// with other attributes carrying surface syntax names in FIR.
return {mlir::NamedAttribute(
mlir::StringAttr::get(&mlirContext, "fir.bindc_name"),
mlir::StringAttr::get(&mlirContext,
toStringRef(argument->name())))};
}
}
return {};
}
void handleImplicitDummy(
const DummyCharacteristics *characteristics,
const Fortran::evaluate::characteristics::DummyDataObject &obj,
const FortranEntity &entity) {
Fortran::evaluate::DynamicType dynamicType = obj.type.type();
if (dynamicType.category() == Fortran::common::TypeCategory::Character) {
mlir::Type boxCharTy =
fir::BoxCharType::get(&mlirContext, dynamicType.kind());
addFirOperand(boxCharTy, nextPassedArgPosition(), Property::BoxChar,
dummyNameAttr(entity));
addPassedArg(PassEntityBy::BoxChar, entity, characteristics);
} else {
// non-PDT derived type allowed in implicit interface.
mlir::Type type = translateDynamicType(dynamicType);
fir::SequenceType::Shape bounds = getBounds(obj.type.shape());
if (!bounds.empty())
type = fir::SequenceType::get(bounds, type);
mlir::Type refType = fir::ReferenceType::get(type);
addFirOperand(refType, nextPassedArgPosition(), Property::BaseAddress,
dummyNameAttr(entity));
addPassedArg(PassEntityBy::BaseAddress, entity, characteristics);
}
}
// Define when an explicit argument must be passed in a fir.box.
bool dummyRequiresBox(
const Fortran::evaluate::characteristics::DummyDataObject &obj) {
using ShapeAttr = Fortran::evaluate::characteristics::TypeAndShape::Attr;
using ShapeAttrs = Fortran::evaluate::characteristics::TypeAndShape::Attrs;
constexpr ShapeAttrs shapeRequiringBox = {
ShapeAttr::AssumedShape, ShapeAttr::DeferredShape,
ShapeAttr::AssumedRank, ShapeAttr::Coarray};
if ((obj.type.attrs() & shapeRequiringBox).any())
// Need to pass shape/coshape info in fir.box.
return true;
if (obj.type.type().IsPolymorphic() && !obj.type.type().IsAssumedType())
// Need to pass dynamic type info in fir.box.
return true;
if (const Fortran::semantics::DerivedTypeSpec *derived =
Fortran::evaluate::GetDerivedTypeSpec(obj.type.type()))
if (const Fortran::semantics::Scope *scope = derived->scope())
// Need to pass length type parameters in fir.box if any.
return scope->IsDerivedTypeWithLengthParameter();
return false;
}
mlir::Type
translateDynamicType(const Fortran::evaluate::DynamicType &dynamicType) {
Fortran::common::TypeCategory cat = dynamicType.category();
// DERIVED
if (cat == Fortran::common::TypeCategory::Derived) {
// TODO is kept under experimental flag until feature is complete.
if (dynamicType.IsPolymorphic() &&
!getConverter().getLoweringOptions().getPolymorphicTypeImpl())
TODO(interface.converter.getCurrentLocation(),
"support for polymorphic types");
if (dynamicType.IsUnlimitedPolymorphic())
return mlir::NoneType::get(&mlirContext);
return getConverter().genType(dynamicType.GetDerivedTypeSpec());
}
// CHARACTER with compile time constant length.
if (cat == Fortran::common::TypeCategory::Character)
if (std::optional<std::int64_t> constantLen =
toInt64(dynamicType.GetCharLength()))
return getConverter().genType(cat, dynamicType.kind(), {*constantLen});
// INTEGER, REAL, LOGICAL, COMPLEX, and CHARACTER with dynamic length.
return getConverter().genType(cat, dynamicType.kind());
}
void handleExplicitDummy(
const DummyCharacteristics *characteristics,
const Fortran::evaluate::characteristics::DummyDataObject &obj,
const FortranEntity &entity, bool isBindC) {
using Attrs = Fortran::evaluate::characteristics::DummyDataObject::Attr;
bool isValueAttr = false;
[[maybe_unused]] mlir::Location loc =
interface.converter.getCurrentLocation();
llvm::SmallVector<mlir::NamedAttribute> attrs = dummyNameAttr(entity);
auto addMLIRAttr = [&](llvm::StringRef attr) {
attrs.emplace_back(mlir::StringAttr::get(&mlirContext, attr),
mlir::UnitAttr::get(&mlirContext));
};
if (obj.attrs.test(Attrs::Optional))
addMLIRAttr(fir::getOptionalAttrName());
if (obj.attrs.test(Attrs::Asynchronous))
TODO(loc, "ASYNCHRONOUS in procedure interface");
if (obj.attrs.test(Attrs::Contiguous))
addMLIRAttr(fir::getContiguousAttrName());
if (obj.attrs.test(Attrs::Value))
isValueAttr = true; // TODO: do we want an mlir::Attribute as well?
if (obj.attrs.test(Attrs::Volatile))
TODO(loc, "VOLATILE in procedure interface");
if (obj.attrs.test(Attrs::Target))
addMLIRAttr(fir::getTargetAttrName());
// TODO: intents that require special care (e.g finalization)
using ShapeAttr = Fortran::evaluate::characteristics::TypeAndShape::Attr;
const Fortran::evaluate::characteristics::TypeAndShape::Attrs &shapeAttrs =
obj.type.attrs();
if (shapeAttrs.test(ShapeAttr::AssumedRank))
TODO(loc, "assumed rank in procedure interface");
if (shapeAttrs.test(ShapeAttr::Coarray))
TODO(loc, "coarray in procedure interface");
// So far assume that if the argument cannot be passed by implicit interface
// it must be by box. That may no be always true (e.g for simple optionals)
Fortran::evaluate::DynamicType dynamicType = obj.type.type();
mlir::Type type = translateDynamicType(dynamicType);
fir::SequenceType::Shape bounds = getBounds(obj.type.shape());
if (!bounds.empty())
type = fir::SequenceType::get(bounds, type);
if (obj.attrs.test(Attrs::Allocatable))
type = fir::HeapType::get(type);
if (obj.attrs.test(Attrs::Pointer))
type = fir::PointerType::get(type);
mlir::Type boxType = fir::wrapInClassOrBoxType(
type, obj.type.type().IsPolymorphic(), obj.type.type().IsAssumedType());
if (obj.attrs.test(Attrs::Allocatable) || obj.attrs.test(Attrs::Pointer)) {
// Pass as fir.ref<fir.box> or fir.ref<fir.class>
mlir::Type boxRefType = fir::ReferenceType::get(boxType);
addFirOperand(boxRefType, nextPassedArgPosition(), Property::MutableBox,
attrs);
addPassedArg(PassEntityBy::MutableBox, entity, characteristics);
} else if (dummyRequiresBox(obj)) {
// Pass as fir.box or fir.class
if (isValueAttr)
TODO(loc, "assumed shape dummy argument with VALUE attribute");
addFirOperand(boxType, nextPassedArgPosition(), Property::Box, attrs);
addPassedArg(PassEntityBy::Box, entity, characteristics);
} else if (dynamicType.category() ==
Fortran::common::TypeCategory::Character) {
// Pass as fir.box_char
mlir::Type boxCharTy =
fir::BoxCharType::get(&mlirContext, dynamicType.kind());
addFirOperand(boxCharTy, nextPassedArgPosition(), Property::BoxChar,
attrs);
addPassedArg(isValueAttr ? PassEntityBy::CharBoxValueAttribute
: PassEntityBy::BoxChar,
entity, characteristics);
} else {
// Pass as fir.ref unless it's by VALUE and BIND(C). Also pass-by-value
// for numerical/logical scalar without OPTIONAL so that the behavior is
// consistent with gfortran/nvfortran.
// TODO: pass-by-value for derived type is not supported yet
mlir::Type passType = fir::ReferenceType::get(type);
PassEntityBy passBy = PassEntityBy::BaseAddress;
Property prop = Property::BaseAddress;
if (isValueAttr) {
bool isBuiltinCptrType = fir::isa_builtin_cptr_type(type);
if (isBindC || (!type.isa<fir::SequenceType>() &&
!obj.attrs.test(Attrs::Optional) &&
(dynamicType.category() !=
Fortran::common::TypeCategory::Derived ||
isBuiltinCptrType))) {
passBy = PassEntityBy::Value;
prop = Property::Value;
if (isBuiltinCptrType) {
auto recTy = type.dyn_cast<fir::RecordType>();
mlir::Type fieldTy = recTy.getTypeList()[0].second;
passType = fir::ReferenceType::get(fieldTy);
} else {
passType = type;
}
} else {
passBy = PassEntityBy::BaseAddressValueAttribute;
}
}
addFirOperand(passType, nextPassedArgPosition(), prop, attrs);
addPassedArg(passBy, entity, characteristics);
}
}
void handleImplicitDummy(
const DummyCharacteristics *characteristics,
const Fortran::evaluate::characteristics::DummyProcedure &proc,
const FortranEntity &entity) {
if (proc.attrs.test(
Fortran::evaluate::characteristics::DummyProcedure::Attr::Pointer))
TODO(interface.converter.getCurrentLocation(),
"procedure pointer arguments");
// Otherwise, it is a dummy procedure.
const Fortran::evaluate::characteristics::Procedure &procedure =
proc.procedure.value();
mlir::Type funcType =
getProcedureDesignatorType(&procedure, interface.converter);
std::optional<Fortran::evaluate::DynamicType> resultTy =
getResultDynamicType(procedure);
if (resultTy && mustPassLengthWithDummyProcedure(procedure)) {
// The result length of dummy procedures that are character functions must
// be passed so that the dummy procedure can be called if it has assumed
// length on the callee side.
mlir::Type tupleType =
fir::factory::getCharacterProcedureTupleType(funcType);
llvm::StringRef charProcAttr = fir::getCharacterProcedureDummyAttrName();
addFirOperand(tupleType, nextPassedArgPosition(), Property::CharProcTuple,
{mlir::NamedAttribute{
mlir::StringAttr::get(&mlirContext, charProcAttr),
mlir::UnitAttr::get(&mlirContext)}});
addPassedArg(PassEntityBy::CharProcTuple, entity, characteristics);
return;
}
addFirOperand(funcType, nextPassedArgPosition(), Property::BaseAddress);
addPassedArg(PassEntityBy::BaseAddress, entity, characteristics);
}
void handleExplicitResult(
const Fortran::evaluate::characteristics::FunctionResult &result) {
using Attr = Fortran::evaluate::characteristics::FunctionResult::Attr;
if (result.IsProcedurePointer())
TODO(interface.converter.getCurrentLocation(),
"procedure pointer results");
const Fortran::evaluate::characteristics::TypeAndShape *typeAndShape =
result.GetTypeAndShape();
assert(typeAndShape && "expect type for non proc pointer result");
mlir::Type mlirType = translateDynamicType(typeAndShape->type());
fir::SequenceType::Shape bounds = getBounds(typeAndShape->shape());
const auto *resTypeAndShape{result.GetTypeAndShape()};
bool resIsPolymorphic =
resTypeAndShape && resTypeAndShape->type().IsPolymorphic();
bool resIsAssumedType =
resTypeAndShape && resTypeAndShape->type().IsAssumedType();
if (!bounds.empty())
mlirType = fir::SequenceType::get(bounds, mlirType);
if (result.attrs.test(Attr::Allocatable))
mlirType = fir::wrapInClassOrBoxType(fir::HeapType::get(mlirType),
resIsPolymorphic, resIsAssumedType);
if (result.attrs.test(Attr::Pointer))
mlirType = fir::wrapInClassOrBoxType(fir::PointerType::get(mlirType),
resIsPolymorphic, resIsAssumedType);
if (fir::isa_char(mlirType)) {
// Character scalar results must be passed as arguments in lowering so
// that an assumed length character function callee can access the result
// length. A function with a result requiring an explicit interface does
// not have to be compatible with assumed length function, but most
// compilers supports it.
handleImplicitCharacterResult(typeAndShape->type());
return;
}
addFirResult(mlirType, FirPlaceHolder::resultEntityPosition,
Property::Value);
// Explicit results require the caller to allocate the storage and save the
// function result in the storage with a fir.save_result.
setSaveResult();
}
fir::SequenceType::Shape getBounds(const Fortran::evaluate::Shape &shape) {
fir::SequenceType::Shape bounds;
for (const std::optional<Fortran::evaluate::ExtentExpr> &extent : shape) {
fir::SequenceType::Extent bound = fir::SequenceType::getUnknownExtent();
if (std::optional<std::int64_t> i = toInt64(extent))
bound = *i;
bounds.emplace_back(bound);
}
return bounds;
}
std::optional<std::int64_t>
toInt64(std::optional<
Fortran::evaluate::Expr<Fortran::evaluate::SubscriptInteger>>
expr) {
if (expr)
return Fortran::evaluate::ToInt64(Fortran::evaluate::Fold(
getConverter().getFoldingContext(), toEvExpr(*expr)));
return std::nullopt;
}
void addFirOperand(
mlir::Type type, int entityPosition, Property p,
llvm::ArrayRef<mlir::NamedAttribute> attributes = std::nullopt) {
interface.inputs.emplace_back(
FirPlaceHolder{type, entityPosition, p, attributes});
}
void
addFirResult(mlir::Type type, int entityPosition, Property p,
llvm::ArrayRef<mlir::NamedAttribute> attributes = std::nullopt) {
interface.outputs.emplace_back(
FirPlaceHolder{type, entityPosition, p, attributes});
}
void addPassedArg(PassEntityBy p, FortranEntity entity,
const DummyCharacteristics *characteristics) {
interface.passedArguments.emplace_back(
PassedEntity{p, entity, emptyValue(), emptyValue(), characteristics});
}
void setPassedResult(PassEntityBy p, FortranEntity entity) {
interface.passedResult =
PassedEntity{p, entity, emptyValue(), emptyValue()};
}
void setSaveResult() { interface.saveResult = true; }
int nextPassedArgPosition() { return interface.passedArguments.size(); }
static FirValue emptyValue() {
if constexpr (std::is_same_v<Fortran::lower::CalleeInterface, T>) {
return {};
} else {
return -1;
}
}
Fortran::lower::AbstractConverter &getConverter() {
return interface.converter;
}
CallInterface &interface;
mlir::MLIRContext &mlirContext;
};
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::isOptional() const {
if (!characteristics)
return false;
return characteristics->IsOptional();
}
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::mayBeModifiedByCall()
const {
if (!characteristics)
return true;
if (characteristics->GetIntent() == Fortran::common::Intent::In)
return false;
return !hasValueAttribute();
}
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::mayBeReadByCall() const {
if (!characteristics)
return true;
return characteristics->GetIntent() != Fortran::common::Intent::Out;
}
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::testTKR(
Fortran::common::IgnoreTKR flag) const {
if (!characteristics)
return false;
const auto *dummy =
std::get_if<Fortran::evaluate::characteristics::DummyDataObject>(
&characteristics->u);
if (!dummy)
return false;
return dummy->ignoreTKR.test(flag);
}
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::isIntentOut() const {
if (!characteristics)
return true;
return characteristics->GetIntent() == Fortran::common::Intent::Out;
}
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::mustBeMadeContiguous()
const {
if (!characteristics)
return true;
const auto *dummy =
std::get_if<Fortran::evaluate::characteristics::DummyDataObject>(
&characteristics->u);
if (!dummy)
return false;
const auto &shapeAttrs = dummy->type.attrs();
using ShapeAttrs = Fortran::evaluate::characteristics::TypeAndShape::Attr;
if (shapeAttrs.test(ShapeAttrs::AssumedRank) ||
shapeAttrs.test(ShapeAttrs::AssumedShape))
return dummy->attrs.test(
Fortran::evaluate::characteristics::DummyDataObject::Attr::Contiguous);
if (shapeAttrs.test(ShapeAttrs::DeferredShape))
return false;
// Explicit shape arrays are contiguous.
return dummy->type.Rank() > 0;
}
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::hasValueAttribute() const {
if (!characteristics)
return false;
const auto *dummy =
std::get_if<Fortran::evaluate::characteristics::DummyDataObject>(
&characteristics->u);
return dummy &&
dummy->attrs.test(
Fortran::evaluate::characteristics::DummyDataObject::Attr::Value);
}
template <typename T>
bool Fortran::lower::CallInterface<T>::PassedEntity::hasAllocatableAttribute()
const {
if (!characteristics)
return false;
const auto *dummy =
std::get_if<Fortran::evaluate::characteristics::DummyDataObject>(
&characteristics->u);
using Attrs = Fortran::evaluate::characteristics::DummyDataObject::Attr;
return dummy && dummy->attrs.test(Attrs::Allocatable);
}
template <typename T>
bool Fortran::lower::CallInterface<
T>::PassedEntity::mayRequireIntentoutFinalization() const {
// Conservatively assume that the finalization is needed.
if (!characteristics)
return true;
// No INTENT(OUT) dummy arguments do not require finalization on entry.
if (!isIntentOut())
return false;
const auto *dummy =
std::get_if<Fortran::evaluate::characteristics::DummyDataObject>(
&characteristics->u);
if (!dummy)
return true;
// POINTER/ALLOCATABLE dummy arguments do not require finalization.
using Attrs = Fortran::evaluate::characteristics::DummyDataObject::Attr;
if (dummy->attrs.test(Attrs::Allocatable) ||
dummy->attrs.test(Attrs::Pointer))
return false;
// Polymorphic and unlimited polymorphic INTENT(OUT) dummy arguments
// may need finalization.
const Fortran::evaluate::DynamicType &type = dummy->type.type();
if (type.IsPolymorphic() || type.IsUnlimitedPolymorphic())
return true;
// INTENT(OUT) dummy arguments of derived types require finalization,
// if their type has finalization.
const Fortran::semantics::DerivedTypeSpec *derived =
Fortran::evaluate::GetDerivedTypeSpec(type);
if (!derived)
return false;
return Fortran::semantics::IsFinalizable(*derived);
}
template <typename T>
void Fortran::lower::CallInterface<T>::determineInterface(
bool isImplicit,
const Fortran::evaluate::characteristics::Procedure &procedure) {
CallInterfaceImpl<T> impl(*this);
if (isImplicit)
impl.buildImplicitInterface(procedure);
else
impl.buildExplicitInterface(procedure);
// We only expect the extra host asspciations argument from the callee side as
// the definition of internal procedures will be present, and we'll always
// have a FuncOp definition in the ModuleOp, when lowering.
if constexpr (std::is_same_v<T, Fortran::lower::CalleeInterface>) {
if (side().hasHostAssociated())
impl.appendHostAssocTupleArg(side().getHostAssociatedTy());
}
}
template <typename T>
mlir::FunctionType Fortran::lower::CallInterface<T>::genFunctionType() {
llvm::SmallVector<mlir::Type> returnTys;
llvm::SmallVector<mlir::Type> inputTys;
for (const FirPlaceHolder &placeHolder : outputs)
returnTys.emplace_back(placeHolder.type);
for (const FirPlaceHolder &placeHolder : inputs)
inputTys.emplace_back(placeHolder.type);
return mlir::FunctionType::get(&converter.getMLIRContext(), inputTys,
returnTys);
}
template <typename T>
llvm::SmallVector<mlir::Type>
Fortran::lower::CallInterface<T>::getResultType() const {
llvm::SmallVector<mlir::Type> types;
for (const FirPlaceHolder &out : outputs)
types.emplace_back(out.type);
return types;
}
template class Fortran::lower::CallInterface<Fortran::lower::CalleeInterface>;
template class Fortran::lower::CallInterface<Fortran::lower::CallerInterface>;
//===----------------------------------------------------------------------===//
// Function Type Translation
//===----------------------------------------------------------------------===//
/// Build signature from characteristics when there is no Fortran entity to
/// associate with the arguments (i.e, this is not a call site or a procedure
/// declaration. This is needed when dealing with function pointers/dummy
/// arguments.
class SignatureBuilder;
template <>
struct Fortran::lower::PassedEntityTypes<SignatureBuilder> {
using FortranEntity = FakeEntity;
using FirValue = int;
};
/// SignatureBuilder is a CRTP implementation of CallInterface intended to
/// help translating characteristics::Procedure to mlir::FunctionType using
/// the CallInterface translation.
class SignatureBuilder
: public Fortran::lower::CallInterface<SignatureBuilder> {
public:
SignatureBuilder(const Fortran::evaluate::characteristics::Procedure &p,
Fortran::lower::AbstractConverter &c, bool forceImplicit)
: CallInterface{c}, proc{p} {
bool isImplicit = forceImplicit || proc.CanBeCalledViaImplicitInterface();
determineInterface(isImplicit, proc);
}
/// Does the procedure characteristics being translated have alternate
/// returns ?
bool hasAlternateReturns() const {
for (const Fortran::evaluate::characteristics::DummyArgument &dummy :
proc.dummyArguments)
if (std::holds_alternative<
Fortran::evaluate::characteristics::AlternateReturn>(dummy.u))
return true;
return false;
};
/// This is only here to fulfill CRTP dependencies and should not be called.
std::string getMangledName() const {
llvm_unreachable("trying to get name from SignatureBuilder");
}
/// This is only here to fulfill CRTP dependencies and should not be called.
mlir::Location getCalleeLocation() const {
llvm_unreachable("trying to get callee location from SignatureBuilder");
}
/// This is only here to fulfill CRTP dependencies and should not be called.
const Fortran::semantics::Symbol *getProcedureSymbol() const {
llvm_unreachable("trying to get callee symbol from SignatureBuilder");
};
Fortran::evaluate::characteristics::Procedure characterize() const {
return proc;
}
/// SignatureBuilder cannot be used on main program.
static constexpr bool isMainProgram() { return false; }
/// Return the characteristics::Procedure that is being translated to
/// mlir::FunctionType.
const Fortran::evaluate::characteristics::Procedure &
getCallDescription() const {
return proc;
}
/// This is not the description of an indirect call.
static constexpr bool isIndirectCall() { return false; }
/// Return the translated signature.
mlir::FunctionType getFunctionType() { return genFunctionType(); }
// Copy of base implementation.
static constexpr bool hasHostAssociated() { return false; }
mlir::Type getHostAssociatedTy() const {
llvm_unreachable("getting host associated type in SignatureBuilder");
}
private:
const Fortran::evaluate::characteristics::Procedure &proc;
};
mlir::FunctionType Fortran::lower::translateSignature(
const Fortran::evaluate::ProcedureDesignator &proc,
Fortran::lower::AbstractConverter &converter) {
std::optional<Fortran::evaluate::characteristics::Procedure> characteristics =
Fortran::evaluate::characteristics::Procedure::Characterize(
proc, converter.getFoldingContext());
// Most unrestricted intrinsic characteristic has the Elemental attribute
// which triggers CanBeCalledViaImplicitInterface to return false. However,
// using implicit interface rules is just fine here.
bool forceImplicit = proc.GetSpecificIntrinsic();
return SignatureBuilder{characteristics.value(), converter, forceImplicit}
.getFunctionType();
}
mlir::func::FuncOp Fortran::lower::getOrDeclareFunction(
llvm::StringRef name, const Fortran::evaluate::ProcedureDesignator &proc,
Fortran::lower::AbstractConverter &converter) {
mlir::ModuleOp module = converter.getModuleOp();
mlir::func::FuncOp func = fir::FirOpBuilder::getNamedFunction(module, name);
if (func)
return func;
const Fortran::semantics::Symbol *symbol = proc.GetSymbol();
assert(symbol && "non user function in getOrDeclareFunction");
// getOrDeclareFunction is only used for functions not defined in the current
// program unit, so use the location of the procedure designator symbol, which
// is the first occurrence of the procedure in the program unit.
mlir::Location loc = converter.genLocation(symbol->name());
std::optional<Fortran::evaluate::characteristics::Procedure> characteristics =
Fortran::evaluate::characteristics::Procedure::Characterize(
proc, converter.getFoldingContext());
mlir::FunctionType ty = SignatureBuilder{characteristics.value(), converter,
/*forceImplicit=*/false}
.getFunctionType();
mlir::func::FuncOp newFunc =
fir::FirOpBuilder::createFunction(loc, module, name, ty);
addSymbolAttribute(newFunc, *symbol, converter.getMLIRContext());
return newFunc;
}
// Is it required to pass a dummy procedure with \p characteristics as a tuple
// containing the function address and the result length ?
static bool mustPassLengthWithDummyProcedure(
const std::optional<Fortran::evaluate::characteristics::Procedure>
&characteristics) {
return characteristics &&
Fortran::lower::CallInterfaceImpl<SignatureBuilder>::
mustPassLengthWithDummyProcedure(*characteristics);
}
bool Fortran::lower::mustPassLengthWithDummyProcedure(
const Fortran::evaluate::ProcedureDesignator &procedure,
Fortran::lower::AbstractConverter &converter) {
std::optional<Fortran::evaluate::characteristics::Procedure> characteristics =
Fortran::evaluate::characteristics::Procedure::Characterize(
procedure, converter.getFoldingContext());
return ::mustPassLengthWithDummyProcedure(characteristics);
}
mlir::Type Fortran::lower::getDummyProcedureType(
const Fortran::semantics::Symbol &dummyProc,
Fortran::lower::AbstractConverter &converter) {
std::optional<Fortran::evaluate::characteristics::Procedure> iface =
Fortran::evaluate::characteristics::Procedure::Characterize(
dummyProc, converter.getFoldingContext());
mlir::Type procType = getProcedureDesignatorType(
iface.has_value() ? &*iface : nullptr, converter);
if (::mustPassLengthWithDummyProcedure(iface))
return fir::factory::getCharacterProcedureTupleType(procType);
return procType;
}
bool Fortran::lower::isCPtrArgByValueType(mlir::Type ty) {
return ty.isa<fir::ReferenceType>() &&
fir::isa_integer(fir::unwrapRefType(ty));
}
|