File: ConvertConstant.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (713 lines) | stat: -rw-r--r-- 33,290 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
//===-- ConvertConstant.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/ConvertConstant.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/BuiltinModules.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/Mangler.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/Todo.h"

#include <algorithm>

/// Convert string, \p s, to an APFloat value. Recognize and handle Inf and
/// NaN strings as well. \p s is assumed to not contain any spaces.
static llvm::APFloat consAPFloat(const llvm::fltSemantics &fsem,
                                 llvm::StringRef s) {
  assert(!s.contains(' '));
  if (s.compare_insensitive("-inf") == 0)
    return llvm::APFloat::getInf(fsem, /*negative=*/true);
  if (s.compare_insensitive("inf") == 0 || s.compare_insensitive("+inf") == 0)
    return llvm::APFloat::getInf(fsem);
  // TODO: Add support for quiet and signaling NaNs.
  if (s.compare_insensitive("-nan") == 0)
    return llvm::APFloat::getNaN(fsem, /*negative=*/true);
  if (s.compare_insensitive("nan") == 0 || s.compare_insensitive("+nan") == 0)
    return llvm::APFloat::getNaN(fsem);
  return {fsem, s};
}

//===----------------------------------------------------------------------===//
// Fortran::lower::tryCreatingDenseGlobal implementation
//===----------------------------------------------------------------------===//

/// Generate an mlir attribute from a literal value
template <Fortran::common::TypeCategory TC, int KIND>
static mlir::Attribute convertToAttribute(
    fir::FirOpBuilder &builder,
    const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> &value,
    mlir::Type type) {
  if constexpr (TC == Fortran::common::TypeCategory::Integer) {
    if constexpr (KIND <= 8)
      return builder.getIntegerAttr(type, value.ToInt64());
    else {
      static_assert(KIND <= 16, "integers with KIND > 16 are not supported");
      return builder.getIntegerAttr(
          type, llvm::APInt(KIND * 8,
                            {value.ToUInt64(), value.SHIFTR(64).ToUInt64()}));
    }
  } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
    return builder.getIntegerAttr(type, value.IsTrue());
  } else {
    static_assert(TC == Fortran::common::TypeCategory::Real,
                  "type values cannot be converted to attributes");
    std::string str = value.DumpHexadecimal();
    auto floatVal =
        consAPFloat(builder.getKindMap().getFloatSemantics(KIND), str);
    return builder.getFloatAttr(type, floatVal);
  }
  return {};
}

namespace {
/// Helper class to lower an array constant to a global with an MLIR dense
/// attribute.
///
/// If we have an array of integer, real, or logical, then we can
/// create a global array with the dense attribute.
///
/// The mlir tensor type can only handle integer, real, or logical. It
/// does not currently support nested structures which is required for
/// complex.
class DenseGlobalBuilder {
public:
  static fir::GlobalOp tryCreating(fir::FirOpBuilder &builder,
                                   mlir::Location loc, mlir::Type symTy,
                                   llvm::StringRef globalName,
                                   mlir::StringAttr linkage, bool isConst,
                                   const Fortran::lower::SomeExpr &initExpr) {
    DenseGlobalBuilder globalBuilder;
    std::visit(
        Fortran::common::visitors{
            [&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeLogical> &
                    x) { globalBuilder.tryConvertingToAttributes(builder, x); },
            [&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeInteger> &
                    x) { globalBuilder.tryConvertingToAttributes(builder, x); },
            [&](const Fortran::evaluate::Expr<Fortran::evaluate::SomeReal> &x) {
              globalBuilder.tryConvertingToAttributes(builder, x);
            },
            [](const auto &) {},
        },
        initExpr.u);
    return globalBuilder.tryCreatingGlobal(builder, loc, symTy, globalName,
                                           linkage, isConst);
  }

  template <Fortran::common::TypeCategory TC, int KIND>
  static fir::GlobalOp tryCreating(
      fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type symTy,
      llvm::StringRef globalName, mlir::StringAttr linkage, bool isConst,
      const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
          &constant) {
    DenseGlobalBuilder globalBuilder;
    globalBuilder.tryConvertingToAttributes(builder, constant);
    return globalBuilder.tryCreatingGlobal(builder, loc, symTy, globalName,
                                           linkage, isConst);
  }

private:
  DenseGlobalBuilder() = default;

  /// Try converting an evaluate::Constant to a list of MLIR attributes.
  template <Fortran::common::TypeCategory TC, int KIND>
  void tryConvertingToAttributes(
      fir::FirOpBuilder &builder,
      const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
          &constant) {
    static_assert(TC != Fortran::common::TypeCategory::Character,
                  "must be numerical or logical");
    auto attrTc = TC == Fortran::common::TypeCategory::Logical
                      ? Fortran::common::TypeCategory::Integer
                      : TC;
    attributeElementType = Fortran::lower::getFIRType(
        builder.getContext(), attrTc, KIND, std::nullopt);
    for (auto element : constant.values())
      attributes.push_back(
          convertToAttribute<TC, KIND>(builder, element, attributeElementType));
  }

  /// Try converting an evaluate::Expr to a list of MLIR attributes.
  template <typename SomeCat>
  void tryConvertingToAttributes(fir::FirOpBuilder &builder,
                                 const Fortran::evaluate::Expr<SomeCat> &expr) {
    std::visit(
        [&](const auto &x) {
          using TR = Fortran::evaluate::ResultType<decltype(x)>;
          if (const auto *constant =
                  std::get_if<Fortran::evaluate::Constant<TR>>(&x.u))
            tryConvertingToAttributes<TR::category, TR::kind>(builder,
                                                              *constant);
        },
        expr.u);
  }

  /// Create a fir::Global if MLIR attributes have been successfully created by
  /// tryConvertingToAttributes.
  fir::GlobalOp tryCreatingGlobal(fir::FirOpBuilder &builder,
                                  mlir::Location loc, mlir::Type symTy,
                                  llvm::StringRef globalName,
                                  mlir::StringAttr linkage,
                                  bool isConst) const {
    // Not a "trivial" intrinsic constant array, or empty array.
    if (!attributeElementType || attributes.empty())
      return {};

    assert(symTy.isa<fir::SequenceType>() && "expecting an array global");
    auto arrTy = symTy.cast<fir::SequenceType>();
    llvm::SmallVector<int64_t> tensorShape(arrTy.getShape());
    std::reverse(tensorShape.begin(), tensorShape.end());
    auto tensorTy =
        mlir::RankedTensorType::get(tensorShape, attributeElementType);
    auto init = mlir::DenseElementsAttr::get(tensorTy, attributes);
    return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
  }

  llvm::SmallVector<mlir::Attribute> attributes;
  mlir::Type attributeElementType;
};
} // namespace

fir::GlobalOp Fortran::lower::tryCreatingDenseGlobal(
    fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type symTy,
    llvm::StringRef globalName, mlir::StringAttr linkage, bool isConst,
    const Fortran::lower::SomeExpr &initExpr) {
  return DenseGlobalBuilder::tryCreating(builder, loc, symTy, globalName,
                                         linkage, isConst, initExpr);
}

//===----------------------------------------------------------------------===//
// Fortran::lower::convertConstant
// Lower a constant to a fir::ExtendedValue.
//===----------------------------------------------------------------------===//

/// Generate a real constant with a value `value`.
template <int KIND>
static mlir::Value genRealConstant(fir::FirOpBuilder &builder,
                                   mlir::Location loc,
                                   const llvm::APFloat &value) {
  mlir::Type fltTy = Fortran::lower::convertReal(builder.getContext(), KIND);
  return builder.createRealConstant(loc, fltTy, value);
}

/// Convert a scalar literal constant to IR.
template <Fortran::common::TypeCategory TC, int KIND>
static mlir::Value genScalarLit(
    fir::FirOpBuilder &builder, mlir::Location loc,
    const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> &value) {
  if constexpr (TC == Fortran::common::TypeCategory::Integer) {
    mlir::Type ty = Fortran::lower::getFIRType(builder.getContext(), TC, KIND,
                                               std::nullopt);
    if (KIND == 16) {
      auto bigInt =
          llvm::APInt(ty.getIntOrFloatBitWidth(), value.SignedDecimal(), 10);
      return builder.create<mlir::arith::ConstantOp>(
          loc, ty, mlir::IntegerAttr::get(ty, bigInt));
    }
    return builder.createIntegerConstant(loc, ty, value.ToInt64());
  } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
    return builder.createBool(loc, value.IsTrue());
  } else if constexpr (TC == Fortran::common::TypeCategory::Real) {
    std::string str = value.DumpHexadecimal();
    if constexpr (KIND == 2) {
      auto floatVal = consAPFloat(llvm::APFloatBase::IEEEhalf(), str);
      return genRealConstant<KIND>(builder, loc, floatVal);
    } else if constexpr (KIND == 3) {
      auto floatVal = consAPFloat(llvm::APFloatBase::BFloat(), str);
      return genRealConstant<KIND>(builder, loc, floatVal);
    } else if constexpr (KIND == 4) {
      auto floatVal = consAPFloat(llvm::APFloatBase::IEEEsingle(), str);
      return genRealConstant<KIND>(builder, loc, floatVal);
    } else if constexpr (KIND == 10) {
      auto floatVal = consAPFloat(llvm::APFloatBase::x87DoubleExtended(), str);
      return genRealConstant<KIND>(builder, loc, floatVal);
    } else if constexpr (KIND == 16) {
      auto floatVal = consAPFloat(llvm::APFloatBase::IEEEquad(), str);
      return genRealConstant<KIND>(builder, loc, floatVal);
    } else {
      // convert everything else to double
      auto floatVal = consAPFloat(llvm::APFloatBase::IEEEdouble(), str);
      return genRealConstant<KIND>(builder, loc, floatVal);
    }
  } else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
    mlir::Value realPart =
        genScalarLit<Fortran::common::TypeCategory::Real, KIND>(builder, loc,
                                                                value.REAL());
    mlir::Value imagPart =
        genScalarLit<Fortran::common::TypeCategory::Real, KIND>(builder, loc,
                                                                value.AIMAG());
    return fir::factory::Complex{builder, loc}.createComplex(KIND, realPart,
                                                             imagPart);
  } else /*constexpr*/ {
    llvm_unreachable("unhandled constant");
  }
}

/// Create fir::string_lit from a scalar character constant.
template <int KIND>
static fir::StringLitOp
createStringLitOp(fir::FirOpBuilder &builder, mlir::Location loc,
                  const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Character, KIND>> &value,
                  [[maybe_unused]] int64_t len) {
  if constexpr (KIND == 1) {
    assert(value.size() == static_cast<std::uint64_t>(len));
    return builder.createStringLitOp(loc, value);
  } else {
    using ET = typename std::decay_t<decltype(value)>::value_type;
    fir::CharacterType type =
        fir::CharacterType::get(builder.getContext(), KIND, len);
    mlir::MLIRContext *context = builder.getContext();
    std::int64_t size = static_cast<std::int64_t>(value.size());
    mlir::ShapedType shape = mlir::RankedTensorType::get(
        llvm::ArrayRef<std::int64_t>{size},
        mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8));
    auto denseAttr = mlir::DenseElementsAttr::get(
        shape, llvm::ArrayRef<ET>{value.data(), value.size()});
    auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist());
    mlir::NamedAttribute dataAttr(denseTag, denseAttr);
    auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size());
    mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len));
    llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr};
    return builder.create<fir::StringLitOp>(
        loc, llvm::ArrayRef<mlir::Type>{type}, std::nullopt, attrs);
  }
}

/// Convert a scalar literal CHARACTER to IR.
template <int KIND>
static mlir::Value
genScalarLit(fir::FirOpBuilder &builder, mlir::Location loc,
             const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
                 Fortran::common::TypeCategory::Character, KIND>> &value,
             int64_t len, bool outlineInReadOnlyMemory) {
  // When in an initializer context, construct the literal op itself and do
  // not construct another constant object in rodata.
  if (!outlineInReadOnlyMemory)
    return createStringLitOp<KIND>(builder, loc, value, len);

  // Otherwise, the string is in a plain old expression so "outline" the value
  // in read only data by hash consing it to a constant literal object.

  // ASCII global constants are created using an mlir string attribute.
  if constexpr (KIND == 1) {
    return fir::getBase(fir::factory::createStringLiteral(builder, loc, value));
  }

  auto size = builder.getKindMap().getCharacterBitsize(KIND) / 8 * value.size();
  llvm::StringRef strVal(reinterpret_cast<const char *>(value.c_str()), size);
  std::string globalName = fir::factory::uniqueCGIdent("cl", strVal);
  fir::GlobalOp global = builder.getNamedGlobal(globalName);
  fir::CharacterType type =
      fir::CharacterType::get(builder.getContext(), KIND, len);
  if (!global)
    global = builder.createGlobalConstant(
        loc, type, globalName,
        [&](fir::FirOpBuilder &builder) {
          fir::StringLitOp str =
              createStringLitOp<KIND>(builder, loc, value, len);
          builder.create<fir::HasValueOp>(loc, str);
        },
        builder.createLinkOnceLinkage());
  return builder.create<fir::AddrOfOp>(loc, global.resultType(),
                                       global.getSymbol());
}

// Helper to generate StructureConstructor component values.
static fir::ExtendedValue
genConstantValue(Fortran::lower::AbstractConverter &converter,
                 mlir::Location loc,
                 const Fortran::lower::SomeExpr &constantExpr);

// Generate a StructureConstructor inlined (returns raw fir.type<T> value,
// not the address of a global constant).
static mlir::Value genInlinedStructureCtorLitImpl(
    Fortran::lower::AbstractConverter &converter, mlir::Location loc,
    const Fortran::evaluate::StructureConstructor &ctor, mlir::Type type) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  auto recTy = type.cast<fir::RecordType>();
  auto fieldTy = fir::FieldType::get(type.getContext());
  mlir::Value res = builder.create<fir::UndefOp>(loc, recTy);

  for (const auto &[sym, expr] : ctor.values()) {
    // Parent components need more work because they do not appear in the
    // fir.rec type.
    if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp))
      TODO(loc, "parent component in structure constructor");

    llvm::StringRef name = toStringRef(sym->name());
    mlir::Type componentTy = recTy.getType(name);
    // FIXME: type parameters must come from the derived-type-spec
    auto field = builder.create<fir::FieldIndexOp>(
        loc, fieldTy, name, type,
        /*typeParams=*/mlir::ValueRange{} /*TODO*/);

    if (Fortran::semantics::IsAllocatable(sym))
      TODO(loc, "allocatable component in structure constructor");

    if (Fortran::semantics::IsPointer(sym)) {
      mlir::Value initialTarget = Fortran::lower::genInitialDataTarget(
          converter, loc, componentTy, expr.value());
      res = builder.create<fir::InsertValueOp>(
          loc, recTy, res, initialTarget,
          builder.getArrayAttr(field.getAttributes()));
      continue;
    }

    if (Fortran::lower::isDerivedTypeWithLenParameters(sym))
      TODO(loc, "component with length parameters in structure constructor");

    // Special handling for scalar c_ptr/c_funptr constants. The array constant
    // must fall through to genConstantValue() below.
    if (Fortran::semantics::IsBuiltinCPtr(sym) && sym->Rank() == 0) {
      // Builtin c_ptr and c_funptr have special handling because initial
      // values are handled for them as an extension.
      mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer(
          converter, loc, expr.value()));
      if (addr.getType() == componentTy) {
        // Do nothing. The Ev::Expr was returned as a value that can be
        // inserted directly to the component without an intermediary.
      } else {
        // The Ev::Expr returned is an initializer that is a pointer (e.g.,
        // null) that must be inserted into an intermediate cptr record
        // value's address field, which ought to be an intptr_t on the target.
        if (addr.getType().isa<fir::BoxProcType>())
          addr = builder.create<fir::BoxAddrOp>(loc, addr);
        assert((fir::isa_ref_type(addr.getType()) ||
                addr.getType().isa<mlir::FunctionType>()) &&
               "expect reference type for address field");
        assert(fir::isa_derived(componentTy) &&
               "expect C_PTR, C_FUNPTR to be a record");
        auto cPtrRecTy = componentTy.cast<fir::RecordType>();
        llvm::StringRef addrFieldName = Fortran::lower::builtin::cptrFieldName;
        mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName);
        auto addrField = builder.create<fir::FieldIndexOp>(
            loc, fieldTy, addrFieldName, componentTy,
            /*typeParams=*/mlir::ValueRange{});
        mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr);
        auto undef = builder.create<fir::UndefOp>(loc, componentTy);
        addr = builder.create<fir::InsertValueOp>(
            loc, componentTy, undef, castAddr,
            builder.getArrayAttr(addrField.getAttributes()));
      }
      res = builder.create<fir::InsertValueOp>(
          loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes()));
      continue;
    }

    mlir::Value val =
        fir::getBase(genConstantValue(converter, loc, expr.value()));
    assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value");
    mlir::Value castVal = builder.createConvert(loc, componentTy, val);
    res = builder.create<fir::InsertValueOp>(
        loc, recTy, res, castVal, builder.getArrayAttr(field.getAttributes()));
  }
  return res;
}

static mlir::Value genScalarLit(
    Fortran::lower::AbstractConverter &converter, mlir::Location loc,
    const Fortran::evaluate::Scalar<Fortran::evaluate::SomeDerived> &value,
    mlir::Type eleTy, bool outlineBigConstantsInReadOnlyMemory) {
  if (!outlineBigConstantsInReadOnlyMemory)
    return genInlinedStructureCtorLitImpl(converter, loc, value, eleTy);
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  auto expr = std::make_unique<Fortran::lower::SomeExpr>(toEvExpr(
      Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived>(value)));
  llvm::StringRef globalName =
      converter.getUniqueLitName(loc, std::move(expr), eleTy);
  fir::GlobalOp global = builder.getNamedGlobal(globalName);
  if (!global) {
    global = builder.createGlobalConstant(
        loc, eleTy, globalName,
        [&](fir::FirOpBuilder &builder) {
          mlir::Value result =
              genInlinedStructureCtorLitImpl(converter, loc, value, eleTy);
          builder.create<fir::HasValueOp>(loc, result);
        },
        builder.createInternalLinkage());
  }
  return builder.create<fir::AddrOfOp>(loc, global.resultType(),
                                       global.getSymbol());
}

/// Create an evaluate::Constant<T> array to a fir.array<> value
/// built with a chain of fir.insert or fir.insert_on_range operations.
/// This is intended to be called when building the body of a fir.global.
template <typename T>
static mlir::Value
genInlinedArrayLit(Fortran::lower::AbstractConverter &converter,
                   mlir::Location loc, mlir::Type arrayTy,
                   const Fortran::evaluate::Constant<T> &con) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  mlir::IndexType idxTy = builder.getIndexType();
  Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
  auto createIdx = [&]() {
    llvm::SmallVector<mlir::Attribute> idx;
    for (size_t i = 0; i < subscripts.size(); ++i)
      idx.push_back(
          builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i]));
    return idx;
  };
  mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy);
  if (Fortran::evaluate::GetSize(con.shape()) == 0)
    return array;
  if constexpr (T::category == Fortran::common::TypeCategory::Character) {
    do {
      mlir::Value elementVal =
          genScalarLit<T::kind>(builder, loc, con.At(subscripts), con.LEN(),
                                /*outlineInReadOnlyMemory=*/false);
      array = builder.create<fir::InsertValueOp>(
          loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
    } while (con.IncrementSubscripts(subscripts));
  } else if constexpr (T::category == Fortran::common::TypeCategory::Derived) {
    do {
      mlir::Type eleTy = arrayTy.cast<fir::SequenceType>().getEleTy();
      mlir::Value elementVal =
          genScalarLit(converter, loc, con.At(subscripts), eleTy,
                       /*outlineInReadOnlyMemory=*/false);
      array = builder.create<fir::InsertValueOp>(
          loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
    } while (con.IncrementSubscripts(subscripts));
  } else {
    llvm::SmallVector<mlir::Attribute> rangeStartIdx;
    uint64_t rangeSize = 0;
    mlir::Type eleTy = arrayTy.cast<fir::SequenceType>().getEleTy();
    do {
      auto getElementVal = [&]() {
        return builder.createConvert(loc, eleTy,
                                     genScalarLit<T::category, T::kind>(
                                         builder, loc, con.At(subscripts)));
      };
      Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts;
      bool nextIsSame = con.IncrementSubscripts(nextSubscripts) &&
                        con.At(subscripts) == con.At(nextSubscripts);
      if (!rangeSize && !nextIsSame) { // single (non-range) value
        array = builder.create<fir::InsertValueOp>(
            loc, arrayTy, array, getElementVal(),
            builder.getArrayAttr(createIdx()));
      } else if (!rangeSize) { // start a range
        rangeStartIdx = createIdx();
        rangeSize = 1;
      } else if (nextIsSame) { // expand a range
        ++rangeSize;
      } else { // end a range
        llvm::SmallVector<int64_t> rangeBounds;
        llvm::SmallVector<mlir::Attribute> idx = createIdx();
        for (size_t i = 0; i < idx.size(); ++i) {
          rangeBounds.push_back(rangeStartIdx[i]
                                    .cast<mlir::IntegerAttr>()
                                    .getValue()
                                    .getSExtValue());
          rangeBounds.push_back(
              idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue());
        }
        array = builder.create<fir::InsertOnRangeOp>(
            loc, arrayTy, array, getElementVal(),
            builder.getIndexVectorAttr(rangeBounds));
        rangeSize = 0;
      }
    } while (con.IncrementSubscripts(subscripts));
  }
  return array;
}

/// Convert an evaluate::Constant<T> array into a fir.ref<fir.array<>> value
/// that points to the storage of a fir.global in read only memory and is
/// initialized with the value of the constant.
/// This should not be called while generating the body of a fir.global.
template <typename T>
static mlir::Value
genOutlineArrayLit(Fortran::lower::AbstractConverter &converter,
                   mlir::Location loc, mlir::Type arrayTy,
                   const Fortran::evaluate::Constant<T> &constant) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  mlir::Type eleTy = arrayTy.cast<fir::SequenceType>().getEleTy();
  llvm::StringRef globalName = converter.getUniqueLitName(
      loc, std::make_unique<Fortran::lower::SomeExpr>(toEvExpr(constant)),
      eleTy);
  fir::GlobalOp global = builder.getNamedGlobal(globalName);
  if (!global) {
    // Using a dense attribute for the initial value instead of creating an
    // intialization body speeds up MLIR/LLVM compilation, but this is not
    // always possible.
    if constexpr (T::category == Fortran::common::TypeCategory::Logical ||
                  T::category == Fortran::common::TypeCategory::Integer ||
                  T::category == Fortran::common::TypeCategory::Real) {
      global = DenseGlobalBuilder::tryCreating(
          builder, loc, arrayTy, globalName, builder.createInternalLinkage(),
          true, constant);
    }
    if (!global)
      // If the number of elements of the array is huge, the compilation may
      // use a lot of memory and take a very long time to complete.
      // Empirical evidence shows that an array with 150000 elements of
      // complex type takes roughly 30 seconds to compile and uses 4GB of RAM,
      // on a modern machine.
      // It would be nice to add a driver switch to control the array size
      // after which flang should not continue to compile.
      global = builder.createGlobalConstant(
          loc, arrayTy, globalName,
          [&](fir::FirOpBuilder &builder) {
            mlir::Value result =
                genInlinedArrayLit(converter, loc, arrayTy, constant);
            builder.create<fir::HasValueOp>(loc, result);
          },
          builder.createInternalLinkage());
  }
  return builder.create<fir::AddrOfOp>(loc, global.resultType(),
                                       global.getSymbol());
}

/// Convert an evaluate::Constant<T> array into an fir::ExtendedValue.
template <typename T>
static fir::ExtendedValue
genArrayLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
            const Fortran::evaluate::Constant<T> &con,
            bool outlineInReadOnlyMemory) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  Fortran::evaluate::ConstantSubscript size =
      Fortran::evaluate::GetSize(con.shape());
  if (size > std::numeric_limits<std::uint32_t>::max())
    // llvm::SmallVector has limited size
    TODO(loc, "Creation of very large array constants");
  fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
  llvm::SmallVector<std::int64_t> typeParams;
  if constexpr (T::category == Fortran::common::TypeCategory::Character)
    typeParams.push_back(con.LEN());
  mlir::Type eleTy;
  if constexpr (T::category == Fortran::common::TypeCategory::Derived)
    eleTy = Fortran::lower::translateDerivedTypeToFIRType(
        converter, con.GetType().GetDerivedTypeSpec());
  else
    eleTy = Fortran::lower::getFIRType(builder.getContext(), T::category,
                                       T::kind, typeParams);
  auto arrayTy = fir::SequenceType::get(shape, eleTy);
  mlir::Value array = outlineInReadOnlyMemory
                          ? genOutlineArrayLit(converter, loc, arrayTy, con)
                          : genInlinedArrayLit(converter, loc, arrayTy, con);

  mlir::IndexType idxTy = builder.getIndexType();
  llvm::SmallVector<mlir::Value> extents;
  for (auto extent : shape)
    extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
  // Convert  lower bounds if they are not all ones.
  llvm::SmallVector<mlir::Value> lbounds;
  if (llvm::any_of(con.lbounds(), [](auto lb) { return lb != 1; }))
    for (auto lb : con.lbounds())
      lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb));

  if constexpr (T::category == Fortran::common::TypeCategory::Character) {
    mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
    return fir::CharArrayBoxValue{array, len, extents, lbounds};
  } else {
    return fir::ArrayBoxValue{array, extents, lbounds};
  }
}

template <typename T>
fir::ExtendedValue Fortran::lower::ConstantBuilder<T>::gen(
    Fortran::lower::AbstractConverter &converter, mlir::Location loc,
    const Fortran::evaluate::Constant<T> &constant,
    bool outlineBigConstantsInReadOnlyMemory) {
  if (constant.Rank() > 0)
    return genArrayLit(converter, loc, constant,
                       outlineBigConstantsInReadOnlyMemory);
  std::optional<Fortran::evaluate::Scalar<T>> opt = constant.GetScalarValue();
  assert(opt.has_value() && "constant has no value");
  if constexpr (T::category == Fortran::common::TypeCategory::Character) {
    fir::FirOpBuilder &builder = converter.getFirOpBuilder();
    auto value =
        genScalarLit<T::kind>(builder, loc, opt.value(), constant.LEN(),
                              outlineBigConstantsInReadOnlyMemory);
    mlir::Value len = builder.createIntegerConstant(
        loc, builder.getCharacterLengthType(), constant.LEN());
    return fir::CharBoxValue{value, len};
  } else if constexpr (T::category == Fortran::common::TypeCategory::Derived) {
    mlir::Type eleTy = Fortran::lower::translateDerivedTypeToFIRType(
        converter, opt->GetType().GetDerivedTypeSpec());
    return genScalarLit(converter, loc, *opt, eleTy,
                        outlineBigConstantsInReadOnlyMemory);
  } else {
    return genScalarLit<T::category, T::kind>(converter.getFirOpBuilder(), loc,
                                              opt.value());
  }
}

static fir::ExtendedValue
genConstantValue(Fortran::lower::AbstractConverter &converter,
                 mlir::Location loc,
                 const Fortran::evaluate::Expr<Fortran::evaluate::SomeDerived>
                     &constantExpr) {
  if (const auto *constant = std::get_if<
          Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived>>(
          &constantExpr.u))
    return Fortran::lower::convertConstant(converter, loc, *constant,
                                           /*outline=*/false);
  if (const auto *structCtor =
          std::get_if<Fortran::evaluate::StructureConstructor>(&constantExpr.u))
    return Fortran::lower::genInlinedStructureCtorLit(converter, loc,
                                                      *structCtor);
  fir::emitFatalError(loc, "not a constant derived type expression");
}

template <Fortran::common::TypeCategory TC, int KIND>
static fir::ExtendedValue genConstantValue(
    Fortran::lower::AbstractConverter &converter, mlir::Location loc,
    const Fortran::evaluate::Expr<Fortran::evaluate::Type<TC, KIND>>
        &constantExpr) {
  using T = Fortran::evaluate::Type<TC, KIND>;
  if (const auto *constant =
          std::get_if<Fortran::evaluate::Constant<T>>(&constantExpr.u))
    return Fortran::lower::convertConstant(converter, loc, *constant,
                                           /*outline=*/false);
  fir::emitFatalError(loc, "not an evaluate::Constant<T>");
}

static fir::ExtendedValue
genConstantValue(Fortran::lower::AbstractConverter &converter,
                 mlir::Location loc,
                 const Fortran::lower::SomeExpr &constantExpr) {
  return std::visit(
      [&](const auto &x) -> fir::ExtendedValue {
        using T = std::decay_t<decltype(x)>;
        if constexpr (Fortran::common::HasMember<
                          T, Fortran::lower::CategoryExpression>) {
          if constexpr (T::Result::category ==
                        Fortran::common::TypeCategory::Derived) {
            return genConstantValue(converter, loc, x);
          } else {
            return std::visit(
                [&](const auto &preciseKind) {
                  return genConstantValue(converter, loc, preciseKind);
                },
                x.u);
          }
        } else {
          fir::emitFatalError(loc, "unexpected typeless constant value");
        }
      },
      constantExpr.u);
}

fir::ExtendedValue Fortran::lower::genInlinedStructureCtorLit(
    Fortran::lower::AbstractConverter &converter, mlir::Location loc,
    const Fortran::evaluate::StructureConstructor &ctor) {
  mlir::Type type = Fortran::lower::translateDerivedTypeToFIRType(
      converter, ctor.derivedTypeSpec());
  return genInlinedStructureCtorLitImpl(converter, loc, ctor, type);
}

using namespace Fortran::evaluate;
FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ConstantBuilder, )