1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
//===- ConvertArrayConstructor.cpp -- Array Constructor ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertArrayConstructor.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/Runtime/ArrayConstructor.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Builder/TemporaryStorage.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
// Array constructors are lowered with three different strategies.
// All strategies are not possible with all array constructors.
//
// - Strategy 1: runtime approach (RuntimeTempStrategy).
// This strategy works will all array constructors, but will create more
// complex code that is harder to optimize. An allocatable temp is created,
// it may be unallocated if the array constructor length parameters or extent
// could not be computed. Then, the runtime is called to push lowered
// ac-value (array constructor elements) into the allocatable. The runtime
// will allocate or reallocate as needed while values are being pushed.
// In the end, the allocatable contain a temporary with all the array
// constructor evaluated elements.
//
// - Strategy 2: inlined temporary approach (InlinedTempStrategyImpl)
// This strategy can only be used if the array constructor extent and length
// parameters can be pre-computed without evaluating any ac-value, and if all
// of the ac-value are scalars (at least for now).
// A temporary is allocated inline in one go, and an index pointing at the
// current ac-value position in the array constructor element sequence is
// maintained and used to store ac-value as they are being lowered.
//
// - Strategy 3: "function of the indices" approach (AsElementalStrategy)
// This strategy can only be used if the array constructor extent and length
// parameters can be pre-computed and, if the array constructor is of the
// form "[(scalar_expr, ac-implied-do-control)]". In this case, it is lowered
// into an hlfir.elemental without creating any temporary in lowering. This
// form should maximize the chance of array temporary elision when assigning
// the array constructor, potentially reshaped, to an array variable.
//
// The array constructor lowering looks like:
// ```
// strategy = selectArrayCtorLoweringStrategy(array-ctor-expr);
// for (ac-value : array-ctor-expr)
// if (ac-value is expression) {
// strategy.pushValue(ac-value);
// } else if (ac-value is implied-do) {
// strategy.startImpliedDo(lower, upper, stride);
// strategy.startImpliedDoScope();
// // lower nested values
// ...
// strategy.endImpliedDoScope();
// }
// result = strategy.finishArrayCtorLowering();
// ```
//===----------------------------------------------------------------------===//
// Definition of the lowering strategies. Each lowering strategy is defined
// as a class that implements "pushValue", "startImpliedDo" and
// "finishArrayCtorLowering". A strategy may optionally override
// "startImpliedDoScope" and "endImpliedDoScope" virtual methods
// of its base class StrategyBase.
//===----------------------------------------------------------------------===//
namespace {
/// Class provides common implementation of scope push/pop methods
/// that update StatementContext scopes and SymMap bindings.
/// They might be overridden by the lowering strategies, e.g.
/// see AsElementalStrategy.
class StrategyBase {
public:
StrategyBase(Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap)
: stmtCtx{stmtCtx}, symMap{symMap} {};
virtual ~StrategyBase() = default;
virtual void startImpliedDoScope(llvm::StringRef doName,
mlir::Value indexValue) {
symMap.pushImpliedDoBinding(doName, indexValue);
stmtCtx.pushScope();
}
virtual void endImpliedDoScope() {
stmtCtx.finalizeAndPop();
symMap.popImpliedDoBinding();
}
protected:
Fortran::lower::StatementContext &stmtCtx;
Fortran::lower::SymMap &symMap;
};
/// Class that implements the "inlined temp strategy" to lower array
/// constructors. It must be provided a boolean to indicate if the array
/// constructor has any implied-do-loop.
template <bool hasLoops>
class InlinedTempStrategyImpl : public StrategyBase,
public fir::factory::HomogeneousScalarStack {
/// Name that will be given to the temporary allocation and hlfir.declare in
/// the IR.
static constexpr char tempName[] = ".tmp.arrayctor";
public:
/// Start lowering an array constructor according to the inline strategy.
/// The temporary is created right away.
InlinedTempStrategyImpl(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType, mlir::Value extent,
llvm::ArrayRef<mlir::Value> lengths)
: StrategyBase{stmtCtx, symMap},
fir::factory::HomogeneousScalarStack{
loc, builder, declaredType,
extent, lengths, /*allocateOnHeap=*/true,
hasLoops, tempName} {}
/// Push a lowered ac-value into the current insertion point and
/// increment the insertion point.
using fir::factory::HomogeneousScalarStack::pushValue;
/// Start a fir.do_loop with the control from an implied-do and return
/// the loop induction variable that is the ac-do-variable value.
/// Only usable if the counter is able to track the position through loops.
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
if constexpr (!hasLoops)
fir::emitFatalError(loc, "array constructor lowering is inconsistent");
auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
/*unordered=*/false,
/*finalCount=*/false);
builder.setInsertionPointToStart(loop.getBody());
return loop.getInductionVar();
}
/// Move the temporary to an hlfir.expr value (array constructors are not
/// variables and cannot be further modified).
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return moveStackAsArrayExpr(loc, builder);
}
};
/// Semantic analysis expression rewrites unroll implied do loop with
/// compile time constant bounds (even if huge). So using a minimalistic
/// counter greatly reduces the generated IR for simple but big array
/// constructors [(i,i=1,constant-expr)] that are expected to be quite
/// common.
using LooplessInlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/false>;
/// A generic memory based counter that can deal with all cases of
/// "inlined temp strategy". The counter value is stored in a temp
/// from which it is loaded, incremented, and stored every time an
/// ac-value is pushed.
using InlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/true>;
/// Class that implements the "as function of the indices" lowering strategy.
/// It will lower [(scalar_expr(i), i=l,u,s)] to:
/// ```
/// %extent = max((%u-%l+1)/%s, 0)
/// %shape = fir.shape %extent
/// %elem = hlfir.elemental %shape {
/// ^bb0(%pos:index):
/// %i = %l+(%i-1)*%s
/// %value = scalar_expr(%i)
/// hlfir.yield_element %value
/// }
/// ```
/// That way, no temporary is created in lowering, and if the array constructor
/// is part of a more complex elemental expression, or an assignment, it will be
/// trivial to "inline" it in the expression or assignment loops if allowed by
/// alias analysis.
/// This lowering is however only possible for the form of array constructors as
/// in the illustration above. It could be extended to deeper independent
/// implied-do nest and wrapped in an hlfir.reshape to a rank 1 array. But this
/// op does not exist yet, so this is left for the future if it appears
/// profitable.
class AsElementalStrategy : public StrategyBase {
public:
/// The constructor only gathers the operands to create the hlfir.elemental.
AsElementalStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType, mlir::Value extent,
llvm::ArrayRef<mlir::Value> lengths)
: StrategyBase{stmtCtx, symMap}, shape{builder.genShape(loc, {extent})},
lengthParams{lengths.begin(), lengths.end()},
exprType{getExprType(declaredType)} {}
static hlfir::ExprType getExprType(fir::SequenceType declaredType) {
// Note: 7.8 point 4: the dynamic type of an array constructor is its static
// type, it is not polymorphic.
return hlfir::ExprType::get(declaredType.getContext(),
declaredType.getShape(),
declaredType.getEleTy(),
/*isPolymorphic=*/false);
}
/// Create the hlfir.elemental and compute the ac-implied-do-index value
/// given the lower bound and stride (compute "%i" in the illustration above).
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
assert(!elementalOp && "expected only one implied-do");
mlir::Value one =
builder.createIntegerConstant(loc, builder.getIndexType(), 1);
elementalOp =
builder.create<hlfir::ElementalOp>(loc, exprType, shape, lengthParams,
/*isUnordered=*/true);
builder.setInsertionPointToStart(elementalOp.getBody());
// implied-do-index = lower+((i-1)*stride)
mlir::Value diff = builder.create<mlir::arith::SubIOp>(
loc, elementalOp.getIndices()[0], one);
mlir::Value mul = builder.create<mlir::arith::MulIOp>(loc, diff, stride);
mlir::Value add = builder.create<mlir::arith::AddIOp>(loc, lower, mul);
return add;
}
/// Create the elemental hlfir.yield_element with the scalar ac-value.
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
assert(value.isScalar() && "cannot use hlfir.elemental with array values");
assert(elementalOp && "array constructor must contain an outer implied-do");
mlir::Value elementResult = value;
if (fir::isa_trivial(elementResult.getType()))
elementResult =
builder.createConvert(loc, exprType.getElementType(), elementResult);
// The clean-ups associated with the implied-do body operations
// must be initiated before the YieldElementOp, so we have to pop the scope
// right now.
stmtCtx.finalizeAndPop();
// This is a hacky way to get rid of the DestroyOp clean-up
// associated with the final ac-value result if it is hlfir.expr.
// Example:
// ... = (/(REPEAT(REPEAT(CHAR(i),2),2),i=1,n)/)
// Each intrinsic call lowering will produce hlfir.expr result
// with the associated clean-up, but only the last of them
// is wrong. It is wrong because the value is used in hlfir.yield_element,
// so it cannot be destroyed.
mlir::Operation *destroyOp = nullptr;
for (mlir::Operation *useOp : elementResult.getUsers())
if (mlir::isa<hlfir::DestroyOp>(useOp)) {
if (destroyOp)
fir::emitFatalError(loc,
"multiple DestroyOp's for ac-value expression");
destroyOp = useOp;
}
if (destroyOp)
destroyOp->erase();
builder.create<hlfir::YieldElementOp>(loc, elementResult);
}
// Override the default, because the context scope must be popped in
// pushValue().
virtual void endImpliedDoScope() override { symMap.popImpliedDoBinding(); }
/// Return the created hlfir.elemental.
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return hlfir::Entity{elementalOp};
}
private:
mlir::Value shape;
llvm::SmallVector<mlir::Value> lengthParams;
hlfir::ExprType exprType;
hlfir::ElementalOp elementalOp{};
};
/// Class that implements the "runtime temp strategy" to lower array
/// constructors.
class RuntimeTempStrategy : public StrategyBase {
/// Name that will be given to the temporary allocation and hlfir.declare in
/// the IR.
static constexpr char tempName[] = ".tmp.arrayctor";
public:
/// Start lowering an array constructor according to the runtime strategy.
/// The temporary is only created if the extents and length parameters are
/// already known. Otherwise, the handling of the allocation (and
/// reallocation) is left up to the runtime.
/// \p extent is the pre-computed extent of the array constructor, if it could
/// be pre-computed. It is std::nullopt otherwise.
/// \p lengths are the pre-computed length parameters of the array
/// constructor, if they could be precomputed. \p missingLengthParameters is
/// set to true if the length parameters could not be precomputed.
RuntimeTempStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType,
std::optional<mlir::Value> extent,
llvm::ArrayRef<mlir::Value> lengths,
bool missingLengthParameters)
: StrategyBase{stmtCtx, symMap},
arrayConstructorElementType{declaredType.getEleTy()} {
mlir::Type heapType = fir::HeapType::get(declaredType);
mlir::Type boxType = fir::BoxType::get(heapType);
allocatableTemp = builder.createTemporary(loc, boxType, tempName);
mlir::Value initialBoxValue;
if (extent && !missingLengthParameters) {
llvm::SmallVector<mlir::Value, 1> extents{*extent};
mlir::Value tempStorage = builder.createHeapTemporary(
loc, declaredType, tempName, extents, lengths);
mlir::Value shape = builder.genShape(loc, extents);
declare = builder.create<hlfir::DeclareOp>(
loc, tempStorage, tempName, shape, lengths,
fir::FortranVariableFlagsAttr{});
initialBoxValue =
builder.createBox(loc, boxType, declare->getOriginalBase(), shape,
/*slice=*/mlir::Value{}, lengths, /*tdesc=*/{});
} else {
// The runtime will have to do the initial allocation.
// The declare operation cannot be emitted in this case since the final
// array constructor has not yet been allocated. Instead, the resulting
// temporary variable will be extracted from the allocatable descriptor
// after all the API calls.
// Prepare the initial state of the allocatable descriptor with a
// deallocated status and all the available knowledge about the extent
// and length parameters.
llvm::SmallVector<mlir::Value> emboxLengths(lengths.begin(),
lengths.end());
if (!extent)
extent = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
if (missingLengthParameters) {
if (declaredType.getEleTy().isa<fir::CharacterType>())
emboxLengths.push_back(builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), 0));
else
TODO(loc,
"parametrized derived type array constructor without type-spec");
}
mlir::Value nullAddr = builder.createNullConstant(loc, heapType);
mlir::Value shape = builder.genShape(loc, {*extent});
initialBoxValue = builder.createBox(loc, boxType, nullAddr, shape,
/*slice=*/mlir::Value{}, emboxLengths,
/*tdesc=*/{});
}
builder.create<fir::StoreOp>(loc, initialBoxValue, allocatableTemp);
arrayConstructorVector = fir::runtime::genInitArrayConstructorVector(
loc, builder, allocatableTemp,
builder.createBool(loc, missingLengthParameters));
}
bool useSimplePushRuntime(hlfir::Entity value) {
return value.isScalar() &&
!arrayConstructorElementType.isa<fir::CharacterType>() &&
!fir::isRecordWithAllocatableMember(arrayConstructorElementType) &&
!fir::isRecordWithTypeParameters(arrayConstructorElementType);
}
/// Push a lowered ac-value into the array constructor vector using
/// the runtime API.
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
if (useSimplePushRuntime(value)) {
auto [addrExv, cleanUp] = hlfir::convertToAddress(
loc, builder, value, arrayConstructorElementType);
mlir::Value addr = fir::getBase(addrExv);
if (addr.getType().isa<fir::BaseBoxType>())
addr = builder.create<fir::BoxAddrOp>(loc, addr);
fir::runtime::genPushArrayConstructorSimpleScalar(
loc, builder, arrayConstructorVector, addr);
if (cleanUp)
(*cleanUp)();
return;
}
auto [boxExv, cleanUp] =
hlfir::convertToBox(loc, builder, value, arrayConstructorElementType);
fir::runtime::genPushArrayConstructorValue(
loc, builder, arrayConstructorVector, fir::getBase(boxExv));
if (cleanUp)
(*cleanUp)();
}
/// Start a fir.do_loop with the control from an implied-do and return
/// the loop induction variable that is the ac-do-variable value.
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
/*unordered=*/false,
/*finalCount=*/false);
builder.setInsertionPointToStart(loop.getBody());
return loop.getInductionVar();
}
/// Move the temporary to an hlfir.expr value (array constructors are not
/// variables and cannot be further modified).
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
// Temp is created using createHeapTemporary, or allocated on the heap
// by the runtime.
mlir::Value mustFree = builder.createBool(loc, true);
mlir::Value temp;
if (declare)
temp = declare->getBase();
else
temp = hlfir::derefPointersAndAllocatables(
loc, builder, hlfir::Entity{allocatableTemp});
auto hlfirExpr = builder.create<hlfir::AsExprOp>(loc, temp, mustFree);
return hlfir::Entity{hlfirExpr};
}
private:
/// Element type of the array constructor being built.
mlir::Type arrayConstructorElementType;
/// Allocatable descriptor for the storage of the array constructor being
/// built.
mlir::Value allocatableTemp;
/// Structure that allows the runtime API to maintain the status of
/// of the array constructor being built between two API calls.
mlir::Value arrayConstructorVector;
/// DeclareOp for the array constructor storage, if it was possible to
/// allocate it before any API calls.
std::optional<hlfir::DeclareOp> declare;
};
/// Wrapper class that dispatch to the selected array constructor lowering
/// strategy and does nothing else.
class ArrayCtorLoweringStrategy {
public:
template <typename A>
ArrayCtorLoweringStrategy(A &&impl) : implVariant{std::forward<A>(impl)} {}
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
return std::visit(
[&](auto &impl) { return impl.pushValue(loc, builder, value); },
implVariant);
}
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
return std::visit(
[&](auto &impl) {
return impl.startImpliedDo(loc, builder, lower, upper, stride);
},
implVariant);
}
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return std::visit(
[&](auto &impl) { return impl.finishArrayCtorLowering(loc, builder); },
implVariant);
}
void startImpliedDoScope(llvm::StringRef doName, mlir::Value indexValue) {
std::visit(
[&](auto &impl) {
return impl.startImpliedDoScope(doName, indexValue);
},
implVariant);
}
void endImpliedDoScope() {
std::visit([&](auto &impl) { return impl.endImpliedDoScope(); },
implVariant);
}
private:
std::variant<InlinedTempStrategy, LooplessInlinedTempStrategy,
AsElementalStrategy, RuntimeTempStrategy>
implVariant;
};
} // namespace
//===----------------------------------------------------------------------===//
// Definition of selectArrayCtorLoweringStrategy and its helpers.
// This is the code that analyses the evaluate::ArrayConstructor<T>,
// pre-lowers the array constructor extent and length parameters if it can,
// and chooses the lowering strategy.
//===----------------------------------------------------------------------===//
/// Helper to lower a scalar extent expression (like implied-do bounds).
static mlir::Value lowerExtentExpr(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::evaluate::ExtentExpr &expr) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
loc, converter, toEvExpr(expr), symMap, stmtCtx);
value = hlfir::loadTrivialScalar(loc, builder, value);
return builder.createConvert(loc, idxTy, value);
}
namespace {
/// Helper class to lower the array constructor type and its length parameters.
/// The length parameters, if any, are only lowered if this does not require
/// evaluating an ac-value.
template <typename T>
struct LengthAndTypeCollector {
static mlir::Type collect(mlir::Location,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &,
Fortran::lower::SymMap &,
Fortran::lower::StatementContext &,
mlir::SmallVectorImpl<mlir::Value> &) {
// Numerical and Logical types.
return Fortran::lower::getFIRType(&converter.getMLIRContext(), T::category,
T::kind, /*lenParams*/ {});
}
};
template <>
struct LengthAndTypeCollector<Fortran::evaluate::SomeDerived> {
static mlir::Type collect(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<Fortran::evaluate::SomeDerived>
&arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::SmallVectorImpl<mlir::Value> &lengths) {
// Array constructors cannot be unlimited polymorphic (C7113), so there must
// be a derived type spec available.
return Fortran::lower::translateDerivedTypeToFIRType(
converter, arrayCtorExpr.result().derivedTypeSpec());
}
};
template <int Kind>
using Character =
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
template <int Kind>
struct LengthAndTypeCollector<Character<Kind>> {
static mlir::Type collect(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<Character<Kind>> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::SmallVectorImpl<mlir::Value> &lengths) {
llvm::SmallVector<Fortran::lower::LenParameterTy> typeLengths;
if (const Fortran::evaluate::ExtentExpr *lenExpr = arrayCtorExpr.LEN()) {
lengths.push_back(
lowerExtentExpr(loc, converter, symMap, stmtCtx, *lenExpr));
if (std::optional<std::int64_t> cstLen =
Fortran::evaluate::ToInt64(*lenExpr))
typeLengths.push_back(*cstLen);
}
return Fortran::lower::getFIRType(&converter.getMLIRContext(),
Fortran::common::TypeCategory::Character,
Kind, typeLengths);
}
};
} // namespace
/// Does the array constructor have length parameters that
/// LengthAndTypeCollector::collect could not lower because this requires
/// lowering an ac-value and must be delayed?
static bool missingLengthParameters(mlir::Type elementType,
llvm::ArrayRef<mlir::Value> lengths) {
return (elementType.isa<fir::CharacterType>() ||
fir::isRecordWithTypeParameters(elementType)) &&
lengths.empty();
}
namespace {
/// Structure that analyses the ac-value and implied-do of
/// evaluate::ArrayConstructor before they are lowered. It does not generate any
/// IR. The result of this analysis pass is used to select the lowering
/// strategy.
struct ArrayCtorAnalysis {
template <typename T>
ArrayCtorAnalysis(
Fortran::evaluate::FoldingContext &,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr);
// Can the array constructor easily be rewritten into an hlfir.elemental ?
bool isSingleImpliedDoWithOneScalarPureExpr() const {
return !anyArrayExpr && isPerfectLoopNest &&
innerNumberOfExprIfPrefectNest == 1 && depthIfPerfectLoopNest == 1 &&
innerExprIsPureIfPerfectNest;
}
bool anyImpliedDo = false;
bool anyArrayExpr = false;
bool isPerfectLoopNest = true;
bool innerExprIsPureIfPerfectNest = false;
std::int64_t innerNumberOfExprIfPrefectNest = 0;
std::int64_t depthIfPerfectLoopNest = 0;
};
} // namespace
template <typename T>
ArrayCtorAnalysis::ArrayCtorAnalysis(
Fortran::evaluate::FoldingContext &foldingContext,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr) {
llvm::SmallVector<const Fortran::evaluate::ArrayConstructorValues<T> *>
arrayValueListStack{&arrayCtorExpr};
// Loop through the ac-value-list(s) of the array constructor.
while (!arrayValueListStack.empty()) {
std::int64_t localNumberOfImpliedDo = 0;
std::int64_t localNumberOfExpr = 0;
// Loop though the ac-value of an ac-value list, and add any nested
// ac-value-list of ac-implied-do to the stack.
const Fortran::evaluate::ArrayConstructorValues<T> *currentArrayValueList =
arrayValueListStack.pop_back_val();
for (const Fortran::evaluate::ArrayConstructorValue<T> &acValue :
*currentArrayValueList)
std::visit(Fortran::common::visitors{
[&](const Fortran::evaluate::ImpliedDo<T> &impledDo) {
arrayValueListStack.push_back(&impledDo.values());
localNumberOfImpliedDo++;
},
[&](const Fortran::evaluate::Expr<T> &expr) {
localNumberOfExpr++;
anyArrayExpr = anyArrayExpr || expr.Rank() > 0;
}},
acValue.u);
anyImpliedDo = anyImpliedDo || localNumberOfImpliedDo > 0;
if (localNumberOfImpliedDo == 0) {
// Leaf ac-value-list in the array constructor ac-value tree.
if (isPerfectLoopNest) {
// This this the only leaf of the array-constructor (the array
// constructor is a nest of single implied-do with a list of expression
// in the last deeper implied do). e.g: "[((i+j, i=1,n)j=1,m)]".
innerNumberOfExprIfPrefectNest = localNumberOfExpr;
if (localNumberOfExpr == 1)
innerExprIsPureIfPerfectNest = !Fortran::evaluate::FindImpureCall(
foldingContext, toEvExpr(std::get<Fortran::evaluate::Expr<T>>(
currentArrayValueList->begin()->u)));
}
} else if (localNumberOfImpliedDo == 1 && localNumberOfExpr == 0) {
// Perfect implied-do nest new level.
++depthIfPerfectLoopNest;
} else {
// More than one implied-do, or at least one implied-do and an expr
// at that level. This will not form a perfect nest. Examples:
// "[a, (i, i=1,n)]" or "[(i, i=1,n), (j, j=1,m)]".
isPerfectLoopNest = false;
}
}
}
/// Does \p expr contain no calls to user function?
static bool isCallFreeExpr(const Fortran::evaluate::ExtentExpr &expr) {
for (const Fortran::semantics::Symbol &symbol :
Fortran::evaluate::CollectSymbols(expr))
if (Fortran::semantics::IsProcedure(symbol))
return false;
return true;
}
/// Core function that pre-lowers the extent and length parameters of
/// array constructors if it can, runs the ac-value analysis and
/// select the lowering strategy accordingly.
template <typename T>
static ArrayCtorLoweringStrategy selectArrayCtorLoweringStrategy(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type idxType = builder.getIndexType();
// Try to gather the array constructor extent.
mlir::Value extent;
fir::SequenceType::Extent typeExtent = fir::SequenceType::getUnknownExtent();
auto shapeExpr = Fortran::evaluate::GetContextFreeShape(
converter.getFoldingContext(), arrayCtorExpr);
if (shapeExpr && shapeExpr->size() == 1 && (*shapeExpr)[0]) {
const Fortran::evaluate::ExtentExpr &extentExpr = *(*shapeExpr)[0];
if (auto constantExtent = Fortran::evaluate::ToInt64(extentExpr)) {
typeExtent = *constantExtent;
extent = builder.createIntegerConstant(loc, idxType, typeExtent);
} else if (isCallFreeExpr(extentExpr)) {
// The expression built by expression analysis for the array constructor
// extent does not contain procedure symbols. It is side effect free.
// This could be relaxed to allow pure procedure, but some care must
// be taken to not bring in "unmapped" symbols from callee scopes.
extent = lowerExtentExpr(loc, converter, symMap, stmtCtx, extentExpr);
}
// Otherwise, the temporary will have to be built step by step with
// reallocation and the extent will only be known at the end of the array
// constructor evaluation.
}
// Convert the array constructor type and try to gather its length parameter
// values, if any.
mlir::SmallVector<mlir::Value> lengths;
mlir::Type elementType = LengthAndTypeCollector<T>::collect(
loc, converter, arrayCtorExpr, symMap, stmtCtx, lengths);
// Run an analysis of the array constructor ac-value.
ArrayCtorAnalysis analysis(converter.getFoldingContext(), arrayCtorExpr);
bool needToEvaluateOneExprToGetLengthParameters =
missingLengthParameters(elementType, lengths);
auto declaredType = fir::SequenceType::get({typeExtent}, elementType);
// Based on what was gathered and the result of the analysis, select and
// instantiate the right lowering strategy for the array constructor.
if (!extent || needToEvaluateOneExprToGetLengthParameters ||
analysis.anyArrayExpr || declaredType.getEleTy().isa<fir::RecordType>())
return RuntimeTempStrategy(
loc, builder, stmtCtx, symMap, declaredType,
extent ? std::optional<mlir::Value>(extent) : std::nullopt, lengths,
needToEvaluateOneExprToGetLengthParameters);
// Note: the generated hlfir.elemental is always unordered, thus,
// AsElementalStrategy can only be used for array constructors without
// impure ac-value expressions. If/when this changes, make sure
// the 'unordered' attribute is set accordingly for the hlfir.elemental.
if (analysis.isSingleImpliedDoWithOneScalarPureExpr())
return AsElementalStrategy(loc, builder, stmtCtx, symMap, declaredType,
extent, lengths);
if (analysis.anyImpliedDo)
return InlinedTempStrategy(loc, builder, stmtCtx, symMap, declaredType,
extent, lengths);
return LooplessInlinedTempStrategy(loc, builder, stmtCtx, symMap,
declaredType, extent, lengths);
}
/// Lower an ac-value expression \p expr and forward it to the selected
/// lowering strategy \p arrayBuilder,
template <typename T>
static void genAcValue(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::Expr<T> &expr,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
ArrayCtorLoweringStrategy &arrayBuilder) {
// TODO: get rid of the toEvExpr indirection.
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
loc, converter, toEvExpr(expr), symMap, stmtCtx);
value = hlfir::loadTrivialScalar(loc, builder, value);
arrayBuilder.pushValue(loc, builder, value);
}
/// Lowers an ac-value implied-do \p impledDo according to the selected
/// lowering strategy \p arrayBuilder.
template <typename T>
static void genAcValue(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ImpliedDo<T> &impledDo,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
ArrayCtorLoweringStrategy &arrayBuilder) {
auto lowerIndex =
[&](const Fortran::evaluate::ExtentExpr expr) -> mlir::Value {
return lowerExtentExpr(loc, converter, symMap, stmtCtx, expr);
};
mlir::Value lower = lowerIndex(impledDo.lower());
mlir::Value upper = lowerIndex(impledDo.upper());
mlir::Value stride = lowerIndex(impledDo.stride());
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
mlir::Value impliedDoIndexValue =
arrayBuilder.startImpliedDo(loc, builder, lower, upper, stride);
arrayBuilder.startImpliedDoScope(toStringRef(impledDo.name()),
impliedDoIndexValue);
for (const auto &acValue : impledDo.values())
std::visit(
[&](const auto &x) {
genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
},
acValue.u);
arrayBuilder.endImpliedDoScope();
builder.restoreInsertionPoint(insertPt);
}
/// Entry point for evaluate::ArrayConstructor lowering.
template <typename T>
hlfir::EntityWithAttributes Fortran::lower::ArrayConstructorBuilder<T>::gen(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Select the lowering strategy given the array constructor.
auto arrayBuilder = selectArrayCtorLoweringStrategy(
loc, converter, arrayCtorExpr, symMap, stmtCtx);
// Run the array lowering strategy through the ac-values.
for (const auto &acValue : arrayCtorExpr)
std::visit(
[&](const auto &x) {
genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
},
acValue.u);
hlfir::Entity hlfirExpr = arrayBuilder.finishArrayCtorLowering(loc, builder);
// Insert the clean-up for the created hlfir.expr.
fir::FirOpBuilder *bldr = &builder;
stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, hlfirExpr); });
return hlfir::EntityWithAttributes{hlfirExpr};
}
using namespace Fortran::evaluate;
using namespace Fortran::common;
FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ArrayConstructorBuilder, )
|