File: ConvertType.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (596 lines) | stat: -rw-r--r-- 24,773 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//===-- ConvertType.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/ConvertType.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "flang-lower-type"

using Fortran::common::VectorElementCategory;

//===--------------------------------------------------------------------===//
// Intrinsic type translation helpers
//===--------------------------------------------------------------------===//

static mlir::Type genRealType(mlir::MLIRContext *context, int kind) {
  if (Fortran::evaluate::IsValidKindOfIntrinsicType(
          Fortran::common::TypeCategory::Real, kind)) {
    switch (kind) {
    case 2:
      return mlir::FloatType::getF16(context);
    case 3:
      return mlir::FloatType::getBF16(context);
    case 4:
      return mlir::FloatType::getF32(context);
    case 8:
      return mlir::FloatType::getF64(context);
    case 10:
      return mlir::FloatType::getF80(context);
    case 16:
      return mlir::FloatType::getF128(context);
    }
  }
  llvm_unreachable("REAL type translation not implemented");
}

template <int KIND>
int getIntegerBits() {
  return Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer,
                                 KIND>::Scalar::bits;
}
static mlir::Type genIntegerType(mlir::MLIRContext *context, int kind,
                                 bool isUnsigned = false) {
  if (Fortran::evaluate::IsValidKindOfIntrinsicType(
          Fortran::common::TypeCategory::Integer, kind)) {
    mlir::IntegerType::SignednessSemantics signedness =
        (isUnsigned ? mlir::IntegerType::SignednessSemantics::Unsigned
                    : mlir::IntegerType::SignednessSemantics::Signless);

    switch (kind) {
    case 1:
      return mlir::IntegerType::get(context, getIntegerBits<1>(), signedness);
    case 2:
      return mlir::IntegerType::get(context, getIntegerBits<2>(), signedness);
    case 4:
      return mlir::IntegerType::get(context, getIntegerBits<4>(), signedness);
    case 8:
      return mlir::IntegerType::get(context, getIntegerBits<8>(), signedness);
    case 16:
      return mlir::IntegerType::get(context, getIntegerBits<16>(), signedness);
    }
  }
  llvm_unreachable("INTEGER kind not translated");
}

static mlir::Type genLogicalType(mlir::MLIRContext *context, int KIND) {
  if (Fortran::evaluate::IsValidKindOfIntrinsicType(
          Fortran::common::TypeCategory::Logical, KIND))
    return fir::LogicalType::get(context, KIND);
  return {};
}

static mlir::Type genCharacterType(
    mlir::MLIRContext *context, int KIND,
    Fortran::lower::LenParameterTy len = fir::CharacterType::unknownLen()) {
  if (Fortran::evaluate::IsValidKindOfIntrinsicType(
          Fortran::common::TypeCategory::Character, KIND))
    return fir::CharacterType::get(context, KIND, len);
  return {};
}

static mlir::Type genComplexType(mlir::MLIRContext *context, int KIND) {
  if (Fortran::evaluate::IsValidKindOfIntrinsicType(
          Fortran::common::TypeCategory::Complex, KIND))
    return fir::ComplexType::get(context, KIND);
  return {};
}

static mlir::Type
genFIRType(mlir::MLIRContext *context, Fortran::common::TypeCategory tc,
           int kind,
           llvm::ArrayRef<Fortran::lower::LenParameterTy> lenParameters) {
  switch (tc) {
  case Fortran::common::TypeCategory::Real:
    return genRealType(context, kind);
  case Fortran::common::TypeCategory::Integer:
    return genIntegerType(context, kind);
  case Fortran::common::TypeCategory::Complex:
    return genComplexType(context, kind);
  case Fortran::common::TypeCategory::Logical:
    return genLogicalType(context, kind);
  case Fortran::common::TypeCategory::Character:
    if (!lenParameters.empty())
      return genCharacterType(context, kind, lenParameters[0]);
    return genCharacterType(context, kind);
  default:
    break;
  }
  llvm_unreachable("unhandled type category");
}

//===--------------------------------------------------------------------===//
// Symbol and expression type translation
//===--------------------------------------------------------------------===//

/// TypeBuilderImpl translates expression and symbol type taking into account
/// their shape and length parameters. For symbols, attributes such as
/// ALLOCATABLE or POINTER are reflected in the fir type.
/// It uses evaluate::DynamicType and evaluate::Shape when possible to
/// avoid re-implementing type/shape analysis here.
/// Do not use the FirOpBuilder from the AbstractConverter to get fir/mlir types
/// since it is not guaranteed to exist yet when we lower types.
namespace {
struct TypeBuilderImpl {

  TypeBuilderImpl(Fortran::lower::AbstractConverter &converter)
      : converter{converter}, context{&converter.getMLIRContext()} {}

  template <typename A>
  mlir::Type genExprType(const A &expr) {
    std::optional<Fortran::evaluate::DynamicType> dynamicType = expr.GetType();
    if (!dynamicType)
      return genTypelessExprType(expr);
    Fortran::common::TypeCategory category = dynamicType->category();

    mlir::Type baseType;
    bool isPolymorphic = (dynamicType->IsPolymorphic() ||
                          dynamicType->IsUnlimitedPolymorphic()) &&
                         !dynamicType->IsAssumedType();
    if (dynamicType->IsUnlimitedPolymorphic()) {
      baseType = mlir::NoneType::get(context);
    } else if (category == Fortran::common::TypeCategory::Derived) {
      baseType = genDerivedType(dynamicType->GetDerivedTypeSpec());
    } else {
      // LOGICAL, INTEGER, REAL, COMPLEX, CHARACTER
      llvm::SmallVector<Fortran::lower::LenParameterTy> params;
      translateLenParameters(params, category, expr);
      baseType = genFIRType(context, category, dynamicType->kind(), params);
    }
    std::optional<Fortran::evaluate::Shape> shapeExpr =
        Fortran::evaluate::GetShape(converter.getFoldingContext(), expr);
    fir::SequenceType::Shape shape;
    if (shapeExpr) {
      translateShape(shape, std::move(*shapeExpr));
    } else {
      // Shape static analysis cannot return something useful for the shape.
      // Use unknown extents.
      int rank = expr.Rank();
      if (rank < 0)
        TODO(converter.getCurrentLocation(), "assumed rank expression types");
      for (int dim = 0; dim < rank; ++dim)
        shape.emplace_back(fir::SequenceType::getUnknownExtent());
    }

    if (!shape.empty()) {
      if (isPolymorphic)
        return fir::ClassType::get(fir::SequenceType::get(shape, baseType));
      return fir::SequenceType::get(shape, baseType);
    }
    if (isPolymorphic)
      return fir::ClassType::get(baseType);
    return baseType;
  }

  template <typename A>
  void translateShape(A &shape, Fortran::evaluate::Shape &&shapeExpr) {
    for (Fortran::evaluate::MaybeExtentExpr extentExpr : shapeExpr) {
      fir::SequenceType::Extent extent = fir::SequenceType::getUnknownExtent();
      if (std::optional<std::int64_t> constantExtent =
              toInt64(std::move(extentExpr)))
        extent = *constantExtent;
      shape.push_back(extent);
    }
  }

  template <typename A>
  std::optional<std::int64_t> toInt64(A &&expr) {
    return Fortran::evaluate::ToInt64(Fortran::evaluate::Fold(
        converter.getFoldingContext(), std::move(expr)));
  }

  template <typename A>
  mlir::Type genTypelessExprType(const A &expr) {
    fir::emitFatalError(converter.getCurrentLocation(), "not a typeless expr");
  }

  mlir::Type genTypelessExprType(const Fortran::lower::SomeExpr &expr) {
    return std::visit(
        Fortran::common::visitors{
            [&](const Fortran::evaluate::BOZLiteralConstant &) -> mlir::Type {
              return mlir::NoneType::get(context);
            },
            [&](const Fortran::evaluate::NullPointer &) -> mlir::Type {
              return fir::ReferenceType::get(mlir::NoneType::get(context));
            },
            [&](const Fortran::evaluate::ProcedureDesignator &proc)
                -> mlir::Type {
              return Fortran::lower::translateSignature(proc, converter);
            },
            [&](const Fortran::evaluate::ProcedureRef &) -> mlir::Type {
              return mlir::NoneType::get(context);
            },
            [](const auto &x) -> mlir::Type {
              using T = std::decay_t<decltype(x)>;
              static_assert(!Fortran::common::HasMember<
                                T, Fortran::evaluate::TypelessExpression>,
                            "missing typeless expr handling");
              llvm::report_fatal_error("not a typeless expression");
            },
        },
        expr.u);
  }

  mlir::Type genSymbolType(const Fortran::semantics::Symbol &symbol,
                           bool isAlloc = false, bool isPtr = false) {
    mlir::Location loc = converter.genLocation(symbol.name());
    mlir::Type ty;
    // If the symbol is not the same as the ultimate one (i.e, it is host or use
    // associated), all the symbol properties are the ones of the ultimate
    // symbol but the volatile and asynchronous attributes that may differ. To
    // avoid issues with helper functions that would not follow association
    // links, the fir type is built based on the ultimate symbol. This relies
    // on the fact volatile and asynchronous are not reflected in fir types.
    const Fortran::semantics::Symbol &ultimate = symbol.GetUltimate();
    if (Fortran::semantics::IsProcedurePointer(ultimate))
      TODO(loc, "procedure pointers");
    if (const Fortran::semantics::DeclTypeSpec *type = ultimate.GetType()) {
      if (const Fortran::semantics::IntrinsicTypeSpec *tySpec =
              type->AsIntrinsic()) {
        int kind = toInt64(Fortran::common::Clone(tySpec->kind())).value();
        llvm::SmallVector<Fortran::lower::LenParameterTy> params;
        translateLenParameters(params, tySpec->category(), ultimate);
        ty = genFIRType(context, tySpec->category(), kind, params);
      } else if (type->IsPolymorphic() &&
                 !converter.getLoweringOptions().getPolymorphicTypeImpl()) {
        // TODO is kept under experimental flag until feature is complete.
        TODO(loc, "support for polymorphic types");
      } else if (type->IsUnlimitedPolymorphic()) {
        ty = mlir::NoneType::get(context);
      } else if (const Fortran::semantics::DerivedTypeSpec *tySpec =
                     type->AsDerived()) {
        ty = genDerivedType(*tySpec);
      } else {
        fir::emitFatalError(loc, "symbol's type must have a type spec");
      }
    } else {
      fir::emitFatalError(loc, "symbol must have a type");
    }
    bool isPolymorphic = (Fortran::semantics::IsPolymorphic(symbol) ||
                          Fortran::semantics::IsUnlimitedPolymorphic(symbol)) &&
                         !Fortran::semantics::IsAssumedType(symbol);
    if (ultimate.IsObjectArray()) {
      auto shapeExpr = Fortran::evaluate::GetShapeHelper{
          converter.getFoldingContext()}(ultimate);
      if (!shapeExpr)
        TODO(loc, "assumed rank symbol type");
      fir::SequenceType::Shape shape;
      translateShape(shape, std::move(*shapeExpr));
      ty = fir::SequenceType::get(shape, ty);
    }
    if (Fortran::semantics::IsPointer(symbol))
      return fir::wrapInClassOrBoxType(fir::PointerType::get(ty),
                                       isPolymorphic);
    if (Fortran::semantics::IsAllocatable(symbol))
      return fir::wrapInClassOrBoxType(fir::HeapType::get(ty), isPolymorphic);
    // isPtr and isAlloc are variable that were promoted to be on the
    // heap or to be pointers, but they do not have Fortran allocatable
    // or pointer semantics, so do not use box for them.
    if (isPtr)
      return fir::PointerType::get(ty);
    if (isAlloc)
      return fir::HeapType::get(ty);
    if (isPolymorphic)
      return fir::ClassType::get(ty);
    return ty;
  }

  /// Does \p component has non deferred lower bounds that are not compile time
  /// constant 1.
  static bool componentHasNonDefaultLowerBounds(
      const Fortran::semantics::Symbol &component) {
    if (const auto *objDetails =
            component.detailsIf<Fortran::semantics::ObjectEntityDetails>())
      for (const Fortran::semantics::ShapeSpec &bounds : objDetails->shape())
        if (auto lb = bounds.lbound().GetExplicit())
          if (auto constant = Fortran::evaluate::ToInt64(*lb))
            if (!constant || *constant != 1)
              return true;
    return false;
  }

  mlir::Type genVectorType(const Fortran::semantics::DerivedTypeSpec &tySpec) {
    assert(tySpec.scope() && "Missing scope for Vector type");
    auto vectorSize{tySpec.scope()->size()};
    switch (tySpec.category()) {
      SWITCH_COVERS_ALL_CASES
    case (Fortran::semantics::DerivedTypeSpec::Category::IntrinsicVector): {
      int64_t vecElemKind;
      int64_t vecElemCategory;

      for (const auto &pair : tySpec.parameters()) {
        if (pair.first == "element_category") {
          vecElemCategory =
              Fortran::evaluate::ToInt64(pair.second.GetExplicit())
                  .value_or(-1);
        } else if (pair.first == "element_kind") {
          vecElemKind =
              Fortran::evaluate::ToInt64(pair.second.GetExplicit()).value_or(0);
        }
      }

      assert((vecElemCategory >= 0 &&
              static_cast<size_t>(vecElemCategory) <
                  Fortran::common::VectorElementCategory_enumSize) &&
             "Vector element type is not specified");
      assert(vecElemKind && "Vector element kind is not specified");

      int64_t numOfElements = vectorSize / vecElemKind;
      switch (static_cast<VectorElementCategory>(vecElemCategory)) {
        SWITCH_COVERS_ALL_CASES
      case VectorElementCategory::Integer:
        return fir::VectorType::get(numOfElements,
                                    genIntegerType(context, vecElemKind));
      case VectorElementCategory::Unsigned:
        return fir::VectorType::get(numOfElements,
                                    genIntegerType(context, vecElemKind, true));
      case VectorElementCategory::Real:
        return fir::VectorType::get(numOfElements,
                                    genRealType(context, vecElemKind));
      }
      break;
    }
    case (Fortran::semantics::DerivedTypeSpec::Category::PairVector):
    case (Fortran::semantics::DerivedTypeSpec::Category::QuadVector):
      return fir::VectorType::get(vectorSize * 8,
                                  mlir::IntegerType::get(context, 1));
    case (Fortran::semantics::DerivedTypeSpec::Category::DerivedType):
      Fortran::common::die("Vector element type not implemented");
    }
  }

  mlir::Type genDerivedType(const Fortran::semantics::DerivedTypeSpec &tySpec) {
    std::vector<std::pair<std::string, mlir::Type>> ps;
    std::vector<std::pair<std::string, mlir::Type>> cs;
    const Fortran::semantics::Symbol &typeSymbol = tySpec.typeSymbol();
    if (mlir::Type ty = getTypeIfDerivedAlreadyInConstruction(typeSymbol))
      return ty;

    if (tySpec.IsVectorType()) {
      return genVectorType(tySpec);
    }

    auto rec = fir::RecordType::get(context, converter.mangleName(tySpec));
    // Maintain the stack of types for recursive references.
    derivedTypeInConstruction.emplace_back(typeSymbol, rec);

    // Gather the record type fields.
    // (1) The data components.
    for (const auto &field :
         Fortran::semantics::OrderedComponentIterator(tySpec)) {
      // Lowering is assuming non deferred component lower bounds are always 1.
      // Catch any situations where this is not true for now.
      if (!converter.getLoweringOptions().getLowerToHighLevelFIR() &&
          componentHasNonDefaultLowerBounds(field))
        TODO(converter.genLocation(field.name()),
             "derived type components with non default lower bounds");
      if (IsProcedure(field))
        TODO(converter.genLocation(field.name()), "procedure components");
      mlir::Type ty = genSymbolType(field);
      // Do not add the parent component (component of the parents are
      // added and should be sufficient, the parent component would
      // duplicate the fields).
      if (field.test(Fortran::semantics::Symbol::Flag::ParentComp))
        continue;
      cs.emplace_back(field.name().ToString(), ty);
    }

    // (2) The LEN type parameters.
    for (const auto &param :
         Fortran::semantics::OrderParameterDeclarations(typeSymbol))
      if (param->get<Fortran::semantics::TypeParamDetails>().attr() ==
          Fortran::common::TypeParamAttr::Len)
        ps.emplace_back(param->name().ToString(), genSymbolType(*param));

    rec.finalize(ps, cs);
    popDerivedTypeInConstruction();

    mlir::Location loc = converter.genLocation(typeSymbol.name());
    if (!ps.empty()) {
      // This type is a PDT (parametric derived type). Create the functions to
      // use for allocation, dereferencing, and address arithmetic here.
      TODO(loc, "parameterized derived types");
    }
    LLVM_DEBUG(llvm::dbgs() << "derived type: " << rec << '\n');

    converter.registerDispatchTableInfo(loc, &tySpec);

    // Generate the type descriptor object if any
    if (const Fortran::semantics::Scope *derivedScope =
            tySpec.scope() ? tySpec.scope() : tySpec.typeSymbol().scope())
      if (const Fortran::semantics::Symbol *typeInfoSym =
              derivedScope->runtimeDerivedTypeDescription())
        converter.registerRuntimeTypeInfo(loc, *typeInfoSym);
    return rec;
  }

  // To get the character length from a symbol, make an fold a designator for
  // the symbol to cover the case where the symbol is an assumed length named
  // constant and its length comes from its init expression length.
  template <int Kind>
  fir::SequenceType::Extent
  getCharacterLengthHelper(const Fortran::semantics::Symbol &symbol) {
    using TC =
        Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
    auto designator = Fortran::evaluate::Fold(
        converter.getFoldingContext(),
        Fortran::evaluate::Expr<TC>{Fortran::evaluate::Designator<TC>{symbol}});
    if (auto len = toInt64(std::move(designator.LEN())))
      return *len;
    return fir::SequenceType::getUnknownExtent();
  }

  template <typename T>
  void translateLenParameters(
      llvm::SmallVectorImpl<Fortran::lower::LenParameterTy> &params,
      Fortran::common::TypeCategory category, const T &exprOrSym) {
    if (category == Fortran::common::TypeCategory::Character)
      params.push_back(getCharacterLength(exprOrSym));
    else if (category == Fortran::common::TypeCategory::Derived)
      TODO(converter.getCurrentLocation(), "derived type length parameters");
  }
  Fortran::lower::LenParameterTy
  getCharacterLength(const Fortran::semantics::Symbol &symbol) {
    const Fortran::semantics::DeclTypeSpec *type = symbol.GetType();
    if (!type ||
        type->category() != Fortran::semantics::DeclTypeSpec::Character ||
        !type->AsIntrinsic())
      llvm::report_fatal_error("not a character symbol");
    int kind =
        toInt64(Fortran::common::Clone(type->AsIntrinsic()->kind())).value();
    switch (kind) {
    case 1:
      return getCharacterLengthHelper<1>(symbol);
    case 2:
      return getCharacterLengthHelper<2>(symbol);
    case 4:
      return getCharacterLengthHelper<4>(symbol);
    }
    llvm_unreachable("unknown character kind");
  }

  template <typename A>
  Fortran::lower::LenParameterTy getCharacterLength(const A &expr) {
    return fir::SequenceType::getUnknownExtent();
  }

  template <typename T>
  Fortran::lower::LenParameterTy
  getCharacterLength(const Fortran::evaluate::FunctionRef<T> &funcRef) {
    if (auto constantLen = toInt64(funcRef.LEN()))
      return *constantLen;
    return fir::SequenceType::getUnknownExtent();
  }

  Fortran::lower::LenParameterTy
  getCharacterLength(const Fortran::lower::SomeExpr &expr) {
    // Do not use dynamic type length here. We would miss constant
    // lengths opportunities because dynamic type only has the length
    // if it comes from a declaration.
    if (const auto *charExpr = std::get_if<
            Fortran::evaluate::Expr<Fortran::evaluate::SomeCharacter>>(
            &expr.u)) {
      if (auto constantLen = toInt64(charExpr->LEN()))
        return *constantLen;
    } else if (auto dynamicType = expr.GetType()) {
      // When generating derived type type descriptor as structure constructor,
      // semantics wraps designators to data component initialization into
      // CLASS(*), regardless of their actual type.
      // GetType() will recover the actual symbol type as the dynamic type, so
      // getCharacterLength may be reached even if expr is packaged as an
      // Expr<SomeDerived> instead of an Expr<SomeChar>.
      // Just use the dynamic type here again to retrieve the length.
      if (auto constantLen = toInt64(dynamicType->GetCharLength()))
        return *constantLen;
    }
    return fir::SequenceType::getUnknownExtent();
  }

  mlir::Type genVariableType(const Fortran::lower::pft::Variable &var) {
    return genSymbolType(var.getSymbol(), var.isHeapAlloc(), var.isPointer());
  }

  /// Derived type can be recursive. That is, pointer components of a derived
  /// type `t` have type `t`. This helper returns `t` if it is already being
  /// lowered to avoid infinite loops.
  mlir::Type getTypeIfDerivedAlreadyInConstruction(
      const Fortran::lower::SymbolRef derivedSym) const {
    for (const auto &[sym, type] : derivedTypeInConstruction)
      if (sym == derivedSym)
        return type;
    return {};
  }

  void popDerivedTypeInConstruction() {
    assert(!derivedTypeInConstruction.empty());
    derivedTypeInConstruction.pop_back();
  }

  /// Stack derived type being processed to avoid infinite loops in case of
  /// recursive derived types. The depth of derived types is expected to be
  /// shallow (<10), so a SmallVector is sufficient.
  llvm::SmallVector<std::pair<const Fortran::lower::SymbolRef, mlir::Type>>
      derivedTypeInConstruction;
  Fortran::lower::AbstractConverter &converter;
  mlir::MLIRContext *context;
};
} // namespace

mlir::Type Fortran::lower::getFIRType(mlir::MLIRContext *context,
                                      Fortran::common::TypeCategory tc,
                                      int kind,
                                      llvm::ArrayRef<LenParameterTy> params) {
  return genFIRType(context, tc, kind, params);
}

mlir::Type Fortran::lower::translateDerivedTypeToFIRType(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::semantics::DerivedTypeSpec &tySpec) {
  return TypeBuilderImpl{converter}.genDerivedType(tySpec);
}

mlir::Type Fortran::lower::translateSomeExprToFIRType(
    Fortran::lower::AbstractConverter &converter, const SomeExpr &expr) {
  return TypeBuilderImpl{converter}.genExprType(expr);
}

mlir::Type Fortran::lower::translateSymbolToFIRType(
    Fortran::lower::AbstractConverter &converter, const SymbolRef symbol) {
  return TypeBuilderImpl{converter}.genSymbolType(symbol);
}

mlir::Type Fortran::lower::translateVariableToFIRType(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::pft::Variable &var) {
  return TypeBuilderImpl{converter}.genVariableType(var);
}

mlir::Type Fortran::lower::convertReal(mlir::MLIRContext *context, int kind) {
  return genRealType(context, kind);
}

bool Fortran::lower::isDerivedTypeWithLenParameters(
    const Fortran::semantics::Symbol &sym) {
  if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
    if (const Fortran::semantics::DerivedTypeSpec *derived =
            declTy->AsDerived())
      return Fortran::semantics::CountLenParameters(*derived) > 0;
  return false;
}

template <typename T>
mlir::Type Fortran::lower::TypeBuilder<T>::genType(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::evaluate::FunctionRef<T> &funcRef) {
  return TypeBuilderImpl{converter}.genExprType(funcRef);
}

using namespace Fortran::evaluate;
using namespace Fortran::common;
FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::TypeBuilder, )