1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
|
//===-- ConvertExprToHLFIR.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Evaluate/shape.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ConvertArrayConstructor.h"
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/ConvertConstant.h"
#include "flang/Lower/ConvertProcedureDesignator.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Character.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "llvm/ADT/TypeSwitch.h"
#include <optional>
namespace {
/// Lower Designators to HLFIR.
class HlfirDesignatorBuilder {
private:
/// Internal entry point on the rightest part of a evaluate::Designator.
template <typename T>
hlfir::EntityWithAttributes
genLeafPartRef(const T &designatorNode,
bool vectorSubscriptDesignatorToValue) {
hlfir::EntityWithAttributes result = gen(designatorNode);
if (vectorSubscriptDesignatorToValue)
return turnVectorSubscriptedDesignatorIntoValue(result);
return result;
}
hlfir::EntityWithAttributes
genDesignatorExpr(const Fortran::lower::SomeExpr &designatorExpr,
bool vectorSubscriptDesignatorToValue = true);
public:
HlfirDesignatorBuilder(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx)
: converter{converter}, symMap{symMap}, stmtCtx{stmtCtx}, loc{loc} {}
/// Public entry points to lower a Designator<T> (given its .u member, to
/// avoid the template arguments which does not matter here).
/// This lowers a designator to an hlfir variable SSA value (that can be
/// assigned to), except for vector subscripted designators that are
/// lowered by default to hlfir.expr value since they cannot be
/// represented as HLFIR variable SSA values.
// Character designators variant contains substrings
using CharacterDesignators =
decltype(Fortran::evaluate::Designator<Fortran::evaluate::Type<
Fortran::evaluate::TypeCategory::Character, 1>>::u);
hlfir::EntityWithAttributes
gen(const CharacterDesignators &designatorVariant,
bool vectorSubscriptDesignatorToValue = true) {
return std::visit(
[&](const auto &x) -> hlfir::EntityWithAttributes {
return genLeafPartRef(x, vectorSubscriptDesignatorToValue);
},
designatorVariant);
}
// Character designators variant contains complex parts
using RealDesignators =
decltype(Fortran::evaluate::Designator<Fortran::evaluate::Type<
Fortran::evaluate::TypeCategory::Real, 4>>::u);
hlfir::EntityWithAttributes
gen(const RealDesignators &designatorVariant,
bool vectorSubscriptDesignatorToValue = true) {
return std::visit(
[&](const auto &x) -> hlfir::EntityWithAttributes {
return genLeafPartRef(x, vectorSubscriptDesignatorToValue);
},
designatorVariant);
}
// All other designators are similar
using OtherDesignators =
decltype(Fortran::evaluate::Designator<Fortran::evaluate::Type<
Fortran::evaluate::TypeCategory::Integer, 4>>::u);
hlfir::EntityWithAttributes
gen(const OtherDesignators &designatorVariant,
bool vectorSubscriptDesignatorToValue = true) {
return std::visit(
[&](const auto &x) -> hlfir::EntityWithAttributes {
return genLeafPartRef(x, vectorSubscriptDesignatorToValue);
},
designatorVariant);
}
hlfir::EntityWithAttributes
genNamedEntity(const Fortran::evaluate::NamedEntity &namedEntity,
bool vectorSubscriptDesignatorToValue = true) {
if (namedEntity.IsSymbol())
return genLeafPartRef(
Fortran::evaluate::SymbolRef{namedEntity.GetLastSymbol()},
vectorSubscriptDesignatorToValue);
return genLeafPartRef(namedEntity.GetComponent(),
vectorSubscriptDesignatorToValue);
}
/// Public entry point to lower a vector subscripted designator to
/// an hlfir::ElementalAddrOp.
hlfir::ElementalAddrOp convertVectorSubscriptedExprToElementalAddr(
const Fortran::lower::SomeExpr &designatorExpr);
mlir::Value genComponentShape(const Fortran::semantics::Symbol &componentSym,
mlir::Type fieldType) {
// For pointers and allocatable components, the
// shape is deferred and should not be loaded now to preserve
// pointer/allocatable aspects.
if (componentSym.Rank() == 0 ||
Fortran::semantics::IsAllocatableOrPointer(componentSym))
return mlir::Value{};
fir::FirOpBuilder &builder = getBuilder();
mlir::Location loc = getLoc();
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> extents;
auto seqTy = hlfir::getFortranElementOrSequenceType(fieldType)
.cast<fir::SequenceType>();
for (auto extent : seqTy.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent()) {
// We have already generated invalid hlfir.declare
// without the type parameters and probably invalid storage
// for the variable (e.g. fir.alloca without type parameters).
// So this TODO here is a little bit late, but it matches
// the non-HLFIR path.
TODO(loc, "array component shape depending on length parameters");
}
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
}
if (!hasNonDefaultLowerBounds(componentSym))
return builder.create<fir::ShapeOp>(loc, extents);
llvm::SmallVector<mlir::Value> lbounds;
if (const auto *objDetails =
componentSym.detailsIf<Fortran::semantics::ObjectEntityDetails>())
for (const Fortran::semantics::ShapeSpec &bounds : objDetails->shape())
if (auto lb = bounds.lbound().GetExplicit())
if (auto constant = Fortran::evaluate::ToInt64(*lb))
lbounds.push_back(
builder.createIntegerConstant(loc, idxTy, *constant));
assert(extents.size() == lbounds.size() &&
"extents and lower bounds must match");
return builder.genShape(loc, lbounds, extents);
}
private:
/// Struct that is filled while visiting a part-ref (in the "visit" member
/// function) before the top level "gen" generates an hlfir.declare for the
/// part ref. It contains the lowered pieces of the part-ref that will
/// become the operands of an hlfir.declare.
struct PartInfo {
std::optional<hlfir::Entity> base;
std::string componentName{};
mlir::Value componentShape;
hlfir::DesignateOp::Subscripts subscripts;
std::optional<bool> complexPart;
mlir::Value resultShape;
llvm::SmallVector<mlir::Value> typeParams;
llvm::SmallVector<mlir::Value, 2> substring;
};
// Given the value type of a designator (T or fir.array<T>) and the front-end
// node for the designator, compute the memory type (fir.class, fir.ref, or
// fir.box)...
template <typename T>
mlir::Type computeDesignatorType(mlir::Type resultValueType,
PartInfo &partInfo,
const T &designatorNode) {
// Get base's shape if its a sequence type with no previously computed
// result shape
if (partInfo.base && resultValueType.isa<fir::SequenceType>() &&
!partInfo.resultShape)
partInfo.resultShape =
hlfir::genShape(getLoc(), getBuilder(), *partInfo.base);
// Dynamic type of polymorphic base must be kept if the designator is
// polymorphic.
if (isPolymorphic(designatorNode))
return fir::ClassType::get(resultValueType);
// Character scalar with dynamic length needs a fir.boxchar to hold the
// designator length.
auto charType = resultValueType.dyn_cast<fir::CharacterType>();
if (charType && charType.hasDynamicLen())
return fir::BoxCharType::get(charType.getContext(), charType.getFKind());
// Arrays with non default lower bounds or dynamic length or dynamic extent
// need a fir.box to hold the dynamic or lower bound information.
if (fir::hasDynamicSize(resultValueType) ||
hasNonDefaultLowerBounds(partInfo))
return fir::BoxType::get(resultValueType);
// Non simply contiguous ref require a fir.box to carry the byte stride.
if (resultValueType.isa<fir::SequenceType>() &&
!Fortran::evaluate::IsSimplyContiguous(
designatorNode, getConverter().getFoldingContext()))
return fir::BoxType::get(resultValueType);
// Other designators can be handled as raw addresses.
return fir::ReferenceType::get(resultValueType);
}
template <typename T>
static bool isPolymorphic(const T &designatorNode) {
if constexpr (!std::is_same_v<T, Fortran::evaluate::Substring>) {
return Fortran::semantics::IsPolymorphic(designatorNode.GetLastSymbol());
}
return false;
}
template <typename T>
/// Generate an hlfir.designate for a part-ref given a filled PartInfo and the
/// FIR type for this part-ref.
fir::FortranVariableOpInterface genDesignate(mlir::Type resultValueType,
PartInfo &partInfo,
const T &designatorNode) {
mlir::Type designatorType =
computeDesignatorType(resultValueType, partInfo, designatorNode);
return genDesignate(designatorType, partInfo, /*attributes=*/{});
}
fir::FortranVariableOpInterface
genDesignate(mlir::Type designatorType, PartInfo &partInfo,
fir::FortranVariableFlagsAttr attributes) {
fir::FirOpBuilder &builder = getBuilder();
// Once a part with vector subscripts has been lowered, the following
// hlfir.designator (for the parts on the right of the designator) must
// be lowered inside the hlfir.elemental_addr because they depend on the
// hlfir.elemental_addr indices.
// All the subsequent Fortran indices however, should be lowered before
// the hlfir.elemental_addr because they should only be evaluated once,
// hence, the insertion point is restored outside of the
// hlfir.elemental_addr after generating the hlfir.designate. Example: in
// "X(VECTOR)%COMP(FOO(), BAR())", the calls to bar() and foo() must be
// generated outside of the hlfir.elemental, but the related hlfir.designate
// that depends on the scalar hlfir.designate of X(VECTOR) that was
// generated inside the hlfir.elemental_addr should be generated in the
// hlfir.elemental_addr.
if (auto elementalAddrOp = getVectorSubscriptElementAddrOp())
builder.setInsertionPointToEnd(&elementalAddrOp->getBody().front());
auto designate = builder.create<hlfir::DesignateOp>(
getLoc(), designatorType, partInfo.base.value().getBase(),
partInfo.componentName, partInfo.componentShape, partInfo.subscripts,
partInfo.substring, partInfo.complexPart, partInfo.resultShape,
partInfo.typeParams, attributes);
if (auto elementalAddrOp = getVectorSubscriptElementAddrOp())
builder.setInsertionPoint(*elementalAddrOp);
return mlir::cast<fir::FortranVariableOpInterface>(
designate.getOperation());
}
fir::FortranVariableOpInterface
gen(const Fortran::evaluate::SymbolRef &symbolRef) {
if (std::optional<fir::FortranVariableOpInterface> varDef =
getSymMap().lookupVariableDefinition(symbolRef))
return *varDef;
TODO(getLoc(), "lowering symbol to HLFIR");
}
fir::FortranVariableOpInterface
gen(const Fortran::evaluate::Component &component,
bool skipParentComponent = false) {
if (Fortran::semantics::IsAllocatableOrPointer(component.GetLastSymbol()))
return genWholeAllocatableOrPointerComponent(component);
if (component.GetLastSymbol().test(
Fortran::semantics::Symbol::Flag::ParentComp)) {
if (skipParentComponent)
// Inner parent components can be skipped: x%parent_comp%i is equivalent
// to "x%i" in FIR (all the parent components are part of the FIR type
// of "x").
return genDataRefAndSkipParentComponents(component.base());
// This is a leaf "x%parent_comp" or "x(subscripts)%parent_comp" and
// cannot be skipped: the designator must be lowered to the parent type.
// This cannot be represented with an hlfir.designate since "parent_comp"
// name is meaningless in the fir.record type of "x". Instead, an
// hlfir.parent_comp is generated.
fir::FirOpBuilder &builder = getBuilder();
hlfir::Entity base = genDataRefAndSkipParentComponents(component.base());
base = derefPointersAndAllocatables(loc, builder, base);
mlir::Value shape;
if (base.isArray())
shape = hlfir::genShape(loc, builder, base);
const Fortran::semantics::DeclTypeSpec *declTypeSpec =
component.GetLastSymbol().GetType();
assert(declTypeSpec && declTypeSpec->AsDerived() &&
"parent component symbols must have a derived type");
mlir::Type componentType = Fortran::lower::translateDerivedTypeToFIRType(
getConverter(), *declTypeSpec->AsDerived());
mlir::Type resultType =
changeElementType(base.getElementOrSequenceType(), componentType);
// Note that the result is monomorphic even if the base is polymorphic:
// the dynamic type of the parent component reference is the parent type.
// If the base is an array, it is however most likely not contiguous.
if (base.isArray() || fir::isRecordWithTypeParameters(componentType))
resultType = fir::BoxType::get(resultType);
else
resultType = fir::ReferenceType::get(resultType);
if (fir::isRecordWithTypeParameters(componentType))
TODO(loc, "parent component reference with a parametrized parent type");
auto parentComp = builder.create<hlfir::ParentComponentOp>(
loc, resultType, base, shape, /*typeParams=*/mlir::ValueRange{});
return mlir::cast<fir::FortranVariableOpInterface>(
parentComp.getOperation());
}
PartInfo partInfo;
mlir::Type resultType = visit(component, partInfo);
return genDesignate(resultType, partInfo, component);
}
fir::FortranVariableOpInterface
genDataRefAndSkipParentComponents(const Fortran::evaluate::DataRef &dataRef) {
return std::visit(Fortran::common::visitors{
[&](const Fortran::evaluate::Component &component) {
return gen(component, /*skipParentComponent=*/true);
},
[&](const auto &x) { return gen(x); }},
dataRef.u);
}
fir::FortranVariableOpInterface
gen(const Fortran::evaluate::ArrayRef &arrayRef) {
PartInfo partInfo;
mlir::Type resultType = visit(arrayRef, partInfo);
return genDesignate(resultType, partInfo, arrayRef);
}
fir::FortranVariableOpInterface
gen(const Fortran::evaluate::CoarrayRef &coarrayRef) {
TODO(getLoc(), "lowering CoarrayRef to HLFIR");
}
mlir::Type visit(const Fortran::evaluate::CoarrayRef &, PartInfo &) {
TODO(getLoc(), "lowering CoarrayRef to HLFIR");
}
fir::FortranVariableOpInterface
gen(const Fortran::evaluate::ComplexPart &complexPart) {
PartInfo partInfo;
fir::factory::Complex cmplxHelper(getBuilder(), getLoc());
bool complexBit =
complexPart.part() == Fortran::evaluate::ComplexPart::Part::IM;
partInfo.complexPart = {complexBit};
mlir::Type resultType = visit(complexPart.complex(), partInfo);
// Determine complex part type
mlir::Type base = hlfir::getFortranElementType(resultType);
mlir::Type cmplxValueType = cmplxHelper.getComplexPartType(base);
mlir::Type designatorType = changeElementType(resultType, cmplxValueType);
return genDesignate(designatorType, partInfo, complexPart);
}
fir::FortranVariableOpInterface
gen(const Fortran::evaluate::Substring &substring) {
PartInfo partInfo;
mlir::Type baseStringType = std::visit(
[&](const auto &x) { return visit(x, partInfo); }, substring.parent());
assert(partInfo.typeParams.size() == 1 && "expect base string length");
// Compute the substring lower and upper bound.
partInfo.substring.push_back(genSubscript(substring.lower()));
if (Fortran::evaluate::MaybeExtentExpr upperBound = substring.upper())
partInfo.substring.push_back(genSubscript(*upperBound));
else
partInfo.substring.push_back(partInfo.typeParams[0]);
fir::FirOpBuilder &builder = getBuilder();
mlir::Location loc = getLoc();
mlir::Type idxTy = builder.getIndexType();
partInfo.substring[0] =
builder.createConvert(loc, idxTy, partInfo.substring[0]);
partInfo.substring[1] =
builder.createConvert(loc, idxTy, partInfo.substring[1]);
// Try using constant length if available. mlir::arith folding would
// most likely be able to fold "max(ub-lb+1,0)" too, but getting
// the constant length in the FIR types would be harder.
std::optional<int64_t> cstLen =
Fortran::evaluate::ToInt64(Fortran::evaluate::Fold(
getConverter().getFoldingContext(), substring.LEN()));
if (cstLen) {
partInfo.typeParams[0] =
builder.createIntegerConstant(loc, idxTy, *cstLen);
} else {
// Compute "len = max(ub-lb+1,0)" (Fortran 2018 9.4.1).
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
auto boundsDiff = builder.create<mlir::arith::SubIOp>(
loc, partInfo.substring[1], partInfo.substring[0]);
auto rawLen = builder.create<mlir::arith::AddIOp>(loc, boundsDiff, one);
partInfo.typeParams[0] =
fir::factory::genMaxWithZero(builder, loc, rawLen);
}
auto kind = hlfir::getFortranElementType(baseStringType)
.cast<fir::CharacterType>()
.getFKind();
auto newCharTy = fir::CharacterType::get(
baseStringType.getContext(), kind,
cstLen ? *cstLen : fir::CharacterType::unknownLen());
mlir::Type resultType = changeElementType(baseStringType, newCharTy);
return genDesignate(resultType, partInfo, substring);
}
static mlir::Type changeElementType(mlir::Type type, mlir::Type newEleTy) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(type)
.Case<fir::SequenceType>([&](fir::SequenceType seqTy) -> mlir::Type {
return fir::SequenceType::get(seqTy.getShape(), newEleTy);
})
.Case<fir::PointerType, fir::HeapType, fir::ReferenceType,
fir::BoxType>([&](auto t) -> mlir::Type {
using FIRT = decltype(t);
return FIRT::get(changeElementType(t.getEleTy(), newEleTy));
})
.Default([newEleTy](mlir::Type t) -> mlir::Type { return newEleTy; });
}
fir::FortranVariableOpInterface genWholeAllocatableOrPointerComponent(
const Fortran::evaluate::Component &component) {
// Generate whole allocatable or pointer component reference. The
// hlfir.designate result will be a pointer/allocatable.
PartInfo partInfo;
mlir::Type componentType = visitComponentImpl(component, partInfo).second;
mlir::Type designatorType = fir::ReferenceType::get(componentType);
fir::FortranVariableFlagsAttr attributes =
Fortran::lower::translateSymbolAttributes(getBuilder().getContext(),
component.GetLastSymbol());
return genDesignate(designatorType, partInfo, attributes);
}
mlir::Type visit(const Fortran::evaluate::DataRef &dataRef,
PartInfo &partInfo) {
return std::visit([&](const auto &x) { return visit(x, partInfo); },
dataRef.u);
}
mlir::Type
visit(const Fortran::evaluate::StaticDataObject::Pointer &staticObject,
PartInfo &partInfo) {
fir::FirOpBuilder &builder = getBuilder();
mlir::Location loc = getLoc();
std::optional<std::string> string = staticObject->AsString();
// TODO: see if StaticDataObject can be replaced by something based on
// Constant<T> to avoid dealing with endianness here for KIND>1.
// This will also avoid making string copies here.
if (!string)
TODO(loc, "StaticDataObject::Pointer substring with kind > 1");
fir::ExtendedValue exv =
fir::factory::createStringLiteral(builder, getLoc(), *string);
auto flags = fir::FortranVariableFlagsAttr::get(
builder.getContext(), fir::FortranVariableFlagsEnum::parameter);
partInfo.base = hlfir::genDeclare(loc, builder, exv, ".stringlit", flags);
partInfo.typeParams.push_back(fir::getLen(exv));
return partInfo.base->getElementOrSequenceType();
}
mlir::Type visit(const Fortran::evaluate::SymbolRef &symbolRef,
PartInfo &partInfo) {
// A symbol is only visited if there is a following array, substring, or
// complex reference. If the entity is a pointer or allocatable, this
// reference designates the target, so the pointer, allocatable must be
// dereferenced here.
partInfo.base =
hlfir::derefPointersAndAllocatables(loc, getBuilder(), gen(symbolRef));
hlfir::genLengthParameters(loc, getBuilder(), *partInfo.base,
partInfo.typeParams);
return partInfo.base->getElementOrSequenceType();
}
mlir::Type visit(const Fortran::evaluate::ArrayRef &arrayRef,
PartInfo &partInfo) {
mlir::Type baseType;
if (const auto *component = arrayRef.base().UnwrapComponent()) {
// Pointers and allocatable components must be dereferenced since the
// array ref designates the target (this is done in "visit"). Other
// components need special care to deal with the array%array_comp(indices)
// case.
if (Fortran::semantics::IsAllocatableOrPointer(
component->GetLastSymbol()))
baseType = visit(*component, partInfo);
else
baseType = hlfir::getFortranElementOrSequenceType(
visitComponentImpl(*component, partInfo).second);
} else {
baseType = visit(arrayRef.base().GetLastSymbol(), partInfo);
}
fir::FirOpBuilder &builder = getBuilder();
mlir::Location loc = getLoc();
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<std::pair<mlir::Value, mlir::Value>> bounds;
auto getBaseBounds = [&](unsigned i) {
if (bounds.empty()) {
if (partInfo.componentName.empty()) {
bounds = hlfir::genBounds(loc, builder, partInfo.base.value());
} else {
assert(
partInfo.componentShape &&
"implicit array section bounds must come from component shape");
bounds = hlfir::genBounds(loc, builder, partInfo.componentShape);
}
assert(!bounds.empty() &&
"failed to compute implicit array section bounds");
}
return bounds[i];
};
auto frontEndResultShape =
Fortran::evaluate::GetShape(converter.getFoldingContext(), arrayRef);
auto tryGettingExtentFromFrontEnd =
[&](unsigned dim) -> std::pair<mlir::Value, fir::SequenceType::Extent> {
// Use constant extent if possible. The main advantage to do this now
// is to get the best FIR array types as possible while lowering.
if (frontEndResultShape)
if (auto maybeI64 =
Fortran::evaluate::ToInt64(frontEndResultShape->at(dim)))
return {builder.createIntegerConstant(loc, idxTy, *maybeI64),
*maybeI64};
return {mlir::Value{}, fir::SequenceType::getUnknownExtent()};
};
llvm::SmallVector<mlir::Value> resultExtents;
fir::SequenceType::Shape resultTypeShape;
bool sawVectorSubscripts = false;
for (auto subscript : llvm::enumerate(arrayRef.subscript())) {
if (const auto *triplet =
std::get_if<Fortran::evaluate::Triplet>(&subscript.value().u)) {
mlir::Value lb, ub;
if (const auto &lbExpr = triplet->lower())
lb = genSubscript(*lbExpr);
else
lb = getBaseBounds(subscript.index()).first;
if (const auto &ubExpr = triplet->upper())
ub = genSubscript(*ubExpr);
else
ub = getBaseBounds(subscript.index()).second;
lb = builder.createConvert(loc, idxTy, lb);
ub = builder.createConvert(loc, idxTy, ub);
mlir::Value stride = genSubscript(triplet->stride());
stride = builder.createConvert(loc, idxTy, stride);
auto [extentValue, shapeExtent] =
tryGettingExtentFromFrontEnd(resultExtents.size());
resultTypeShape.push_back(shapeExtent);
if (!extentValue)
extentValue =
builder.genExtentFromTriplet(loc, lb, ub, stride, idxTy);
resultExtents.push_back(extentValue);
partInfo.subscripts.emplace_back(
hlfir::DesignateOp::Triplet{lb, ub, stride});
} else {
const auto &expr =
std::get<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
subscript.value().u)
.value();
hlfir::Entity subscript = genSubscript(expr);
partInfo.subscripts.push_back(subscript);
if (expr.Rank() > 0) {
sawVectorSubscripts = true;
auto [extentValue, shapeExtent] =
tryGettingExtentFromFrontEnd(resultExtents.size());
resultTypeShape.push_back(shapeExtent);
if (!extentValue)
extentValue = hlfir::genExtent(loc, builder, subscript, /*dim=*/0);
resultExtents.push_back(extentValue);
}
}
}
assert(resultExtents.size() == resultTypeShape.size() &&
"inconsistent hlfir.designate shape");
// For vector subscripts, create an hlfir.elemental_addr and continue
// lowering the designator inside it as if it was addressing an element of
// the vector subscripts.
if (sawVectorSubscripts)
return createVectorSubscriptElementAddrOp(partInfo, baseType,
resultExtents);
mlir::Type resultType = baseType.cast<fir::SequenceType>().getEleTy();
if (!resultTypeShape.empty()) {
// Ranked array section. The result shape comes from the array section
// subscripts.
resultType = fir::SequenceType::get(resultTypeShape, resultType);
assert(!partInfo.resultShape &&
"Fortran designator can only have one ranked part");
partInfo.resultShape = builder.genShape(loc, resultExtents);
} else if (!partInfo.componentName.empty() &&
partInfo.base.value().isArray()) {
// This is an array%array_comp(indices) reference. Keep the
// shape of the base array and not the array_comp.
auto compBaseTy = partInfo.base->getElementOrSequenceType();
resultType = changeElementType(compBaseTy, resultType);
assert(!partInfo.resultShape && "should not have been computed already");
partInfo.resultShape = hlfir::genShape(loc, builder, *partInfo.base);
}
return resultType;
}
static bool
hasNonDefaultLowerBounds(const Fortran::semantics::Symbol &componentSym) {
if (const auto *objDetails =
componentSym.detailsIf<Fortran::semantics::ObjectEntityDetails>())
for (const Fortran::semantics::ShapeSpec &bounds : objDetails->shape())
if (auto lb = bounds.lbound().GetExplicit())
if (auto constant = Fortran::evaluate::ToInt64(*lb))
if (!constant || *constant != 1)
return true;
return false;
}
static bool hasNonDefaultLowerBounds(const PartInfo &partInfo) {
return partInfo.resultShape &&
(partInfo.resultShape.getType().isa<fir::ShiftType>() ||
partInfo.resultShape.getType().isa<fir::ShapeShiftType>());
}
mlir::Type visit(const Fortran::evaluate::Component &component,
PartInfo &partInfo) {
if (Fortran::semantics::IsAllocatableOrPointer(component.GetLastSymbol())) {
// In a visit, the following reference will address the target. Insert
// the dereference here.
partInfo.base = genWholeAllocatableOrPointerComponent(component);
partInfo.base = hlfir::derefPointersAndAllocatables(loc, getBuilder(),
*partInfo.base);
hlfir::genLengthParameters(loc, getBuilder(), *partInfo.base,
partInfo.typeParams);
return partInfo.base->getElementOrSequenceType();
}
// This function must be called from contexts where the component is not the
// base of an ArrayRef. In these cases, the component cannot be an array
// if the base is an array. The code below determines the shape of the
// component reference if any.
auto [baseType, componentType] = visitComponentImpl(component, partInfo);
mlir::Type componentBaseType =
hlfir::getFortranElementOrSequenceType(componentType);
if (partInfo.base.value().isArray()) {
// For array%scalar_comp, the result shape is
// the one of the base. Compute it here. Note that the lower bounds of the
// base are not the ones of the resulting reference (that are default
// ones).
partInfo.resultShape = hlfir::genShape(loc, getBuilder(), *partInfo.base);
assert(!partInfo.componentShape &&
"Fortran designators can only have one ranked part");
return changeElementType(baseType, componentBaseType);
}
if (partInfo.complexPart && partInfo.componentShape) {
// Treat ...array_comp%im/re as ...array_comp(:,:,...)%im/re
// so that the codegen has the full slice triples for the component
// readily available.
fir::FirOpBuilder &builder = getBuilder();
mlir::Type idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
llvm::SmallVector<mlir::Value> resultExtents;
// Collect <lb, ub> pairs from the component shape.
auto bounds = hlfir::genBounds(loc, builder, partInfo.componentShape);
for (auto &boundPair : bounds) {
// The default subscripts are <lb, ub, 1>:
partInfo.subscripts.emplace_back(hlfir::DesignateOp::Triplet{
boundPair.first, boundPair.second, one});
auto extentValue = builder.genExtentFromTriplet(
loc, boundPair.first, boundPair.second, one, idxTy);
resultExtents.push_back(extentValue);
}
// The result shape is: <max((ub - lb + 1) / 1, 0), ...>.
partInfo.resultShape = builder.genShape(loc, resultExtents);
return componentBaseType;
}
// scalar%array_comp or scalar%scalar. In any case the shape of this
// part-ref is coming from the component.
partInfo.resultShape = partInfo.componentShape;
partInfo.componentShape = {};
return componentBaseType;
}
// Returns the <BaseType, ComponentType> pair, computes partInfo.base,
// partInfo.componentShape and partInfo.typeParams, but does not set the
// partInfo.resultShape yet. The result shape will be computed after
// processing a following ArrayRef, if any, and in "visit" otherwise.
std::pair<mlir::Type, mlir::Type>
visitComponentImpl(const Fortran::evaluate::Component &component,
PartInfo &partInfo) {
fir::FirOpBuilder &builder = getBuilder();
// Break the Designator visit here: if the base is an array-ref, a
// coarray-ref, or another component, this creates another hlfir.designate
// for it. hlfir.designate is not meant to represent more than one
// part-ref.
partInfo.base = genDataRefAndSkipParentComponents(component.base());
// If the base is an allocatable/pointer, dereference it here since the
// component ref designates its target.
partInfo.base =
hlfir::derefPointersAndAllocatables(loc, builder, *partInfo.base);
assert(partInfo.typeParams.empty() && "should not have been computed yet");
hlfir::genLengthParameters(getLoc(), getBuilder(), *partInfo.base,
partInfo.typeParams);
mlir::Type baseType = partInfo.base->getElementOrSequenceType();
// Lower the information about the component (type, length parameters and
// shape).
const Fortran::semantics::Symbol &componentSym = component.GetLastSymbol();
assert(
!componentSym.test(Fortran::semantics::Symbol::Flag::ParentComp) &&
"parent components are skipped and must not reach visitComponentImpl");
partInfo.componentName = componentSym.name().ToString();
auto recordType =
hlfir::getFortranElementType(baseType).cast<fir::RecordType>();
if (recordType.isDependentType())
TODO(getLoc(), "Designate derived type with length parameters in HLFIR");
mlir::Type fieldType = recordType.getType(partInfo.componentName);
assert(fieldType && "component name is not known");
mlir::Type fieldBaseType =
hlfir::getFortranElementOrSequenceType(fieldType);
partInfo.componentShape = genComponentShape(componentSym, fieldBaseType);
mlir::Type fieldEleType = hlfir::getFortranElementType(fieldBaseType);
if (fir::isRecordWithTypeParameters(fieldEleType))
TODO(loc,
"lower a component that is a parameterized derived type to HLFIR");
if (auto charTy = fieldEleType.dyn_cast<fir::CharacterType>()) {
mlir::Location loc = getLoc();
mlir::Type idxTy = builder.getIndexType();
if (charTy.hasConstantLen())
partInfo.typeParams.push_back(
builder.createIntegerConstant(loc, idxTy, charTy.getLen()));
else if (!Fortran::semantics::IsAllocatableOrPointer(componentSym))
TODO(loc, "compute character length of automatic character component "
"in a PDT");
// Otherwise, the length of the component is deferred and will only
// be read when the component is dereferenced.
}
return {baseType, fieldType};
}
// Compute: "lb + (i-1)*step".
mlir::Value computeTripletPosition(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::DesignateOp::Triplet &triplet,
mlir::Value oneBasedIndex) {
mlir::Type idxTy = builder.getIndexType();
mlir::Value lb = builder.createConvert(loc, idxTy, std::get<0>(triplet));
mlir::Value step = builder.createConvert(loc, idxTy, std::get<2>(triplet));
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
oneBasedIndex = builder.createConvert(loc, idxTy, oneBasedIndex);
mlir::Value zeroBased =
builder.create<mlir::arith::SubIOp>(loc, oneBasedIndex, one);
mlir::Value offset =
builder.create<mlir::arith::MulIOp>(loc, zeroBased, step);
return builder.create<mlir::arith::AddIOp>(loc, lb, offset);
}
/// Create an hlfir.element_addr operation to deal with vector subscripted
/// entities. This transforms the current vector subscripted array-ref into a
/// a scalar array-ref that is addressing the vector subscripted part given
/// the one based indices of the hlfir.element_addr.
/// The rest of the designator lowering will continue lowering any further
/// parts inside the hlfir.elemental as a scalar reference.
/// At the end of the designator lowering, the hlfir.elemental_addr will
/// be turned into an hlfir.elemental value, unless the caller of this
/// utility requested to get the hlfir.elemental_addr instead of lowering
/// the designator to an mlir::Value.
mlir::Type createVectorSubscriptElementAddrOp(
PartInfo &partInfo, mlir::Type baseType,
llvm::ArrayRef<mlir::Value> resultExtents) {
fir::FirOpBuilder &builder = getBuilder();
mlir::Value shape = builder.genShape(loc, resultExtents);
// The type parameters to be added on the hlfir.elemental_addr are the ones
// of the whole designator (not the ones of the vector subscripted part).
// These are not yet known and will be added when finalizing the designator
// lowering.
auto elementalAddrOp =
builder.create<hlfir::ElementalAddrOp>(loc, shape,
/*isUnordered=*/true);
setVectorSubscriptElementAddrOp(elementalAddrOp);
builder.setInsertionPointToEnd(&elementalAddrOp.getBody().front());
mlir::Region::BlockArgListType indices = elementalAddrOp.getIndices();
auto indicesIterator = indices.begin();
auto getNextOneBasedIndex = [&]() -> mlir::Value {
assert(indicesIterator != indices.end() && "ill formed ElementalAddrOp");
return *(indicesIterator++);
};
// Transform the designator into a scalar designator computing the vector
// subscripted entity element address given one based indices (for the shape
// of the vector subscripted designator).
for (hlfir::DesignateOp::Subscript &subscript : partInfo.subscripts) {
if (auto *triplet =
std::get_if<hlfir::DesignateOp::Triplet>(&subscript)) {
// subscript = (lb + (i-1)*step)
mlir::Value scalarSubscript = computeTripletPosition(
loc, builder, *triplet, getNextOneBasedIndex());
subscript = scalarSubscript;
} else {
hlfir::Entity valueSubscript{std::get<mlir::Value>(subscript)};
if (valueSubscript.isScalar())
continue;
// subscript = vector(i + (vector_lb-1))
hlfir::Entity scalarSubscript = hlfir::getElementAt(
loc, builder, valueSubscript, {getNextOneBasedIndex()});
scalarSubscript =
hlfir::loadTrivialScalar(loc, builder, scalarSubscript);
subscript = scalarSubscript;
}
}
builder.setInsertionPoint(elementalAddrOp);
return baseType.cast<fir::SequenceType>().getEleTy();
}
/// Yield the designator for the final part-ref inside the
/// hlfir.elemental_addr.
void finalizeElementAddrOp(hlfir::ElementalAddrOp elementalAddrOp,
hlfir::EntityWithAttributes elementAddr) {
fir::FirOpBuilder &builder = getBuilder();
builder.setInsertionPointToEnd(&elementalAddrOp.getBody().front());
// For polymorphic entities, it will be needed to add a mold on the
// hlfir.elemental so that we are able to create temporary storage
// for it using the dynamic type. It seems that a reference to the mold
// entity can be created by evaluating the hlfir.elemental_addr
// for a single index. The evaluation should be legal as long as
// the hlfir.elemental_addr has no side effects, otherwise,
// it is not clear how to get the mold reference.
if (elementAddr.isPolymorphic())
TODO(loc, "vector subscripted polymorphic entity in HLFIR");
builder.create<hlfir::YieldOp>(loc, elementAddr);
builder.setInsertionPointAfter(elementalAddrOp);
}
/// If the lowered designator has vector subscripts turn it into an
/// ElementalOp, otherwise, return the lowered designator. This should
/// only be called if the user did not request to get the
/// hlfir.elemental_addr. In Fortran, vector subscripted designators are only
/// writable on the left-hand side of an assignment and in input IO
/// statements. Otherwise, they are not variables (cannot be modified, their
/// value is taken at the place they appear).
hlfir::EntityWithAttributes turnVectorSubscriptedDesignatorIntoValue(
hlfir::EntityWithAttributes loweredDesignator) {
std::optional<hlfir::ElementalAddrOp> elementalAddrOp =
getVectorSubscriptElementAddrOp();
if (!elementalAddrOp)
return loweredDesignator;
finalizeElementAddrOp(*elementalAddrOp, loweredDesignator);
// This vector subscript designator is only being read, transform the
// hlfir.elemental_addr into an hlfir.elemental. The content of the
// hlfir.elemental_addr is cloned, and the resulting address is loaded to
// get the new element value.
fir::FirOpBuilder &builder = getBuilder();
mlir::Location loc = getLoc();
mlir::Value elemental =
hlfir::cloneToElementalOp(loc, builder, *elementalAddrOp);
(*elementalAddrOp)->erase();
setVectorSubscriptElementAddrOp(std::nullopt);
fir::FirOpBuilder *bldr = &builder;
getStmtCtx().attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, elemental); });
return hlfir::EntityWithAttributes{elemental};
}
/// Lower a subscript expression. If it is a scalar subscript that is a
/// variable, it is loaded into an integer value. If it is an array (for
/// vector subscripts) it is dereferenced if this is an allocatable or
/// pointer.
template <typename T>
hlfir::Entity genSubscript(const Fortran::evaluate::Expr<T> &expr);
const std::optional<hlfir::ElementalAddrOp> &
getVectorSubscriptElementAddrOp() const {
return vectorSubscriptElementAddrOp;
}
void setVectorSubscriptElementAddrOp(
std::optional<hlfir::ElementalAddrOp> elementalAddrOp) {
vectorSubscriptElementAddrOp = elementalAddrOp;
}
mlir::Location getLoc() const { return loc; }
Fortran::lower::AbstractConverter &getConverter() { return converter; }
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
Fortran::lower::SymMap &getSymMap() { return symMap; }
Fortran::lower::StatementContext &getStmtCtx() { return stmtCtx; }
Fortran::lower::AbstractConverter &converter;
Fortran::lower::SymMap &symMap;
Fortran::lower::StatementContext &stmtCtx;
// If there is a vector subscript, an elementalAddrOp is created
// to compute the address of the designator elements.
std::optional<hlfir::ElementalAddrOp> vectorSubscriptElementAddrOp{};
mlir::Location loc;
};
hlfir::EntityWithAttributes HlfirDesignatorBuilder::genDesignatorExpr(
const Fortran::lower::SomeExpr &designatorExpr,
bool vectorSubscriptDesignatorToValue) {
// Expr<SomeType> plumbing to unwrap Designator<T> and call
// gen(Designator<T>.u).
return std::visit(
[&](const auto &x) -> hlfir::EntityWithAttributes {
using T = std::decay_t<decltype(x)>;
if constexpr (Fortran::common::HasMember<
T, Fortran::lower::CategoryExpression>) {
if constexpr (T::Result::category ==
Fortran::common::TypeCategory::Derived) {
return gen(std::get<Fortran::evaluate::Designator<
Fortran::evaluate::SomeDerived>>(x.u)
.u,
vectorSubscriptDesignatorToValue);
} else {
return std::visit(
[&](const auto &preciseKind) {
using TK =
typename std::decay_t<decltype(preciseKind)>::Result;
return gen(
std::get<Fortran::evaluate::Designator<TK>>(preciseKind.u)
.u,
vectorSubscriptDesignatorToValue);
},
x.u);
}
} else {
fir::emitFatalError(loc, "unexpected typeless Designator");
}
},
designatorExpr.u);
}
hlfir::ElementalAddrOp
HlfirDesignatorBuilder::convertVectorSubscriptedExprToElementalAddr(
const Fortran::lower::SomeExpr &designatorExpr) {
hlfir::EntityWithAttributes elementAddrEntity = genDesignatorExpr(
designatorExpr, /*vectorSubscriptDesignatorToValue=*/false);
assert(getVectorSubscriptElementAddrOp().has_value() &&
"expected vector subscripts");
hlfir::ElementalAddrOp elementalAddrOp = *getVectorSubscriptElementAddrOp();
// Now that the type parameters have been computed, add then to the
// hlfir.elemental_addr.
fir::FirOpBuilder &builder = getBuilder();
llvm::SmallVector<mlir::Value, 1> lengths;
hlfir::genLengthParameters(loc, builder, elementAddrEntity, lengths);
if (!lengths.empty())
elementalAddrOp.getTypeparamsMutable().assign(lengths);
// Create the hlfir.yield terminator inside the hlfir.elemental_body.
builder.setInsertionPointToEnd(&elementalAddrOp.getBody().front());
builder.create<hlfir::YieldOp>(loc, elementAddrEntity);
builder.setInsertionPointAfter(elementalAddrOp);
// Reset the HlfirDesignatorBuilder state, in case it is used on a new
// designator.
setVectorSubscriptElementAddrOp(std::nullopt);
return elementalAddrOp;
}
//===--------------------------------------------------------------------===//
// Binary Operation implementation
//===--------------------------------------------------------------------===//
template <typename T>
struct BinaryOp {};
#undef GENBIN
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
template <int KIND> \
struct BinaryOp<Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
Fortran::common::TypeCategory::GenBinTyCat, KIND>>> { \
using Op = Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
Fortran::common::TypeCategory::GenBinTyCat, KIND>>; \
static hlfir::EntityWithAttributes gen(mlir::Location loc, \
fir::FirOpBuilder &builder, \
const Op &, hlfir::Entity lhs, \
hlfir::Entity rhs) { \
return hlfir::EntityWithAttributes{ \
builder.create<GenBinFirOp>(loc, lhs, rhs)}; \
} \
};
GENBIN(Add, Integer, mlir::arith::AddIOp)
GENBIN(Add, Real, mlir::arith::AddFOp)
GENBIN(Add, Complex, fir::AddcOp)
GENBIN(Subtract, Integer, mlir::arith::SubIOp)
GENBIN(Subtract, Real, mlir::arith::SubFOp)
GENBIN(Subtract, Complex, fir::SubcOp)
GENBIN(Multiply, Integer, mlir::arith::MulIOp)
GENBIN(Multiply, Real, mlir::arith::MulFOp)
GENBIN(Multiply, Complex, fir::MulcOp)
GENBIN(Divide, Integer, mlir::arith::DivSIOp)
GENBIN(Divide, Real, mlir::arith::DivFOp)
template <int KIND>
struct BinaryOp<Fortran::evaluate::Divide<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Complex, KIND>>> {
using Op = Fortran::evaluate::Divide<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Complex, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs, hlfir::Entity rhs) {
mlir::Type ty = Fortran::lower::getFIRType(
builder.getContext(), Fortran::common::TypeCategory::Complex, KIND,
/*params=*/std::nullopt);
return hlfir::EntityWithAttributes{
fir::genDivC(builder, loc, ty, lhs, rhs)};
}
};
template <Fortran::common::TypeCategory TC, int KIND>
struct BinaryOp<Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>>> {
using Op = Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs, hlfir::Entity rhs) {
mlir::Type ty = Fortran::lower::getFIRType(builder.getContext(), TC, KIND,
/*params=*/std::nullopt);
return hlfir::EntityWithAttributes{fir::genPow(builder, loc, ty, lhs, rhs)};
}
};
template <Fortran::common::TypeCategory TC, int KIND>
struct BinaryOp<
Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>> {
using Op =
Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs, hlfir::Entity rhs) {
mlir::Type ty = Fortran::lower::getFIRType(builder.getContext(), TC, KIND,
/*params=*/std::nullopt);
return hlfir::EntityWithAttributes{fir::genPow(builder, loc, ty, lhs, rhs)};
}
};
template <Fortran::common::TypeCategory TC, int KIND>
struct BinaryOp<
Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>> {
using Op = Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs,
hlfir::Entity rhs) {
llvm::SmallVector<mlir::Value, 2> args{lhs, rhs};
fir::ExtendedValue res = op.ordering == Fortran::evaluate::Ordering::Greater
? fir::genMax(builder, loc, args)
: fir::genMin(builder, loc, args);
return hlfir::EntityWithAttributes{fir::getBase(res)};
}
};
// evaluate::Extremum is only created by the front-end when building compiler
// generated expressions (like when folding LEN() or shape/bounds inquiries).
// MIN and MAX are represented as evaluate::ProcedureRef and are not going
// through here. So far the frontend does not generate character Extremum so
// there is no way to test it.
template <int KIND>
struct BinaryOp<Fortran::evaluate::Extremum<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, KIND>>> {
using Op = Fortran::evaluate::Extremum<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &, const Op &,
hlfir::Entity, hlfir::Entity) {
fir::emitFatalError(loc, "Fortran::evaluate::Extremum are unexpected");
}
static void genResultTypeParams(mlir::Location loc, fir::FirOpBuilder &,
hlfir::Entity, hlfir::Entity,
llvm::SmallVectorImpl<mlir::Value> &) {
fir::emitFatalError(loc, "Fortran::evaluate::Extremum are unexpected");
}
};
/// Convert parser's INTEGER relational operators to MLIR.
static mlir::arith::CmpIPredicate
translateRelational(Fortran::common::RelationalOperator rop) {
switch (rop) {
case Fortran::common::RelationalOperator::LT:
return mlir::arith::CmpIPredicate::slt;
case Fortran::common::RelationalOperator::LE:
return mlir::arith::CmpIPredicate::sle;
case Fortran::common::RelationalOperator::EQ:
return mlir::arith::CmpIPredicate::eq;
case Fortran::common::RelationalOperator::NE:
return mlir::arith::CmpIPredicate::ne;
case Fortran::common::RelationalOperator::GT:
return mlir::arith::CmpIPredicate::sgt;
case Fortran::common::RelationalOperator::GE:
return mlir::arith::CmpIPredicate::sge;
}
llvm_unreachable("unhandled INTEGER relational operator");
}
/// Convert parser's REAL relational operators to MLIR.
/// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
/// requirements in the IEEE context (table 17.1 of F2018). This choice is
/// also applied in other contexts because it is easier and in line with
/// other Fortran compilers.
/// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
/// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
/// whether the comparison will signal or not in case of quiet NaN argument.
static mlir::arith::CmpFPredicate
translateFloatRelational(Fortran::common::RelationalOperator rop) {
switch (rop) {
case Fortran::common::RelationalOperator::LT:
return mlir::arith::CmpFPredicate::OLT;
case Fortran::common::RelationalOperator::LE:
return mlir::arith::CmpFPredicate::OLE;
case Fortran::common::RelationalOperator::EQ:
return mlir::arith::CmpFPredicate::OEQ;
case Fortran::common::RelationalOperator::NE:
return mlir::arith::CmpFPredicate::UNE;
case Fortran::common::RelationalOperator::GT:
return mlir::arith::CmpFPredicate::OGT;
case Fortran::common::RelationalOperator::GE:
return mlir::arith::CmpFPredicate::OGE;
}
llvm_unreachable("unhandled REAL relational operator");
}
template <int KIND>
struct BinaryOp<Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, KIND>>> {
using Op = Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs,
hlfir::Entity rhs) {
auto cmp = builder.create<mlir::arith::CmpIOp>(
loc, translateRelational(op.opr), lhs, rhs);
return hlfir::EntityWithAttributes{cmp};
}
};
template <int KIND>
struct BinaryOp<Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>>> {
using Op = Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs,
hlfir::Entity rhs) {
auto cmp = builder.create<mlir::arith::CmpFOp>(
loc, translateFloatRelational(op.opr), lhs, rhs);
return hlfir::EntityWithAttributes{cmp};
}
};
template <int KIND>
struct BinaryOp<Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Complex, KIND>>> {
using Op = Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Complex, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs,
hlfir::Entity rhs) {
auto cmp = builder.create<fir::CmpcOp>(
loc, translateFloatRelational(op.opr), lhs, rhs);
return hlfir::EntityWithAttributes{cmp};
}
};
template <int KIND>
struct BinaryOp<Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, KIND>>> {
using Op = Fortran::evaluate::Relational<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs,
hlfir::Entity rhs) {
auto [lhsExv, lhsCleanUp] =
hlfir::translateToExtendedValue(loc, builder, lhs);
auto [rhsExv, rhsCleanUp] =
hlfir::translateToExtendedValue(loc, builder, rhs);
auto cmp = fir::runtime::genCharCompare(
builder, loc, translateRelational(op.opr), lhsExv, rhsExv);
if (lhsCleanUp)
(*lhsCleanUp)();
if (rhsCleanUp)
(*rhsCleanUp)();
return hlfir::EntityWithAttributes{cmp};
}
};
template <int KIND>
struct BinaryOp<Fortran::evaluate::LogicalOperation<KIND>> {
using Op = Fortran::evaluate::LogicalOperation<KIND>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs,
hlfir::Entity rhs) {
mlir::Type i1Type = builder.getI1Type();
mlir::Value i1Lhs = builder.createConvert(loc, i1Type, lhs);
mlir::Value i1Rhs = builder.createConvert(loc, i1Type, rhs);
switch (op.logicalOperator) {
case Fortran::evaluate::LogicalOperator::And:
return hlfir::EntityWithAttributes{
builder.create<mlir::arith::AndIOp>(loc, i1Lhs, i1Rhs)};
case Fortran::evaluate::LogicalOperator::Or:
return hlfir::EntityWithAttributes{
builder.create<mlir::arith::OrIOp>(loc, i1Lhs, i1Rhs)};
case Fortran::evaluate::LogicalOperator::Eqv:
return hlfir::EntityWithAttributes{builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, i1Lhs, i1Rhs)};
case Fortran::evaluate::LogicalOperator::Neqv:
return hlfir::EntityWithAttributes{builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, i1Lhs, i1Rhs)};
case Fortran::evaluate::LogicalOperator::Not:
// lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
llvm_unreachable(".NOT. is not a binary operator");
}
llvm_unreachable("unhandled logical operation");
}
};
template <int KIND>
struct BinaryOp<Fortran::evaluate::ComplexConstructor<KIND>> {
using Op = Fortran::evaluate::ComplexConstructor<KIND>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs, hlfir::Entity rhs) {
mlir::Value res =
fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs);
return hlfir::EntityWithAttributes{res};
}
};
template <int KIND>
struct BinaryOp<Fortran::evaluate::SetLength<KIND>> {
using Op = Fortran::evaluate::SetLength<KIND>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity string,
hlfir::Entity length) {
return hlfir::EntityWithAttributes{
builder.create<hlfir::SetLengthOp>(loc, string, length)};
}
static void
genResultTypeParams(mlir::Location, fir::FirOpBuilder &, hlfir::Entity,
hlfir::Entity rhs,
llvm::SmallVectorImpl<mlir::Value> &resultTypeParams) {
resultTypeParams.push_back(rhs);
}
};
template <int KIND>
struct BinaryOp<Fortran::evaluate::Concat<KIND>> {
using Op = Fortran::evaluate::Concat<KIND>;
hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs, hlfir::Entity rhs) {
assert(len && "genResultTypeParams must have been called");
auto concat =
builder.create<hlfir::ConcatOp>(loc, mlir::ValueRange{lhs, rhs}, len);
return hlfir::EntityWithAttributes{concat.getResult()};
}
void
genResultTypeParams(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity lhs, hlfir::Entity rhs,
llvm::SmallVectorImpl<mlir::Value> &resultTypeParams) {
llvm::SmallVector<mlir::Value> lengths;
hlfir::genLengthParameters(loc, builder, lhs, lengths);
hlfir::genLengthParameters(loc, builder, rhs, lengths);
assert(lengths.size() == 2 && "lacks rhs or lhs length");
mlir::Type idxType = builder.getIndexType();
mlir::Value lhsLen = builder.createConvert(loc, idxType, lengths[0]);
mlir::Value rhsLen = builder.createConvert(loc, idxType, lengths[1]);
len = builder.create<mlir::arith::AddIOp>(loc, lhsLen, rhsLen);
resultTypeParams.push_back(len);
}
private:
mlir::Value len{};
};
//===--------------------------------------------------------------------===//
// Unary Operation implementation
//===--------------------------------------------------------------------===//
template <typename T>
struct UnaryOp {};
template <int KIND>
struct UnaryOp<Fortran::evaluate::Not<KIND>> {
using Op = Fortran::evaluate::Not<KIND>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs) {
mlir::Value one = builder.createBool(loc, true);
mlir::Value val = builder.createConvert(loc, builder.getI1Type(), lhs);
return hlfir::EntityWithAttributes{
builder.create<mlir::arith::XOrIOp>(loc, val, one)};
}
};
template <int KIND>
struct UnaryOp<Fortran::evaluate::Negate<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, KIND>>> {
using Op = Fortran::evaluate::Negate<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs) {
// Like LLVM, integer negation is the binary op "0 - value"
mlir::Type type = Fortran::lower::getFIRType(
builder.getContext(), Fortran::common::TypeCategory::Integer, KIND,
/*params=*/std::nullopt);
mlir::Value zero = builder.createIntegerConstant(loc, type, 0);
return hlfir::EntityWithAttributes{
builder.create<mlir::arith::SubIOp>(loc, zero, lhs)};
}
};
template <int KIND>
struct UnaryOp<Fortran::evaluate::Negate<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>>> {
using Op = Fortran::evaluate::Negate<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs) {
return hlfir::EntityWithAttributes{
builder.create<mlir::arith::NegFOp>(loc, lhs)};
}
};
template <int KIND>
struct UnaryOp<Fortran::evaluate::Negate<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Complex, KIND>>> {
using Op = Fortran::evaluate::Negate<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Complex, KIND>>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs) {
return hlfir::EntityWithAttributes{builder.create<fir::NegcOp>(loc, lhs)};
}
};
template <int KIND>
struct UnaryOp<Fortran::evaluate::ComplexComponent<KIND>> {
using Op = Fortran::evaluate::ComplexComponent<KIND>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs) {
mlir::Value res = fir::factory::Complex{builder, loc}.extractComplexPart(
lhs, op.isImaginaryPart);
return hlfir::EntityWithAttributes{res};
}
};
template <typename T>
struct UnaryOp<Fortran::evaluate::Parentheses<T>> {
using Op = Fortran::evaluate::Parentheses<T>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder,
const Op &op, hlfir::Entity lhs) {
if (lhs.isVariable())
return hlfir::EntityWithAttributes{
builder.create<hlfir::AsExprOp>(loc, lhs)};
return hlfir::EntityWithAttributes{
builder.create<hlfir::NoReassocOp>(loc, lhs.getType(), lhs)};
}
static void
genResultTypeParams(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity lhs,
llvm::SmallVectorImpl<mlir::Value> &resultTypeParams) {
hlfir::genLengthParameters(loc, builder, lhs, resultTypeParams);
}
};
template <Fortran::common::TypeCategory TC1, int KIND,
Fortran::common::TypeCategory TC2>
struct UnaryOp<
Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, TC2>> {
using Op =
Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, TC2>;
static hlfir::EntityWithAttributes gen(mlir::Location loc,
fir::FirOpBuilder &builder, const Op &,
hlfir::Entity lhs) {
if constexpr (TC1 == Fortran::common::TypeCategory::Character &&
TC2 == TC1) {
TODO(loc, "character conversion in HLFIR");
}
mlir::Type type = Fortran::lower::getFIRType(builder.getContext(), TC1,
KIND, /*params=*/std::nullopt);
mlir::Value res = builder.convertWithSemantics(loc, type, lhs);
return hlfir::EntityWithAttributes{res};
}
static void
genResultTypeParams(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity lhs,
llvm::SmallVectorImpl<mlir::Value> &resultTypeParams) {
hlfir::genLengthParameters(loc, builder, lhs, resultTypeParams);
}
};
/// Lower Expr to HLFIR.
class HlfirBuilder {
public:
HlfirBuilder(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx)
: converter{converter}, symMap{symMap}, stmtCtx{stmtCtx}, loc{loc} {}
template <typename T>
hlfir::EntityWithAttributes gen(const Fortran::evaluate::Expr<T> &expr) {
return std::visit([&](const auto &x) { return gen(x); }, expr.u);
}
private:
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::BOZLiteralConstant &expr) {
TODO(getLoc(), "BOZ");
}
hlfir::EntityWithAttributes gen(const Fortran::evaluate::NullPointer &expr) {
auto nullop = getBuilder().create<hlfir::NullOp>(getLoc());
return mlir::cast<fir::FortranVariableOpInterface>(nullop.getOperation());
}
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::ProcedureDesignator &proc) {
return Fortran::lower::convertProcedureDesignatorToHLFIR(
getLoc(), getConverter(), proc, getSymMap(), getStmtCtx());
}
hlfir::EntityWithAttributes gen(const Fortran::evaluate::ProcedureRef &expr) {
TODO(getLoc(), "lowering ProcRef to HLFIR");
}
template <typename T>
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::Designator<T> &designator) {
return HlfirDesignatorBuilder(getLoc(), getConverter(), getSymMap(),
getStmtCtx())
.gen(designator.u);
}
template <typename T>
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::FunctionRef<T> &expr) {
mlir::Type resType =
Fortran::lower::TypeBuilder<T>::genType(getConverter(), expr);
auto result = Fortran::lower::convertCallToHLFIR(
getLoc(), getConverter(), expr, resType, getSymMap(), getStmtCtx());
assert(result.has_value());
return *result;
}
template <typename T>
hlfir::EntityWithAttributes gen(const Fortran::evaluate::Constant<T> &expr) {
mlir::Location loc = getLoc();
fir::FirOpBuilder &builder = getBuilder();
fir::ExtendedValue exv = Fortran::lower::convertConstant(
converter, loc, expr, /*outlineBigConstantInReadOnlyMemory=*/true);
if (const auto *scalarBox = exv.getUnboxed())
if (fir::isa_trivial(scalarBox->getType()))
return hlfir::EntityWithAttributes(*scalarBox);
if (auto addressOf = fir::getBase(exv).getDefiningOp<fir::AddrOfOp>()) {
auto flags = fir::FortranVariableFlagsAttr::get(
builder.getContext(), fir::FortranVariableFlagsEnum::parameter);
return hlfir::genDeclare(
loc, builder, exv,
addressOf.getSymbol().getRootReference().getValue(), flags);
}
fir::emitFatalError(loc, "Constant<T> was lowered to unexpected format");
}
template <typename T>
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::ArrayConstructor<T> &arrayCtor) {
return Fortran::lower::ArrayConstructorBuilder<T>::gen(
getLoc(), getConverter(), arrayCtor, getSymMap(), getStmtCtx());
}
template <typename D, typename R, typename O>
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::Operation<D, R, O> &op) {
auto &builder = getBuilder();
mlir::Location loc = getLoc();
const int rank = op.Rank();
UnaryOp<D> unaryOp;
auto left = hlfir::loadTrivialScalar(loc, builder, gen(op.left()));
llvm::SmallVector<mlir::Value, 1> typeParams;
if constexpr (R::category == Fortran::common::TypeCategory::Character) {
unaryOp.genResultTypeParams(loc, builder, left, typeParams);
}
if (rank == 0)
return unaryOp.gen(loc, builder, op.derived(), left);
// Elemental expression.
mlir::Type elementType;
if constexpr (R::category == Fortran::common::TypeCategory::Derived) {
// TODO: need to pass a mold to hlfir.elemental for polymorphic arrays
// if using hlfir.elemental here so that it can get the dynamic type
// info.
if (left.isPolymorphic())
TODO(loc, "parenthesized polymorphic arrays in HLFIR");
elementType = Fortran::lower::translateDerivedTypeToFIRType(
getConverter(), op.derived().GetType().GetDerivedTypeSpec());
} else {
elementType =
Fortran::lower::getFIRType(builder.getContext(), R::category, R::kind,
/*params=*/std::nullopt);
}
mlir::Value shape = hlfir::genShape(loc, builder, left);
auto genKernel = [&op, &left, &unaryOp](
mlir::Location l, fir::FirOpBuilder &b,
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
auto leftElement = hlfir::getElementAt(l, b, left, oneBasedIndices);
auto leftVal = hlfir::loadTrivialScalar(l, b, leftElement);
return unaryOp.gen(l, b, op.derived(), leftVal);
};
mlir::Value elemental = hlfir::genElementalOp(loc, builder, elementType,
shape, typeParams, genKernel,
/*isUnordered=*/true);
fir::FirOpBuilder *bldr = &builder;
getStmtCtx().attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, elemental); });
return hlfir::EntityWithAttributes{elemental};
}
template <typename D, typename R, typename LO, typename RO>
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::Operation<D, R, LO, RO> &op) {
auto &builder = getBuilder();
mlir::Location loc = getLoc();
const int rank = op.Rank();
BinaryOp<D> binaryOp;
auto left = hlfir::loadTrivialScalar(loc, builder, gen(op.left()));
auto right = hlfir::loadTrivialScalar(loc, builder, gen(op.right()));
llvm::SmallVector<mlir::Value, 1> typeParams;
if constexpr (R::category == Fortran::common::TypeCategory::Character) {
binaryOp.genResultTypeParams(loc, builder, left, right, typeParams);
}
if (rank == 0)
return binaryOp.gen(loc, builder, op.derived(), left, right);
// Elemental expression.
mlir::Type elementType =
Fortran::lower::getFIRType(builder.getContext(), R::category, R::kind,
/*params=*/std::nullopt);
// TODO: "merge" shape, get cst shape from front-end if possible.
mlir::Value shape;
if (left.isArray()) {
shape = hlfir::genShape(loc, builder, left);
} else {
assert(right.isArray() && "must have at least one array operand");
shape = hlfir::genShape(loc, builder, right);
}
auto genKernel = [&op, &left, &right, &binaryOp](
mlir::Location l, fir::FirOpBuilder &b,
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
auto leftElement = hlfir::getElementAt(l, b, left, oneBasedIndices);
auto rightElement = hlfir::getElementAt(l, b, right, oneBasedIndices);
auto leftVal = hlfir::loadTrivialScalar(l, b, leftElement);
auto rightVal = hlfir::loadTrivialScalar(l, b, rightElement);
return binaryOp.gen(l, b, op.derived(), leftVal, rightVal);
};
mlir::Value elemental = hlfir::genElementalOp(loc, builder, elementType,
shape, typeParams, genKernel,
/*isUnordered=*/true);
fir::FirOpBuilder *bldr = &builder;
getStmtCtx().attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, elemental); });
return hlfir::EntityWithAttributes{elemental};
}
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
return std::visit([&](const auto &x) { return gen(x); }, op.u);
}
hlfir::EntityWithAttributes gen(const Fortran::evaluate::TypeParamInquiry &) {
TODO(getLoc(), "lowering type parameter inquiry to HLFIR");
}
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::DescriptorInquiry &desc) {
mlir::Location loc = getLoc();
auto &builder = getBuilder();
hlfir::EntityWithAttributes entity =
HlfirDesignatorBuilder(getLoc(), getConverter(), getSymMap(),
getStmtCtx())
.genNamedEntity(desc.base());
using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
mlir::Type resultType =
getConverter().genType(ResTy::category, ResTy::kind);
auto castResult = [&](mlir::Value v) {
return hlfir::EntityWithAttributes{
builder.createConvert(loc, resultType, v)};
};
switch (desc.field()) {
case Fortran::evaluate::DescriptorInquiry::Field::Len:
return castResult(hlfir::genCharLength(loc, builder, entity));
case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
return castResult(
hlfir::genLBound(loc, builder, entity, desc.dimension()));
case Fortran::evaluate::DescriptorInquiry::Field::Extent:
return castResult(
hlfir::genExtent(loc, builder, entity, desc.dimension()));
case Fortran::evaluate::DescriptorInquiry::Field::Rank:
TODO(loc, "rank inquiry on assumed rank");
case Fortran::evaluate::DescriptorInquiry::Field::Stride:
// So far the front end does not generate this inquiry.
TODO(loc, "stride inquiry");
}
llvm_unreachable("unknown descriptor inquiry");
}
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::ImpliedDoIndex &var) {
mlir::Value value = symMap.lookupImpliedDo(toStringRef(var.name));
if (!value)
fir::emitFatalError(getLoc(), "ac-do-variable has no binding");
// The index value generated by the implied-do has Index type,
// while computations based on it inside the loop body are using
// the original data type. So we need to cast it appropriately.
mlir::Type varTy = getConverter().genType(toEvExpr(var));
value = getBuilder().createConvert(getLoc(), varTy, value);
return hlfir::EntityWithAttributes{value};
}
static bool
isDerivedTypeWithLenParameters(const Fortran::semantics::Symbol &sym) {
if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
if (const Fortran::semantics::DerivedTypeSpec *derived =
declTy->AsDerived())
return Fortran::semantics::CountLenParameters(*derived) > 0;
return false;
}
// Construct an entity holding the value specified by the
// StructureConstructor. The initialization of the temporary entity
// is done component by component with the help of HLFIR operations
// ParentComponentOp, DesignateOp and AssignOp.
hlfir::EntityWithAttributes
gen(const Fortran::evaluate::StructureConstructor &ctor) {
mlir::Location loc = getLoc();
fir::FirOpBuilder &builder = getBuilder();
mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
auto recTy = ty.cast<fir::RecordType>();
if (recTy.isDependentType())
TODO(loc, "structure constructor for derived type with length parameters "
"in HLFIR");
// Allocate scalar temporary that will be initialized
// with the values specified by the constructor.
mlir::Value storagePtr = builder.createTemporary(loc, recTy);
auto varOp = hlfir::EntityWithAttributes{builder.create<hlfir::DeclareOp>(
loc, storagePtr, "ctor.temp", /*shape=*/nullptr,
/*typeparams=*/mlir::ValueRange{}, fir::FortranVariableFlagsAttr{})};
// Initialize any components that need initialization.
mlir::Value box = builder.createBox(loc, fir::ExtendedValue{varOp});
fir::runtime::genDerivedTypeInitialize(builder, loc, box);
HlfirDesignatorBuilder designatorBuilder(loc, converter, symMap, stmtCtx);
for (const auto &value : ctor.values()) {
const Fortran::semantics::Symbol &sym = *value.first;
const Fortran::lower::SomeExpr &expr = value.second.value();
llvm::StringRef name = toStringRef(sym.name());
if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) {
const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType();
assert(declTypeSpec && declTypeSpec->AsDerived() &&
"parent component symbol must have a derived type");
mlir::Type compType = Fortran::lower::translateDerivedTypeToFIRType(
converter, *declTypeSpec->AsDerived());
if (fir::isRecordWithTypeParameters(compType))
TODO(loc,
"parent component reference with a parameterized parent type");
mlir::Type resultType = builder.getRefType(compType);
auto lhs = builder.create<hlfir::ParentComponentOp>(
loc, resultType, varOp, /*shape=*/nullptr,
/*typeparams=*/mlir::ValueRange{});
auto rhs = gen(expr);
builder.create<hlfir::AssignOp>(loc, rhs, lhs, /*realloc=*/false,
/*keep_lhs_length_if_realloc=*/false,
/*temporary_lhs=*/true);
continue;
}
// Generate DesignateOp for the component.
// The designator's result type is just a reference to the component type,
// because the whole component is being designated.
auto compType = recTy.getType(name);
mlir::Value compShape =
designatorBuilder.genComponentShape(sym, compType);
mlir::Type designatorType = builder.getRefType(compType);
mlir::Type fieldElemType = hlfir::getFortranElementType(compType);
llvm::SmallVector<mlir::Value, 1> typeParams;
if (auto charType = mlir::dyn_cast<fir::CharacterType>(fieldElemType)) {
if (charType.hasConstantLen()) {
mlir::Type idxType = builder.getIndexType();
typeParams.push_back(
builder.createIntegerConstant(loc, idxType, charType.getLen()));
} else {
TODO(loc, "dynamic character length in structure constructor");
}
}
// Convert component symbol attributes to variable attributes.
fir::FortranVariableFlagsAttr attrs =
Fortran::lower::translateSymbolAttributes(builder.getContext(), sym);
// Get the component designator.
auto lhs = builder.create<hlfir::DesignateOp>(
loc, designatorType, varOp, name, compShape,
hlfir::DesignateOp::Subscripts{},
/*substring=*/mlir::ValueRange{},
/*complexPart=*/std::nullopt,
/*shape=*/compShape, typeParams, attrs);
if (attrs && bitEnumContainsAny(attrs.getFlags(),
fir::FortranVariableFlagsEnum::pointer)) {
// Pointer component construction is just a copy of the box contents.
fir::ExtendedValue lhsExv =
hlfir::translateToExtendedValue(loc, builder, lhs);
auto *toBox = lhsExv.getBoxOf<fir::MutableBoxValue>();
if (!toBox)
fir::emitFatalError(loc, "pointer component designator could not be "
"lowered to mutable box");
Fortran::lower::associateMutableBox(converter, loc, *toBox, expr,
/*lbounds=*/std::nullopt, stmtCtx);
continue;
}
// Use generic assignment for all the other cases.
bool allowRealloc =
attrs &&
bitEnumContainsAny(attrs.getFlags(),
fir::FortranVariableFlagsEnum::allocatable);
// If the component is allocatable, then we have to check
// whether the RHS value is allocatable or not.
// If it is not allocatable, then AssignOp can be used directly.
// If it is allocatable, then using AssignOp for unallocated RHS
// will cause illegal dereference. When an unallocated allocatable
// value is used to construct an allocatable component, the component
// must just stay unallocated.
// If the component is allocatable and RHS is NULL() expression, then
// we can just skip it: the LHS must remain unallocated with its
// defined rank.
if (allowRealloc &&
Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(expr))
continue;
// Handle special case when the initializer expression is
// '{%SET_LENGTH(x,const_kind)}'. In structure constructor,
// SET_LENGTH is used for initializers of character allocatable
// components with *explicit* length, because they have to keep
// their length regardless of the initializer expression's length.
// We cannot just lower SET_LENGTH into hlfir.set_length in case
// when 'x' is allocatable: if 'x' is unallocated, it is not clear
// what hlfir.expr should be produced by hlfir.set_length.
// So whenever the initializer expression is SET_LENGTH we
// recognize it as the directive to keep the explicit length
// of the LHS component, and we completely ignore 'const_kind'
// operand assuming that it matches the LHS component's explicit
// length. Note that in case when LHS component has deferred length,
// the FE does not produce SET_LENGTH expression.
//
// When SET_LENGTH is recognized, we use 'x' as the initializer
// for the LHS component. If 'x' is allocatable, the dynamic
// isAllocated check will guard the assign operation as usual.
bool keepLhsLength = false;
hlfir::Entity rhs = std::visit(
[&](const auto &x) -> hlfir::Entity {
using T = std::decay_t<decltype(x)>;
if constexpr (Fortran::common::HasMember<
T, Fortran::lower::CategoryExpression>) {
if constexpr (T::Result::category ==
Fortran::common::TypeCategory::Character) {
return std::visit(
[&](const auto &someKind) -> hlfir::Entity {
using T = std::decay_t<decltype(someKind)>;
if (const auto *setLength = std::get_if<
Fortran::evaluate::SetLength<T::Result::kind>>(
&someKind.u)) {
keepLhsLength = true;
return gen(setLength->left());
}
return gen(someKind);
},
x.u);
}
}
return gen(x);
},
expr.u);
if (!allowRealloc || !rhs.isMutableBox()) {
rhs = hlfir::loadTrivialScalar(loc, builder, rhs);
builder.create<hlfir::AssignOp>(loc, rhs, lhs, allowRealloc,
allowRealloc ? keepLhsLength : false,
/*temporary_lhs=*/true);
continue;
}
auto [rhsExv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, rhs);
assert(!cleanup && "unexpected cleanup");
auto *fromBox = rhsExv.getBoxOf<fir::MutableBoxValue>();
if (!fromBox)
fir::emitFatalError(loc, "allocatable entity could not be lowered "
"to mutable box");
mlir::Value isAlloc =
fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, *fromBox);
builder.genIfThen(loc, isAlloc)
.genThen([&]() {
rhs = hlfir::loadTrivialScalar(loc, builder, rhs);
builder.create<hlfir::AssignOp>(loc, rhs, lhs, allowRealloc,
keepLhsLength,
/*temporary_lhs=*/true);
})
.end();
}
return varOp;
}
mlir::Location getLoc() const { return loc; }
Fortran::lower::AbstractConverter &getConverter() { return converter; }
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
Fortran::lower::SymMap &getSymMap() { return symMap; }
Fortran::lower::StatementContext &getStmtCtx() { return stmtCtx; }
Fortran::lower::AbstractConverter &converter;
Fortran::lower::SymMap &symMap;
Fortran::lower::StatementContext &stmtCtx;
mlir::Location loc;
};
template <typename T>
hlfir::Entity
HlfirDesignatorBuilder::genSubscript(const Fortran::evaluate::Expr<T> &expr) {
auto loweredExpr =
HlfirBuilder(getLoc(), getConverter(), getSymMap(), getStmtCtx())
.gen(expr);
fir::FirOpBuilder &builder = getBuilder();
// Skip constant conversions that litters designators and makes generated
// IR harder to read: directly use index constants for constant subscripts.
mlir::Type idxTy = builder.getIndexType();
if (!loweredExpr.isArray() && loweredExpr.getType() != idxTy)
if (auto cstIndex = fir::getIntIfConstant(loweredExpr))
return hlfir::EntityWithAttributes{
builder.createIntegerConstant(getLoc(), idxTy, *cstIndex)};
return hlfir::loadTrivialScalar(loc, builder, loweredExpr);
}
} // namespace
hlfir::EntityWithAttributes Fortran::lower::convertExprToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
return HlfirBuilder(loc, converter, symMap, stmtCtx).gen(expr);
}
fir::ExtendedValue Fortran::lower::convertToBox(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
hlfir::Entity entity, Fortran::lower::StatementContext &stmtCtx,
mlir::Type fortranType) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto [exv, cleanup] = hlfir::convertToBox(loc, builder, entity, fortranType);
if (cleanup)
stmtCtx.attachCleanup(*cleanup);
return exv;
}
fir::ExtendedValue Fortran::lower::convertExprToBox(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
hlfir::EntityWithAttributes loweredExpr =
HlfirBuilder(loc, converter, symMap, stmtCtx).gen(expr);
return convertToBox(loc, converter, loweredExpr, stmtCtx,
converter.genType(expr));
}
fir::ExtendedValue Fortran::lower::convertToAddress(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
hlfir::Entity entity, Fortran::lower::StatementContext &stmtCtx,
mlir::Type fortranType) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto [exv, cleanup] =
hlfir::convertToAddress(loc, builder, entity, fortranType);
if (cleanup)
stmtCtx.attachCleanup(*cleanup);
return exv;
}
fir::ExtendedValue Fortran::lower::convertExprToAddress(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
hlfir::EntityWithAttributes loweredExpr =
HlfirBuilder(loc, converter, symMap, stmtCtx).gen(expr);
return convertToAddress(loc, converter, loweredExpr, stmtCtx,
converter.genType(expr));
}
fir::ExtendedValue Fortran::lower::convertToValue(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
hlfir::Entity entity, Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
auto [exv, cleanup] = hlfir::convertToValue(loc, builder, entity);
if (cleanup)
stmtCtx.attachCleanup(*cleanup);
return exv;
}
fir::ExtendedValue Fortran::lower::convertExprToValue(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
hlfir::EntityWithAttributes loweredExpr =
HlfirBuilder(loc, converter, symMap, stmtCtx).gen(expr);
return convertToValue(loc, converter, loweredExpr, stmtCtx);
}
fir::MutableBoxValue Fortran::lower::convertExprToMutableBox(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
// Pointers and Allocatable cannot be temporary expressions. Temporaries may
// be created while lowering it (e.g. if any indices expression of a
// designator create temporaries), but they can be destroyed before using the
// lowered pointer or allocatable;
Fortran::lower::StatementContext localStmtCtx;
hlfir::EntityWithAttributes loweredExpr =
HlfirBuilder(loc, converter, symMap, localStmtCtx).gen(expr);
fir::ExtendedValue exv = Fortran::lower::translateToExtendedValue(
loc, converter.getFirOpBuilder(), loweredExpr, localStmtCtx);
auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>();
assert(mutableBox && "expression could not be lowered to mutable box");
return *mutableBox;
}
hlfir::ElementalAddrOp
Fortran::lower::convertVectorSubscriptedExprToElementalAddr(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &designatorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
return HlfirDesignatorBuilder(loc, converter, symMap, stmtCtx)
.convertVectorSubscriptedExprToElementalAddr(designatorExpr);
}
|