1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
//===-- ConvertType.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-lower-type"
using Fortran::common::VectorElementCategory;
//===--------------------------------------------------------------------===//
// Intrinsic type translation helpers
//===--------------------------------------------------------------------===//
static mlir::Type genRealType(mlir::MLIRContext *context, int kind) {
if (Fortran::evaluate::IsValidKindOfIntrinsicType(
Fortran::common::TypeCategory::Real, kind)) {
switch (kind) {
case 2:
return mlir::FloatType::getF16(context);
case 3:
return mlir::FloatType::getBF16(context);
case 4:
return mlir::FloatType::getF32(context);
case 8:
return mlir::FloatType::getF64(context);
case 10:
return mlir::FloatType::getF80(context);
case 16:
return mlir::FloatType::getF128(context);
}
}
llvm_unreachable("REAL type translation not implemented");
}
template <int KIND>
int getIntegerBits() {
return Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer,
KIND>::Scalar::bits;
}
static mlir::Type genIntegerType(mlir::MLIRContext *context, int kind,
bool isUnsigned = false) {
if (Fortran::evaluate::IsValidKindOfIntrinsicType(
Fortran::common::TypeCategory::Integer, kind)) {
mlir::IntegerType::SignednessSemantics signedness =
(isUnsigned ? mlir::IntegerType::SignednessSemantics::Unsigned
: mlir::IntegerType::SignednessSemantics::Signless);
switch (kind) {
case 1:
return mlir::IntegerType::get(context, getIntegerBits<1>(), signedness);
case 2:
return mlir::IntegerType::get(context, getIntegerBits<2>(), signedness);
case 4:
return mlir::IntegerType::get(context, getIntegerBits<4>(), signedness);
case 8:
return mlir::IntegerType::get(context, getIntegerBits<8>(), signedness);
case 16:
return mlir::IntegerType::get(context, getIntegerBits<16>(), signedness);
}
}
llvm_unreachable("INTEGER kind not translated");
}
static mlir::Type genLogicalType(mlir::MLIRContext *context, int KIND) {
if (Fortran::evaluate::IsValidKindOfIntrinsicType(
Fortran::common::TypeCategory::Logical, KIND))
return fir::LogicalType::get(context, KIND);
return {};
}
static mlir::Type genCharacterType(
mlir::MLIRContext *context, int KIND,
Fortran::lower::LenParameterTy len = fir::CharacterType::unknownLen()) {
if (Fortran::evaluate::IsValidKindOfIntrinsicType(
Fortran::common::TypeCategory::Character, KIND))
return fir::CharacterType::get(context, KIND, len);
return {};
}
static mlir::Type genComplexType(mlir::MLIRContext *context, int KIND) {
if (Fortran::evaluate::IsValidKindOfIntrinsicType(
Fortran::common::TypeCategory::Complex, KIND))
return fir::ComplexType::get(context, KIND);
return {};
}
static mlir::Type
genFIRType(mlir::MLIRContext *context, Fortran::common::TypeCategory tc,
int kind,
llvm::ArrayRef<Fortran::lower::LenParameterTy> lenParameters) {
switch (tc) {
case Fortran::common::TypeCategory::Real:
return genRealType(context, kind);
case Fortran::common::TypeCategory::Integer:
return genIntegerType(context, kind);
case Fortran::common::TypeCategory::Complex:
return genComplexType(context, kind);
case Fortran::common::TypeCategory::Logical:
return genLogicalType(context, kind);
case Fortran::common::TypeCategory::Character:
if (!lenParameters.empty())
return genCharacterType(context, kind, lenParameters[0]);
return genCharacterType(context, kind);
default:
break;
}
llvm_unreachable("unhandled type category");
}
//===--------------------------------------------------------------------===//
// Symbol and expression type translation
//===--------------------------------------------------------------------===//
/// TypeBuilderImpl translates expression and symbol type taking into account
/// their shape and length parameters. For symbols, attributes such as
/// ALLOCATABLE or POINTER are reflected in the fir type.
/// It uses evaluate::DynamicType and evaluate::Shape when possible to
/// avoid re-implementing type/shape analysis here.
/// Do not use the FirOpBuilder from the AbstractConverter to get fir/mlir types
/// since it is not guaranteed to exist yet when we lower types.
namespace {
struct TypeBuilderImpl {
TypeBuilderImpl(Fortran::lower::AbstractConverter &converter)
: converter{converter}, context{&converter.getMLIRContext()} {}
template <typename A>
mlir::Type genExprType(const A &expr) {
std::optional<Fortran::evaluate::DynamicType> dynamicType = expr.GetType();
if (!dynamicType)
return genTypelessExprType(expr);
Fortran::common::TypeCategory category = dynamicType->category();
mlir::Type baseType;
bool isPolymorphic = (dynamicType->IsPolymorphic() ||
dynamicType->IsUnlimitedPolymorphic()) &&
!dynamicType->IsAssumedType();
if (dynamicType->IsUnlimitedPolymorphic()) {
baseType = mlir::NoneType::get(context);
} else if (category == Fortran::common::TypeCategory::Derived) {
baseType = genDerivedType(dynamicType->GetDerivedTypeSpec());
} else {
// LOGICAL, INTEGER, REAL, COMPLEX, CHARACTER
llvm::SmallVector<Fortran::lower::LenParameterTy> params;
translateLenParameters(params, category, expr);
baseType = genFIRType(context, category, dynamicType->kind(), params);
}
std::optional<Fortran::evaluate::Shape> shapeExpr =
Fortran::evaluate::GetShape(converter.getFoldingContext(), expr);
fir::SequenceType::Shape shape;
if (shapeExpr) {
translateShape(shape, std::move(*shapeExpr));
} else {
// Shape static analysis cannot return something useful for the shape.
// Use unknown extents.
int rank = expr.Rank();
if (rank < 0)
TODO(converter.getCurrentLocation(), "assumed rank expression types");
for (int dim = 0; dim < rank; ++dim)
shape.emplace_back(fir::SequenceType::getUnknownExtent());
}
if (!shape.empty()) {
if (isPolymorphic)
return fir::ClassType::get(fir::SequenceType::get(shape, baseType));
return fir::SequenceType::get(shape, baseType);
}
if (isPolymorphic)
return fir::ClassType::get(baseType);
return baseType;
}
template <typename A>
void translateShape(A &shape, Fortran::evaluate::Shape &&shapeExpr) {
for (Fortran::evaluate::MaybeExtentExpr extentExpr : shapeExpr) {
fir::SequenceType::Extent extent = fir::SequenceType::getUnknownExtent();
if (std::optional<std::int64_t> constantExtent =
toInt64(std::move(extentExpr)))
extent = *constantExtent;
shape.push_back(extent);
}
}
template <typename A>
std::optional<std::int64_t> toInt64(A &&expr) {
return Fortran::evaluate::ToInt64(Fortran::evaluate::Fold(
converter.getFoldingContext(), std::move(expr)));
}
template <typename A>
mlir::Type genTypelessExprType(const A &expr) {
fir::emitFatalError(converter.getCurrentLocation(), "not a typeless expr");
}
mlir::Type genTypelessExprType(const Fortran::lower::SomeExpr &expr) {
return std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::BOZLiteralConstant &) -> mlir::Type {
return mlir::NoneType::get(context);
},
[&](const Fortran::evaluate::NullPointer &) -> mlir::Type {
return fir::ReferenceType::get(mlir::NoneType::get(context));
},
[&](const Fortran::evaluate::ProcedureDesignator &proc)
-> mlir::Type {
return Fortran::lower::translateSignature(proc, converter);
},
[&](const Fortran::evaluate::ProcedureRef &) -> mlir::Type {
return mlir::NoneType::get(context);
},
[](const auto &x) -> mlir::Type {
using T = std::decay_t<decltype(x)>;
static_assert(!Fortran::common::HasMember<
T, Fortran::evaluate::TypelessExpression>,
"missing typeless expr handling");
llvm::report_fatal_error("not a typeless expression");
},
},
expr.u);
}
mlir::Type genSymbolType(const Fortran::semantics::Symbol &symbol,
bool isAlloc = false, bool isPtr = false) {
mlir::Location loc = converter.genLocation(symbol.name());
mlir::Type ty;
// If the symbol is not the same as the ultimate one (i.e, it is host or use
// associated), all the symbol properties are the ones of the ultimate
// symbol but the volatile and asynchronous attributes that may differ. To
// avoid issues with helper functions that would not follow association
// links, the fir type is built based on the ultimate symbol. This relies
// on the fact volatile and asynchronous are not reflected in fir types.
const Fortran::semantics::Symbol &ultimate = symbol.GetUltimate();
if (Fortran::semantics::IsProcedurePointer(ultimate))
TODO(loc, "procedure pointers");
if (const Fortran::semantics::DeclTypeSpec *type = ultimate.GetType()) {
if (const Fortran::semantics::IntrinsicTypeSpec *tySpec =
type->AsIntrinsic()) {
int kind = toInt64(Fortran::common::Clone(tySpec->kind())).value();
llvm::SmallVector<Fortran::lower::LenParameterTy> params;
translateLenParameters(params, tySpec->category(), ultimate);
ty = genFIRType(context, tySpec->category(), kind, params);
} else if (type->IsPolymorphic() &&
!converter.getLoweringOptions().getPolymorphicTypeImpl()) {
// TODO is kept under experimental flag until feature is complete.
TODO(loc, "support for polymorphic types");
} else if (type->IsUnlimitedPolymorphic()) {
ty = mlir::NoneType::get(context);
} else if (const Fortran::semantics::DerivedTypeSpec *tySpec =
type->AsDerived()) {
ty = genDerivedType(*tySpec);
} else {
fir::emitFatalError(loc, "symbol's type must have a type spec");
}
} else {
fir::emitFatalError(loc, "symbol must have a type");
}
bool isPolymorphic = (Fortran::semantics::IsPolymorphic(symbol) ||
Fortran::semantics::IsUnlimitedPolymorphic(symbol)) &&
!Fortran::semantics::IsAssumedType(symbol);
if (ultimate.IsObjectArray()) {
auto shapeExpr = Fortran::evaluate::GetShapeHelper{
converter.getFoldingContext()}(ultimate);
if (!shapeExpr)
TODO(loc, "assumed rank symbol type");
fir::SequenceType::Shape shape;
translateShape(shape, std::move(*shapeExpr));
ty = fir::SequenceType::get(shape, ty);
}
if (Fortran::semantics::IsPointer(symbol))
return fir::wrapInClassOrBoxType(fir::PointerType::get(ty),
isPolymorphic);
if (Fortran::semantics::IsAllocatable(symbol))
return fir::wrapInClassOrBoxType(fir::HeapType::get(ty), isPolymorphic);
// isPtr and isAlloc are variable that were promoted to be on the
// heap or to be pointers, but they do not have Fortran allocatable
// or pointer semantics, so do not use box for them.
if (isPtr)
return fir::PointerType::get(ty);
if (isAlloc)
return fir::HeapType::get(ty);
if (isPolymorphic)
return fir::ClassType::get(ty);
return ty;
}
/// Does \p component has non deferred lower bounds that are not compile time
/// constant 1.
static bool componentHasNonDefaultLowerBounds(
const Fortran::semantics::Symbol &component) {
if (const auto *objDetails =
component.detailsIf<Fortran::semantics::ObjectEntityDetails>())
for (const Fortran::semantics::ShapeSpec &bounds : objDetails->shape())
if (auto lb = bounds.lbound().GetExplicit())
if (auto constant = Fortran::evaluate::ToInt64(*lb))
if (!constant || *constant != 1)
return true;
return false;
}
mlir::Type genVectorType(const Fortran::semantics::DerivedTypeSpec &tySpec) {
assert(tySpec.scope() && "Missing scope for Vector type");
auto vectorSize{tySpec.scope()->size()};
switch (tySpec.category()) {
SWITCH_COVERS_ALL_CASES
case (Fortran::semantics::DerivedTypeSpec::Category::IntrinsicVector): {
int64_t vecElemKind;
int64_t vecElemCategory;
for (const auto &pair : tySpec.parameters()) {
if (pair.first == "element_category") {
vecElemCategory =
Fortran::evaluate::ToInt64(pair.second.GetExplicit())
.value_or(-1);
} else if (pair.first == "element_kind") {
vecElemKind =
Fortran::evaluate::ToInt64(pair.second.GetExplicit()).value_or(0);
}
}
assert((vecElemCategory >= 0 &&
static_cast<size_t>(vecElemCategory) <
Fortran::common::VectorElementCategory_enumSize) &&
"Vector element type is not specified");
assert(vecElemKind && "Vector element kind is not specified");
int64_t numOfElements = vectorSize / vecElemKind;
switch (static_cast<VectorElementCategory>(vecElemCategory)) {
SWITCH_COVERS_ALL_CASES
case VectorElementCategory::Integer:
return fir::VectorType::get(numOfElements,
genIntegerType(context, vecElemKind));
case VectorElementCategory::Unsigned:
return fir::VectorType::get(numOfElements,
genIntegerType(context, vecElemKind, true));
case VectorElementCategory::Real:
return fir::VectorType::get(numOfElements,
genRealType(context, vecElemKind));
}
break;
}
case (Fortran::semantics::DerivedTypeSpec::Category::PairVector):
case (Fortran::semantics::DerivedTypeSpec::Category::QuadVector):
return fir::VectorType::get(vectorSize * 8,
mlir::IntegerType::get(context, 1));
case (Fortran::semantics::DerivedTypeSpec::Category::DerivedType):
Fortran::common::die("Vector element type not implemented");
}
}
mlir::Type genDerivedType(const Fortran::semantics::DerivedTypeSpec &tySpec) {
std::vector<std::pair<std::string, mlir::Type>> ps;
std::vector<std::pair<std::string, mlir::Type>> cs;
const Fortran::semantics::Symbol &typeSymbol = tySpec.typeSymbol();
if (mlir::Type ty = getTypeIfDerivedAlreadyInConstruction(typeSymbol))
return ty;
if (tySpec.IsVectorType()) {
return genVectorType(tySpec);
}
auto rec = fir::RecordType::get(context, converter.mangleName(tySpec));
// Maintain the stack of types for recursive references.
derivedTypeInConstruction.emplace_back(typeSymbol, rec);
// Gather the record type fields.
// (1) The data components.
for (const auto &field :
Fortran::semantics::OrderedComponentIterator(tySpec)) {
// Lowering is assuming non deferred component lower bounds are always 1.
// Catch any situations where this is not true for now.
if (!converter.getLoweringOptions().getLowerToHighLevelFIR() &&
componentHasNonDefaultLowerBounds(field))
TODO(converter.genLocation(field.name()),
"derived type components with non default lower bounds");
if (IsProcedure(field))
TODO(converter.genLocation(field.name()), "procedure components");
mlir::Type ty = genSymbolType(field);
// Do not add the parent component (component of the parents are
// added and should be sufficient, the parent component would
// duplicate the fields).
if (field.test(Fortran::semantics::Symbol::Flag::ParentComp))
continue;
cs.emplace_back(field.name().ToString(), ty);
}
// (2) The LEN type parameters.
for (const auto ¶m :
Fortran::semantics::OrderParameterDeclarations(typeSymbol))
if (param->get<Fortran::semantics::TypeParamDetails>().attr() ==
Fortran::common::TypeParamAttr::Len)
ps.emplace_back(param->name().ToString(), genSymbolType(*param));
rec.finalize(ps, cs);
popDerivedTypeInConstruction();
mlir::Location loc = converter.genLocation(typeSymbol.name());
if (!ps.empty()) {
// This type is a PDT (parametric derived type). Create the functions to
// use for allocation, dereferencing, and address arithmetic here.
TODO(loc, "parameterized derived types");
}
LLVM_DEBUG(llvm::dbgs() << "derived type: " << rec << '\n');
converter.registerDispatchTableInfo(loc, &tySpec);
// Generate the type descriptor object if any
if (const Fortran::semantics::Scope *derivedScope =
tySpec.scope() ? tySpec.scope() : tySpec.typeSymbol().scope())
if (const Fortran::semantics::Symbol *typeInfoSym =
derivedScope->runtimeDerivedTypeDescription())
converter.registerRuntimeTypeInfo(loc, *typeInfoSym);
return rec;
}
// To get the character length from a symbol, make an fold a designator for
// the symbol to cover the case where the symbol is an assumed length named
// constant and its length comes from its init expression length.
template <int Kind>
fir::SequenceType::Extent
getCharacterLengthHelper(const Fortran::semantics::Symbol &symbol) {
using TC =
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
auto designator = Fortran::evaluate::Fold(
converter.getFoldingContext(),
Fortran::evaluate::Expr<TC>{Fortran::evaluate::Designator<TC>{symbol}});
if (auto len = toInt64(std::move(designator.LEN())))
return *len;
return fir::SequenceType::getUnknownExtent();
}
template <typename T>
void translateLenParameters(
llvm::SmallVectorImpl<Fortran::lower::LenParameterTy> ¶ms,
Fortran::common::TypeCategory category, const T &exprOrSym) {
if (category == Fortran::common::TypeCategory::Character)
params.push_back(getCharacterLength(exprOrSym));
else if (category == Fortran::common::TypeCategory::Derived)
TODO(converter.getCurrentLocation(), "derived type length parameters");
}
Fortran::lower::LenParameterTy
getCharacterLength(const Fortran::semantics::Symbol &symbol) {
const Fortran::semantics::DeclTypeSpec *type = symbol.GetType();
if (!type ||
type->category() != Fortran::semantics::DeclTypeSpec::Character ||
!type->AsIntrinsic())
llvm::report_fatal_error("not a character symbol");
int kind =
toInt64(Fortran::common::Clone(type->AsIntrinsic()->kind())).value();
switch (kind) {
case 1:
return getCharacterLengthHelper<1>(symbol);
case 2:
return getCharacterLengthHelper<2>(symbol);
case 4:
return getCharacterLengthHelper<4>(symbol);
}
llvm_unreachable("unknown character kind");
}
template <typename A>
Fortran::lower::LenParameterTy getCharacterLength(const A &expr) {
return fir::SequenceType::getUnknownExtent();
}
template <typename T>
Fortran::lower::LenParameterTy
getCharacterLength(const Fortran::evaluate::FunctionRef<T> &funcRef) {
if (auto constantLen = toInt64(funcRef.LEN()))
return *constantLen;
return fir::SequenceType::getUnknownExtent();
}
Fortran::lower::LenParameterTy
getCharacterLength(const Fortran::lower::SomeExpr &expr) {
// Do not use dynamic type length here. We would miss constant
// lengths opportunities because dynamic type only has the length
// if it comes from a declaration.
if (const auto *charExpr = std::get_if<
Fortran::evaluate::Expr<Fortran::evaluate::SomeCharacter>>(
&expr.u)) {
if (auto constantLen = toInt64(charExpr->LEN()))
return *constantLen;
} else if (auto dynamicType = expr.GetType()) {
// When generating derived type type descriptor as structure constructor,
// semantics wraps designators to data component initialization into
// CLASS(*), regardless of their actual type.
// GetType() will recover the actual symbol type as the dynamic type, so
// getCharacterLength may be reached even if expr is packaged as an
// Expr<SomeDerived> instead of an Expr<SomeChar>.
// Just use the dynamic type here again to retrieve the length.
if (auto constantLen = toInt64(dynamicType->GetCharLength()))
return *constantLen;
}
return fir::SequenceType::getUnknownExtent();
}
mlir::Type genVariableType(const Fortran::lower::pft::Variable &var) {
return genSymbolType(var.getSymbol(), var.isHeapAlloc(), var.isPointer());
}
/// Derived type can be recursive. That is, pointer components of a derived
/// type `t` have type `t`. This helper returns `t` if it is already being
/// lowered to avoid infinite loops.
mlir::Type getTypeIfDerivedAlreadyInConstruction(
const Fortran::lower::SymbolRef derivedSym) const {
for (const auto &[sym, type] : derivedTypeInConstruction)
if (sym == derivedSym)
return type;
return {};
}
void popDerivedTypeInConstruction() {
assert(!derivedTypeInConstruction.empty());
derivedTypeInConstruction.pop_back();
}
/// Stack derived type being processed to avoid infinite loops in case of
/// recursive derived types. The depth of derived types is expected to be
/// shallow (<10), so a SmallVector is sufficient.
llvm::SmallVector<std::pair<const Fortran::lower::SymbolRef, mlir::Type>>
derivedTypeInConstruction;
Fortran::lower::AbstractConverter &converter;
mlir::MLIRContext *context;
};
} // namespace
mlir::Type Fortran::lower::getFIRType(mlir::MLIRContext *context,
Fortran::common::TypeCategory tc,
int kind,
llvm::ArrayRef<LenParameterTy> params) {
return genFIRType(context, tc, kind, params);
}
mlir::Type Fortran::lower::translateDerivedTypeToFIRType(
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::DerivedTypeSpec &tySpec) {
return TypeBuilderImpl{converter}.genDerivedType(tySpec);
}
mlir::Type Fortran::lower::translateSomeExprToFIRType(
Fortran::lower::AbstractConverter &converter, const SomeExpr &expr) {
return TypeBuilderImpl{converter}.genExprType(expr);
}
mlir::Type Fortran::lower::translateSymbolToFIRType(
Fortran::lower::AbstractConverter &converter, const SymbolRef symbol) {
return TypeBuilderImpl{converter}.genSymbolType(symbol);
}
mlir::Type Fortran::lower::translateVariableToFIRType(
Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var) {
return TypeBuilderImpl{converter}.genVariableType(var);
}
mlir::Type Fortran::lower::convertReal(mlir::MLIRContext *context, int kind) {
return genRealType(context, kind);
}
bool Fortran::lower::isDerivedTypeWithLenParameters(
const Fortran::semantics::Symbol &sym) {
if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
if (const Fortran::semantics::DerivedTypeSpec *derived =
declTy->AsDerived())
return Fortran::semantics::CountLenParameters(*derived) > 0;
return false;
}
template <typename T>
mlir::Type Fortran::lower::TypeBuilder<T>::genType(
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::FunctionRef<T> &funcRef) {
return TypeBuilderImpl{converter}.genExprType(funcRef);
}
using namespace Fortran::evaluate;
using namespace Fortran::common;
FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::TypeBuilder, )
|