1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
//===-- ConvertConstant.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertConstant.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/BuiltinModules.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/Mangler.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/Todo.h"
#include <algorithm>
/// Convert string, \p s, to an APFloat value. Recognize and handle Inf and
/// NaN strings as well. \p s is assumed to not contain any spaces.
static llvm::APFloat consAPFloat(const llvm::fltSemantics &fsem,
llvm::StringRef s) {
assert(!s.contains(' '));
if (s.compare_insensitive("-inf") == 0)
return llvm::APFloat::getInf(fsem, /*negative=*/true);
if (s.compare_insensitive("inf") == 0 || s.compare_insensitive("+inf") == 0)
return llvm::APFloat::getInf(fsem);
// TODO: Add support for quiet and signaling NaNs.
if (s.compare_insensitive("-nan") == 0)
return llvm::APFloat::getNaN(fsem, /*negative=*/true);
if (s.compare_insensitive("nan") == 0 || s.compare_insensitive("+nan") == 0)
return llvm::APFloat::getNaN(fsem);
return {fsem, s};
}
//===----------------------------------------------------------------------===//
// Fortran::lower::tryCreatingDenseGlobal implementation
//===----------------------------------------------------------------------===//
/// Generate an mlir attribute from a literal value
template <Fortran::common::TypeCategory TC, int KIND>
static mlir::Attribute convertToAttribute(
fir::FirOpBuilder &builder,
const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> &value,
mlir::Type type) {
if constexpr (TC == Fortran::common::TypeCategory::Integer) {
if constexpr (KIND <= 8)
return builder.getIntegerAttr(type, value.ToInt64());
else {
static_assert(KIND <= 16, "integers with KIND > 16 are not supported");
return builder.getIntegerAttr(
type, llvm::APInt(KIND * 8,
{value.ToUInt64(), value.SHIFTR(64).ToUInt64()}));
}
} else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
return builder.getIntegerAttr(type, value.IsTrue());
} else {
static_assert(TC == Fortran::common::TypeCategory::Real,
"type values cannot be converted to attributes");
std::string str = value.DumpHexadecimal();
auto floatVal =
consAPFloat(builder.getKindMap().getFloatSemantics(KIND), str);
return builder.getFloatAttr(type, floatVal);
}
return {};
}
namespace {
/// Helper class to lower an array constant to a global with an MLIR dense
/// attribute.
///
/// If we have an array of integer, real, or logical, then we can
/// create a global array with the dense attribute.
///
/// The mlir tensor type can only handle integer, real, or logical. It
/// does not currently support nested structures which is required for
/// complex.
class DenseGlobalBuilder {
public:
static fir::GlobalOp tryCreating(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type symTy,
llvm::StringRef globalName,
mlir::StringAttr linkage, bool isConst,
const Fortran::lower::SomeExpr &initExpr) {
DenseGlobalBuilder globalBuilder;
std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeLogical> &
x) { globalBuilder.tryConvertingToAttributes(builder, x); },
[&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeInteger> &
x) { globalBuilder.tryConvertingToAttributes(builder, x); },
[&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeReal> &x) {
globalBuilder.tryConvertingToAttributes(builder, x);
},
[](const auto &) {},
},
initExpr.u);
return globalBuilder.tryCreatingGlobal(builder, loc, symTy, globalName,
linkage, isConst);
}
template <Fortran::common::TypeCategory TC, int KIND>
static fir::GlobalOp tryCreating(
fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type symTy,
llvm::StringRef globalName, mlir::StringAttr linkage, bool isConst,
const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
&constant) {
DenseGlobalBuilder globalBuilder;
globalBuilder.tryConvertingToAttributes(builder, constant);
return globalBuilder.tryCreatingGlobal(builder, loc, symTy, globalName,
linkage, isConst);
}
private:
DenseGlobalBuilder() = default;
/// Try converting an evaluate::Constant to a list of MLIR attributes.
template <Fortran::common::TypeCategory TC, int KIND>
void tryConvertingToAttributes(
fir::FirOpBuilder &builder,
const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
&constant) {
static_assert(TC != Fortran::common::TypeCategory::Character,
"must be numerical or logical");
auto attrTc = TC == Fortran::common::TypeCategory::Logical
? Fortran::common::TypeCategory::Integer
: TC;
attributeElementType = Fortran::lower::getFIRType(
builder.getContext(), attrTc, KIND, std::nullopt);
for (auto element : constant.values())
attributes.push_back(
convertToAttribute<TC, KIND>(builder, element, attributeElementType));
}
/// Try converting an evaluate::Expr to a list of MLIR attributes.
template <typename SomeCat>
void tryConvertingToAttributes(fir::FirOpBuilder &builder,
const Fortran::evaluate::Expr<SomeCat> &expr) {
std::visit(
[&](const auto &x) {
using TR = Fortran::evaluate::ResultType<decltype(x)>;
if (const auto *constant =
std::get_if<Fortran::evaluate::Constant<TR>>(&x.u))
tryConvertingToAttributes<TR::category, TR::kind>(builder,
*constant);
},
expr.u);
}
/// Create a fir::Global if MLIR attributes have been successfully created by
/// tryConvertingToAttributes.
fir::GlobalOp tryCreatingGlobal(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type symTy,
llvm::StringRef globalName,
mlir::StringAttr linkage,
bool isConst) const {
// Not a "trivial" intrinsic constant array, or empty array.
if (!attributeElementType || attributes.empty())
return {};
assert(symTy.isa<fir::SequenceType>() && "expecting an array global");
auto arrTy = symTy.cast<fir::SequenceType>();
llvm::SmallVector<int64_t> tensorShape(arrTy.getShape());
std::reverse(tensorShape.begin(), tensorShape.end());
auto tensorTy =
mlir::RankedTensorType::get(tensorShape, attributeElementType);
auto init = mlir::DenseElementsAttr::get(tensorTy, attributes);
return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
}
llvm::SmallVector<mlir::Attribute> attributes;
mlir::Type attributeElementType;
};
} // namespace
fir::GlobalOp Fortran::lower::tryCreatingDenseGlobal(
fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type symTy,
llvm::StringRef globalName, mlir::StringAttr linkage, bool isConst,
const Fortran::lower::SomeExpr &initExpr) {
return DenseGlobalBuilder::tryCreating(builder, loc, symTy, globalName,
linkage, isConst, initExpr);
}
//===----------------------------------------------------------------------===//
// Fortran::lower::convertConstant
// Lower a constant to a fir::ExtendedValue.
//===----------------------------------------------------------------------===//
/// Generate a real constant with a value `value`.
template <int KIND>
static mlir::Value genRealConstant(fir::FirOpBuilder &builder,
mlir::Location loc,
const llvm::APFloat &value) {
mlir::Type fltTy = Fortran::lower::convertReal(builder.getContext(), KIND);
return builder.createRealConstant(loc, fltTy, value);
}
/// Convert a scalar literal constant to IR.
template <Fortran::common::TypeCategory TC, int KIND>
static mlir::Value genScalarLit(
fir::FirOpBuilder &builder, mlir::Location loc,
const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> &value) {
if constexpr (TC == Fortran::common::TypeCategory::Integer) {
mlir::Type ty = Fortran::lower::getFIRType(builder.getContext(), TC, KIND,
std::nullopt);
if (KIND == 16) {
auto bigInt =
llvm::APInt(ty.getIntOrFloatBitWidth(), value.SignedDecimal(), 10);
return builder.create<mlir::arith::ConstantOp>(
loc, ty, mlir::IntegerAttr::get(ty, bigInt));
}
return builder.createIntegerConstant(loc, ty, value.ToInt64());
} else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
return builder.createBool(loc, value.IsTrue());
} else if constexpr (TC == Fortran::common::TypeCategory::Real) {
std::string str = value.DumpHexadecimal();
if constexpr (KIND == 2) {
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEhalf(), str);
return genRealConstant<KIND>(builder, loc, floatVal);
} else if constexpr (KIND == 3) {
auto floatVal = consAPFloat(llvm::APFloatBase::BFloat(), str);
return genRealConstant<KIND>(builder, loc, floatVal);
} else if constexpr (KIND == 4) {
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEsingle(), str);
return genRealConstant<KIND>(builder, loc, floatVal);
} else if constexpr (KIND == 10) {
auto floatVal = consAPFloat(llvm::APFloatBase::x87DoubleExtended(), str);
return genRealConstant<KIND>(builder, loc, floatVal);
} else if constexpr (KIND == 16) {
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEquad(), str);
return genRealConstant<KIND>(builder, loc, floatVal);
} else {
// convert everything else to double
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEdouble(), str);
return genRealConstant<KIND>(builder, loc, floatVal);
}
} else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
mlir::Value realPart =
genScalarLit<Fortran::common::TypeCategory::Real, KIND>(builder, loc,
value.REAL());
mlir::Value imagPart =
genScalarLit<Fortran::common::TypeCategory::Real, KIND>(builder, loc,
value.AIMAG());
return fir::factory::Complex{builder, loc}.createComplex(KIND, realPart,
imagPart);
} else /*constexpr*/ {
llvm_unreachable("unhandled constant");
}
}
/// Create fir::string_lit from a scalar character constant.
template <int KIND>
static fir::StringLitOp
createStringLitOp(fir::FirOpBuilder &builder, mlir::Location loc,
const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Character, KIND>> &value,
[[maybe_unused]] int64_t len) {
if constexpr (KIND == 1) {
assert(value.size() == static_cast<std::uint64_t>(len));
return builder.createStringLitOp(loc, value);
} else {
using ET = typename std::decay_t<decltype(value)>::value_type;
fir::CharacterType type =
fir::CharacterType::get(builder.getContext(), KIND, len);
mlir::MLIRContext *context = builder.getContext();
std::int64_t size = static_cast<std::int64_t>(value.size());
mlir::ShapedType shape = mlir::RankedTensorType::get(
llvm::ArrayRef<std::int64_t>{size},
mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8));
auto denseAttr = mlir::DenseElementsAttr::get(
shape, llvm::ArrayRef<ET>{value.data(), value.size()});
auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist());
mlir::NamedAttribute dataAttr(denseTag, denseAttr);
auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size());
mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len));
llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr};
return builder.create<fir::StringLitOp>(
loc, llvm::ArrayRef<mlir::Type>{type}, std::nullopt, attrs);
}
}
/// Convert a scalar literal CHARACTER to IR.
template <int KIND>
static mlir::Value
genScalarLit(fir::FirOpBuilder &builder, mlir::Location loc,
const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Character, KIND>> &value,
int64_t len, bool outlineInReadOnlyMemory) {
// When in an initializer context, construct the literal op itself and do
// not construct another constant object in rodata.
if (!outlineInReadOnlyMemory)
return createStringLitOp<KIND>(builder, loc, value, len);
// Otherwise, the string is in a plain old expression so "outline" the value
// in read only data by hash consing it to a constant literal object.
// ASCII global constants are created using an mlir string attribute.
if constexpr (KIND == 1) {
return fir::getBase(fir::factory::createStringLiteral(builder, loc, value));
}
auto size = builder.getKindMap().getCharacterBitsize(KIND) / 8 * value.size();
llvm::StringRef strVal(reinterpret_cast<const char *>(value.c_str()), size);
std::string globalName = fir::factory::uniqueCGIdent("cl", strVal);
fir::GlobalOp global = builder.getNamedGlobal(globalName);
fir::CharacterType type =
fir::CharacterType::get(builder.getContext(), KIND, len);
if (!global)
global = builder.createGlobalConstant(
loc, type, globalName,
[&](fir::FirOpBuilder &builder) {
fir::StringLitOp str =
createStringLitOp<KIND>(builder, loc, value, len);
builder.create<fir::HasValueOp>(loc, str);
},
builder.createLinkOnceLinkage());
return builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
}
// Helper to generate StructureConstructor component values.
static fir::ExtendedValue
genConstantValue(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &constantExpr);
// Generate a StructureConstructor inlined (returns raw fir.type<T> value,
// not the address of a global constant).
static mlir::Value genInlinedStructureCtorLitImpl(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::evaluate::StructureConstructor &ctor, mlir::Type type) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto recTy = type.cast<fir::RecordType>();
auto fieldTy = fir::FieldType::get(type.getContext());
mlir::Value res = builder.create<fir::UndefOp>(loc, recTy);
for (const auto &[sym, expr] : ctor.values()) {
// Parent components need more work because they do not appear in the
// fir.rec type.
if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp))
TODO(loc, "parent component in structure constructor");
llvm::StringRef name = toStringRef(sym->name());
mlir::Type componentTy = recTy.getType(name);
// FIXME: type parameters must come from the derived-type-spec
auto field = builder.create<fir::FieldIndexOp>(
loc, fieldTy, name, type,
/*typeParams=*/mlir::ValueRange{} /*TODO*/);
if (Fortran::semantics::IsAllocatable(sym))
TODO(loc, "allocatable component in structure constructor");
if (Fortran::semantics::IsPointer(sym)) {
mlir::Value initialTarget = Fortran::lower::genInitialDataTarget(
converter, loc, componentTy, expr.value());
res = builder.create<fir::InsertValueOp>(
loc, recTy, res, initialTarget,
builder.getArrayAttr(field.getAttributes()));
continue;
}
if (Fortran::lower::isDerivedTypeWithLenParameters(sym))
TODO(loc, "component with length parameters in structure constructor");
// Special handling for scalar c_ptr/c_funptr constants. The array constant
// must fall through to genConstantValue() below.
if (Fortran::semantics::IsBuiltinCPtr(sym) && sym->Rank() == 0) {
// Builtin c_ptr and c_funptr have special handling because initial
// values are handled for them as an extension.
mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer(
converter, loc, expr.value()));
if (addr.getType() == componentTy) {
// Do nothing. The Ev::Expr was returned as a value that can be
// inserted directly to the component without an intermediary.
} else {
// The Ev::Expr returned is an initializer that is a pointer (e.g.,
// null) that must be inserted into an intermediate cptr record
// value's address field, which ought to be an intptr_t on the target.
if (addr.getType().isa<fir::BoxProcType>())
addr = builder.create<fir::BoxAddrOp>(loc, addr);
assert((fir::isa_ref_type(addr.getType()) ||
addr.getType().isa<mlir::FunctionType>()) &&
"expect reference type for address field");
assert(fir::isa_derived(componentTy) &&
"expect C_PTR, C_FUNPTR to be a record");
auto cPtrRecTy = componentTy.cast<fir::RecordType>();
llvm::StringRef addrFieldName = Fortran::lower::builtin::cptrFieldName;
mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName);
auto addrField = builder.create<fir::FieldIndexOp>(
loc, fieldTy, addrFieldName, componentTy,
/*typeParams=*/mlir::ValueRange{});
mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr);
auto undef = builder.create<fir::UndefOp>(loc, componentTy);
addr = builder.create<fir::InsertValueOp>(
loc, componentTy, undef, castAddr,
builder.getArrayAttr(addrField.getAttributes()));
}
res = builder.create<fir::InsertValueOp>(
loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes()));
continue;
}
mlir::Value val =
fir::getBase(genConstantValue(converter, loc, expr.value()));
assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value");
mlir::Value castVal = builder.createConvert(loc, componentTy, val);
res = builder.create<fir::InsertValueOp>(
loc, recTy, res, castVal, builder.getArrayAttr(field.getAttributes()));
}
return res;
}
static mlir::Value genScalarLit(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::evaluate::Scalar<Fortran::evaluate::SomeDerived> &value,
mlir::Type eleTy, bool outlineBigConstantsInReadOnlyMemory) {
if (!outlineBigConstantsInReadOnlyMemory)
return genInlinedStructureCtorLitImpl(converter, loc, value, eleTy);
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto expr = std::make_unique<Fortran::lower::SomeExpr>(toEvExpr(
Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived>(value)));
llvm::StringRef globalName =
converter.getUniqueLitName(loc, std::move(expr), eleTy);
fir::GlobalOp global = builder.getNamedGlobal(globalName);
if (!global) {
global = builder.createGlobalConstant(
loc, eleTy, globalName,
[&](fir::FirOpBuilder &builder) {
mlir::Value result =
genInlinedStructureCtorLitImpl(converter, loc, value, eleTy);
builder.create<fir::HasValueOp>(loc, result);
},
builder.createInternalLinkage());
}
return builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
}
/// Create an evaluate::Constant<T> array to a fir.array<> value
/// built with a chain of fir.insert or fir.insert_on_range operations.
/// This is intended to be called when building the body of a fir.global.
template <typename T>
static mlir::Value
genInlinedArrayLit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Type arrayTy,
const Fortran::evaluate::Constant<T> &con) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
auto createIdx = [&]() {
llvm::SmallVector<mlir::Attribute> idx;
for (size_t i = 0; i < subscripts.size(); ++i)
idx.push_back(
builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i]));
return idx;
};
mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy);
if (Fortran::evaluate::GetSize(con.shape()) == 0)
return array;
if constexpr (T::category == Fortran::common::TypeCategory::Character) {
do {
mlir::Value elementVal =
genScalarLit<T::kind>(builder, loc, con.At(subscripts), con.LEN(),
/*outlineInReadOnlyMemory=*/false);
array = builder.create<fir::InsertValueOp>(
loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
} while (con.IncrementSubscripts(subscripts));
} else if constexpr (T::category == Fortran::common::TypeCategory::Derived) {
do {
mlir::Type eleTy = arrayTy.cast<fir::SequenceType>().getEleTy();
mlir::Value elementVal =
genScalarLit(converter, loc, con.At(subscripts), eleTy,
/*outlineInReadOnlyMemory=*/false);
array = builder.create<fir::InsertValueOp>(
loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
} while (con.IncrementSubscripts(subscripts));
} else {
llvm::SmallVector<mlir::Attribute> rangeStartIdx;
uint64_t rangeSize = 0;
mlir::Type eleTy = arrayTy.cast<fir::SequenceType>().getEleTy();
do {
auto getElementVal = [&]() {
return builder.createConvert(loc, eleTy,
genScalarLit<T::category, T::kind>(
builder, loc, con.At(subscripts)));
};
Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts;
bool nextIsSame = con.IncrementSubscripts(nextSubscripts) &&
con.At(subscripts) == con.At(nextSubscripts);
if (!rangeSize && !nextIsSame) { // single (non-range) value
array = builder.create<fir::InsertValueOp>(
loc, arrayTy, array, getElementVal(),
builder.getArrayAttr(createIdx()));
} else if (!rangeSize) { // start a range
rangeStartIdx = createIdx();
rangeSize = 1;
} else if (nextIsSame) { // expand a range
++rangeSize;
} else { // end a range
llvm::SmallVector<int64_t> rangeBounds;
llvm::SmallVector<mlir::Attribute> idx = createIdx();
for (size_t i = 0; i < idx.size(); ++i) {
rangeBounds.push_back(rangeStartIdx[i]
.cast<mlir::IntegerAttr>()
.getValue()
.getSExtValue());
rangeBounds.push_back(
idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue());
}
array = builder.create<fir::InsertOnRangeOp>(
loc, arrayTy, array, getElementVal(),
builder.getIndexVectorAttr(rangeBounds));
rangeSize = 0;
}
} while (con.IncrementSubscripts(subscripts));
}
return array;
}
/// Convert an evaluate::Constant<T> array into a fir.ref<fir.array<>> value
/// that points to the storage of a fir.global in read only memory and is
/// initialized with the value of the constant.
/// This should not be called while generating the body of a fir.global.
template <typename T>
static mlir::Value
genOutlineArrayLit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Type arrayTy,
const Fortran::evaluate::Constant<T> &constant) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type eleTy = arrayTy.cast<fir::SequenceType>().getEleTy();
llvm::StringRef globalName = converter.getUniqueLitName(
loc, std::make_unique<Fortran::lower::SomeExpr>(toEvExpr(constant)),
eleTy);
fir::GlobalOp global = builder.getNamedGlobal(globalName);
if (!global) {
// Using a dense attribute for the initial value instead of creating an
// intialization body speeds up MLIR/LLVM compilation, but this is not
// always possible.
if constexpr (T::category == Fortran::common::TypeCategory::Logical ||
T::category == Fortran::common::TypeCategory::Integer ||
T::category == Fortran::common::TypeCategory::Real) {
global = DenseGlobalBuilder::tryCreating(
builder, loc, arrayTy, globalName, builder.createInternalLinkage(),
true, constant);
}
if (!global)
// If the number of elements of the array is huge, the compilation may
// use a lot of memory and take a very long time to complete.
// Empirical evidence shows that an array with 150000 elements of
// complex type takes roughly 30 seconds to compile and uses 4GB of RAM,
// on a modern machine.
// It would be nice to add a driver switch to control the array size
// after which flang should not continue to compile.
global = builder.createGlobalConstant(
loc, arrayTy, globalName,
[&](fir::FirOpBuilder &builder) {
mlir::Value result =
genInlinedArrayLit(converter, loc, arrayTy, constant);
builder.create<fir::HasValueOp>(loc, result);
},
builder.createInternalLinkage());
}
return builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
}
/// Convert an evaluate::Constant<T> array into an fir::ExtendedValue.
template <typename T>
static fir::ExtendedValue
genArrayLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::evaluate::Constant<T> &con,
bool outlineInReadOnlyMemory) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::evaluate::ConstantSubscript size =
Fortran::evaluate::GetSize(con.shape());
if (size > std::numeric_limits<std::uint32_t>::max())
// llvm::SmallVector has limited size
TODO(loc, "Creation of very large array constants");
fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
llvm::SmallVector<std::int64_t> typeParams;
if constexpr (T::category == Fortran::common::TypeCategory::Character)
typeParams.push_back(con.LEN());
mlir::Type eleTy;
if constexpr (T::category == Fortran::common::TypeCategory::Derived)
eleTy = Fortran::lower::translateDerivedTypeToFIRType(
converter, con.GetType().GetDerivedTypeSpec());
else
eleTy = Fortran::lower::getFIRType(builder.getContext(), T::category,
T::kind, typeParams);
auto arrayTy = fir::SequenceType::get(shape, eleTy);
mlir::Value array = outlineInReadOnlyMemory
? genOutlineArrayLit(converter, loc, arrayTy, con)
: genInlinedArrayLit(converter, loc, arrayTy, con);
mlir::IndexType idxTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> extents;
for (auto extent : shape)
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
// Convert lower bounds if they are not all ones.
llvm::SmallVector<mlir::Value> lbounds;
if (llvm::any_of(con.lbounds(), [](auto lb) { return lb != 1; }))
for (auto lb : con.lbounds())
lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb));
if constexpr (T::category == Fortran::common::TypeCategory::Character) {
mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
return fir::CharArrayBoxValue{array, len, extents, lbounds};
} else {
return fir::ArrayBoxValue{array, extents, lbounds};
}
}
template <typename T>
fir::ExtendedValue Fortran::lower::ConstantBuilder<T>::gen(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::evaluate::Constant<T> &constant,
bool outlineBigConstantsInReadOnlyMemory) {
if (constant.Rank() > 0)
return genArrayLit(converter, loc, constant,
outlineBigConstantsInReadOnlyMemory);
std::optional<Fortran::evaluate::Scalar<T>> opt = constant.GetScalarValue();
assert(opt.has_value() && "constant has no value");
if constexpr (T::category == Fortran::common::TypeCategory::Character) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto value =
genScalarLit<T::kind>(builder, loc, opt.value(), constant.LEN(),
outlineBigConstantsInReadOnlyMemory);
mlir::Value len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), constant.LEN());
return fir::CharBoxValue{value, len};
} else if constexpr (T::category == Fortran::common::TypeCategory::Derived) {
mlir::Type eleTy = Fortran::lower::translateDerivedTypeToFIRType(
converter, opt->GetType().GetDerivedTypeSpec());
return genScalarLit(converter, loc, *opt, eleTy,
outlineBigConstantsInReadOnlyMemory);
} else {
return genScalarLit<T::category, T::kind>(converter.getFirOpBuilder(), loc,
opt.value());
}
}
static fir::ExtendedValue
genConstantValue(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::evaluate::Expr<Fortran::evaluate::SomeDerived>
&constantExpr) {
if (const auto *constant = std::get_if<
Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived>>(
&constantExpr.u))
return Fortran::lower::convertConstant(converter, loc, *constant,
/*outline=*/false);
if (const auto *structCtor =
std::get_if<Fortran::evaluate::StructureConstructor>(&constantExpr.u))
return Fortran::lower::genInlinedStructureCtorLit(converter, loc,
*structCtor);
fir::emitFatalError(loc, "not a constant derived type expression");
}
template <Fortran::common::TypeCategory TC, int KIND>
static fir::ExtendedValue genConstantValue(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::evaluate::Expr<Fortran::evaluate::Type<TC, KIND>>
&constantExpr) {
using T = Fortran::evaluate::Type<TC, KIND>;
if (const auto *constant =
std::get_if<Fortran::evaluate::Constant<T>>(&constantExpr.u))
return Fortran::lower::convertConstant(converter, loc, *constant,
/*outline=*/false);
fir::emitFatalError(loc, "not an evaluate::Constant<T>");
}
static fir::ExtendedValue
genConstantValue(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &constantExpr) {
return std::visit(
[&](const auto &x) -> fir::ExtendedValue {
using T = std::decay_t<decltype(x)>;
if constexpr (Fortran::common::HasMember<
T, Fortran::lower::CategoryExpression>) {
if constexpr (T::Result::category ==
Fortran::common::TypeCategory::Derived) {
return genConstantValue(converter, loc, x);
} else {
return std::visit(
[&](const auto &preciseKind) {
return genConstantValue(converter, loc, preciseKind);
},
x.u);
}
} else {
fir::emitFatalError(loc, "unexpected typeless constant value");
}
},
constantExpr.u);
}
fir::ExtendedValue Fortran::lower::genInlinedStructureCtorLit(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::evaluate::StructureConstructor &ctor) {
mlir::Type type = Fortran::lower::translateDerivedTypeToFIRType(
converter, ctor.derivedTypeSpec());
return genInlinedStructureCtorLitImpl(converter, loc, ctor, type);
}
using namespace Fortran::evaluate;
FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ConstantBuilder, )
|