1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
|
//===-- ConvertVariable.cpp -- bridge to lower to MLIR --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/BoxAnalyzer.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ConvertConstant.h"
#include "flang/Lower/ConvertExpr.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/tools.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-variable"
/// Helper to lower a scalar expression using a specific symbol mapping.
static mlir::Value genScalarValue(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &context) {
// This does not use the AbstractConverter member function to override the
// symbol mapping to be used expression lowering.
if (converter.getLoweringOptions().getLowerToHighLevelFIR()) {
hlfir::EntityWithAttributes loweredExpr =
Fortran::lower::convertExprToHLFIR(loc, converter, expr, symMap,
context);
return hlfir::loadTrivialScalar(loc, converter.getFirOpBuilder(),
loweredExpr);
}
return fir::getBase(Fortran::lower::createSomeExtendedExpression(
loc, converter, expr, symMap, context));
}
/// Does this variable have a default initialization?
static bool hasDefaultInitialization(const Fortran::semantics::Symbol &sym) {
if (sym.has<Fortran::semantics::ObjectEntityDetails>() && sym.size())
if (!Fortran::semantics::IsAllocatableOrPointer(sym))
if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType())
if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec =
declTypeSpec->AsDerived()) {
// Pointer assignments in the runtime may hit undefined behaviors if
// the RHS contains garbage. Pointer objects are always established by
// lowering to NULL() (in Fortran::lower::createMutableBox). However,
// pointer components need special care here so that local and global
// derived type containing pointers are always initialized.
// Intent(out), however, do not need to be initialized since the
// related descriptor storage comes from a local or global that has
// been initialized (it may not be NULL() anymore, but the rank, type,
// and non deferred length parameters are still correct in a
// conformant program, and that is what matters).
const bool ignorePointer = Fortran::semantics::IsIntentOut(sym);
return derivedTypeSpec->HasDefaultInitialization(
/*ignoreAllocatable=*/false, ignorePointer);
}
return false;
}
// Does this variable have a finalization?
static bool hasFinalization(const Fortran::semantics::Symbol &sym) {
if (sym.has<Fortran::semantics::ObjectEntityDetails>() && sym.size())
if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType())
if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec =
declTypeSpec->AsDerived())
return Fortran::semantics::IsFinalizable(*derivedTypeSpec);
return false;
}
//===----------------------------------------------------------------===//
// Global variables instantiation (not for alias and common)
//===----------------------------------------------------------------===//
/// Helper to generate expression value inside global initializer.
static fir::ExtendedValue
genInitializerExprValue(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::StatementContext &stmtCtx) {
// Data initializer are constant value and should not depend on other symbols
// given the front-end fold parameter references. In any case, the "current"
// map of the converter should not be used since it holds mapping to
// mlir::Value from another mlir region. If these value are used by accident
// in the initializer, this will lead to segfaults in mlir code.
Fortran::lower::SymMap emptyMap;
return Fortran::lower::createSomeInitializerExpression(loc, converter, expr,
emptyMap, stmtCtx);
}
/// Can this symbol constant be placed in read-only memory?
static bool isConstant(const Fortran::semantics::Symbol &sym) {
return sym.attrs().test(Fortran::semantics::Attr::PARAMETER) ||
sym.test(Fortran::semantics::Symbol::Flag::ReadOnly);
}
/// Is this a compiler generated symbol to describe derived types ?
static bool isRuntimeTypeInfoData(const Fortran::semantics::Symbol &sym) {
// So far, use flags to detect if this symbol were generated during
// semantics::BuildRuntimeDerivedTypeTables(). Scope cannot be used since the
// symbols are injected in the user scopes defining the described derived
// types. A robustness improvement for this test could be to get hands on the
// semantics::RuntimeDerivedTypeTables and to check if the symbol names
// belongs to this structure.
return sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated) &&
sym.test(Fortran::semantics::Symbol::Flag::ReadOnly);
}
static fir::GlobalOp defineGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
llvm::StringRef globalName,
mlir::StringAttr linkage);
static mlir::Location genLocation(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
// Compiler generated name cannot be used as source location, their name
// is not pointing to the source files.
if (!sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated))
return converter.genLocation(sym.name());
return converter.getCurrentLocation();
}
/// Create the global op declaration without any initializer
static fir::GlobalOp declareGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
llvm::StringRef globalName,
mlir::StringAttr linkage) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
if (fir::GlobalOp global = builder.getNamedGlobal(globalName))
return global;
// Always define linkonce data since it may be optimized out from the module
// that actually owns the variable if it does not refers to it.
if (linkage == builder.createLinkOnceODRLinkage() ||
linkage == builder.createLinkOnceLinkage())
return defineGlobal(converter, var, globalName, linkage);
const Fortran::semantics::Symbol &sym = var.getSymbol();
mlir::Location loc = genLocation(converter, sym);
// Resolve potential host and module association before checking that this
// symbol is an object of a function pointer.
const Fortran::semantics::Symbol &ultimate = sym.GetUltimate();
if (!ultimate.has<Fortran::semantics::ObjectEntityDetails>() &&
!Fortran::semantics::IsProcedurePointer(ultimate))
mlir::emitError(loc, "processing global declaration: symbol '")
<< toStringRef(sym.name()) << "' has unexpected details\n";
return builder.createGlobal(loc, converter.genType(var), globalName, linkage,
mlir::Attribute{}, isConstant(ultimate),
var.isTarget());
}
/// Temporary helper to catch todos in initial data target lowering.
static bool
hasDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) {
if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
if (const Fortran::semantics::DerivedTypeSpec *derived =
declTy->AsDerived())
return Fortran::semantics::CountLenParameters(*derived) > 0;
return false;
}
fir::ExtendedValue Fortran::lower::genExtAddrInInitializer(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::lower::SomeExpr &addr) {
Fortran::lower::SymMap globalOpSymMap;
Fortran::lower::AggregateStoreMap storeMap;
Fortran::lower::StatementContext stmtCtx;
if (const Fortran::semantics::Symbol *sym =
Fortran::evaluate::GetFirstSymbol(addr)) {
// Length parameters processing will need care in global initializer
// context.
if (hasDerivedTypeWithLengthParameters(*sym))
TODO(loc, "initial-data-target with derived type length parameters");
auto var = Fortran::lower::pft::Variable(*sym, /*global=*/true);
Fortran::lower::instantiateVariable(converter, var, globalOpSymMap,
storeMap);
}
if (converter.getLoweringOptions().getLowerToHighLevelFIR())
return Fortran::lower::convertExprToAddress(loc, converter, addr,
globalOpSymMap, stmtCtx);
return Fortran::lower::createInitializerAddress(loc, converter, addr,
globalOpSymMap, stmtCtx);
}
/// create initial-data-target fir.box in a global initializer region.
mlir::Value Fortran::lower::genInitialDataTarget(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Type boxType, const Fortran::lower::SomeExpr &initialTarget,
bool couldBeInEquivalence) {
Fortran::lower::SymMap globalOpSymMap;
Fortran::lower::AggregateStoreMap storeMap;
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
initialTarget))
return fir::factory::createUnallocatedBox(
builder, loc, boxType,
/*nonDeferredParams=*/std::nullopt);
// Pointer initial data target, and NULL(mold).
for (const auto &sym : Fortran::evaluate::CollectSymbols(initialTarget)) {
// Length parameters processing will need care in global initializer
// context.
if (hasDerivedTypeWithLengthParameters(sym))
TODO(loc, "initial-data-target with derived type length parameters");
auto var = Fortran::lower::pft::Variable(sym, /*global=*/true);
if (couldBeInEquivalence) {
auto dependentVariableList =
Fortran::lower::pft::getDependentVariableList(sym);
for (Fortran::lower::pft::Variable var : dependentVariableList) {
if (!var.isAggregateStore())
break;
instantiateVariable(converter, var, globalOpSymMap, storeMap);
}
var = dependentVariableList.back();
assert(var.getSymbol().name() == sym->name() &&
"missing symbol in dependence list");
}
Fortran::lower::instantiateVariable(converter, var, globalOpSymMap,
storeMap);
}
// Handle NULL(mold) as a special case. Return an unallocated box of MOLD
// type. The return box is correctly created as a fir.box<fir.ptr<T>> where
// T is extracted from the MOLD argument.
if (const Fortran::evaluate::ProcedureRef *procRef =
Fortran::evaluate::GetProcedureRef(initialTarget)) {
const Fortran::evaluate::SpecificIntrinsic *intrinsic =
procRef->proc().GetSpecificIntrinsic();
if (intrinsic && intrinsic->name == "null") {
assert(procRef->arguments().size() == 1 &&
"Expecting mold argument for NULL intrinsic");
const auto *argExpr = procRef->arguments()[0].value().UnwrapExpr();
assert(argExpr);
const Fortran::semantics::Symbol *sym =
Fortran::evaluate::GetFirstSymbol(*argExpr);
assert(sym && "MOLD must be a pointer or allocatable symbol");
mlir::Type boxType = converter.genType(*sym);
mlir::Value box =
fir::factory::createUnallocatedBox(builder, loc, boxType, {});
return box;
}
}
mlir::Value targetBox;
mlir::Value targetShift;
if (converter.getLoweringOptions().getLowerToHighLevelFIR()) {
auto target = Fortran::lower::convertExprToBox(
loc, converter, initialTarget, globalOpSymMap, stmtCtx);
targetBox = fir::getBase(target);
targetShift = builder.createShape(loc, target);
} else {
if (initialTarget.Rank() > 0) {
auto target = Fortran::lower::createSomeArrayBox(converter, initialTarget,
globalOpSymMap, stmtCtx);
targetBox = fir::getBase(target);
targetShift = builder.createShape(loc, target);
} else {
fir::ExtendedValue addr = Fortran::lower::createInitializerAddress(
loc, converter, initialTarget, globalOpSymMap, stmtCtx);
targetBox = builder.createBox(loc, addr);
// Nothing to do for targetShift, the target is a scalar.
}
}
// The targetBox is a fir.box<T>, not a fir.box<fir.ptr<T>> as it should for
// pointers (this matters to get the POINTER attribute correctly inside the
// initial value of the descriptor).
// Create a fir.rebox to set the attribute correctly, and use targetShift
// to preserve the target lower bounds if any.
return builder.create<fir::ReboxOp>(loc, boxType, targetBox, targetShift,
/*slice=*/mlir::Value{});
}
static mlir::Value genDefaultInitializerValue(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::semantics::Symbol &sym, mlir::Type symTy,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type scalarType = symTy;
fir::SequenceType sequenceType;
if (auto ty = symTy.dyn_cast<fir::SequenceType>()) {
sequenceType = ty;
scalarType = ty.getEleTy();
}
// Build a scalar default value of the symbol type, looping through the
// components to build each component initial value.
auto recTy = scalarType.cast<fir::RecordType>();
auto fieldTy = fir::FieldType::get(scalarType.getContext());
mlir::Value initialValue = builder.create<fir::UndefOp>(loc, scalarType);
const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType();
assert(declTy && "var with default initialization must have a type");
Fortran::semantics::OrderedComponentIterator components(
declTy->derivedTypeSpec());
for (const auto &component : components) {
// Skip parent components, the sub-components of parent types are part of
// components and will be looped through right after.
if (component.test(Fortran::semantics::Symbol::Flag::ParentComp))
continue;
mlir::Value componentValue;
llvm::StringRef name = toStringRef(component.name());
mlir::Type componentTy = recTy.getType(name);
assert(componentTy && "component not found in type");
if (const auto *object{
component.detailsIf<Fortran::semantics::ObjectEntityDetails>()}) {
if (const auto &init = object->init()) {
// Component has explicit initialization.
if (Fortran::semantics::IsPointer(component))
// Initial data target.
componentValue =
genInitialDataTarget(converter, loc, componentTy, *init);
else
// Initial value.
componentValue = fir::getBase(
genInitializerExprValue(converter, loc, *init, stmtCtx));
} else if (Fortran::semantics::IsAllocatableOrPointer(component)) {
// Pointer or allocatable without initialization.
// Create deallocated/disassociated value.
// From a standard point of view, pointer without initialization do not
// need to be disassociated, but for sanity and simplicity, do it in
// global constructor since this has no runtime cost.
componentValue = fir::factory::createUnallocatedBox(
builder, loc, componentTy, std::nullopt);
} else if (hasDefaultInitialization(component)) {
// Component type has default initialization.
componentValue = genDefaultInitializerValue(converter, loc, component,
componentTy, stmtCtx);
} else {
// Component has no initial value.
componentValue = builder.create<fir::UndefOp>(loc, componentTy);
}
} else if (const auto *proc{
component
.detailsIf<Fortran::semantics::ProcEntityDetails>()}) {
if (proc->init().has_value())
TODO(loc, "procedure pointer component default initialization");
else
componentValue = builder.create<fir::UndefOp>(loc, componentTy);
}
assert(componentValue && "must have been computed");
componentValue = builder.createConvert(loc, componentTy, componentValue);
// FIXME: type parameters must come from the derived-type-spec
auto field = builder.create<fir::FieldIndexOp>(
loc, fieldTy, name, scalarType,
/*typeParams=*/mlir::ValueRange{} /*TODO*/);
initialValue = builder.create<fir::InsertValueOp>(
loc, recTy, initialValue, componentValue,
builder.getArrayAttr(field.getAttributes()));
}
if (sequenceType) {
// For arrays, duplicate the scalar value to all elements with an
// fir.insert_range covering the whole array.
auto arrayInitialValue = builder.create<fir::UndefOp>(loc, sequenceType);
llvm::SmallVector<int64_t> rangeBounds;
for (int64_t extent : sequenceType.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent())
TODO(loc,
"default initial value of array component with length parameters");
rangeBounds.push_back(0);
rangeBounds.push_back(extent - 1);
}
return builder.create<fir::InsertOnRangeOp>(
loc, sequenceType, arrayInitialValue, initialValue,
builder.getIndexVectorAttr(rangeBounds));
}
return initialValue;
}
/// Does this global already have an initializer ?
static bool globalIsInitialized(fir::GlobalOp global) {
return !global.getRegion().empty() || global.getInitVal();
}
/// Call \p genInit to generate code inside \p global initializer region.
void Fortran::lower::createGlobalInitialization(
fir::FirOpBuilder &builder, fir::GlobalOp global,
std::function<void(fir::FirOpBuilder &)> genInit) {
mlir::Region ®ion = global.getRegion();
region.push_back(new mlir::Block);
mlir::Block &block = region.back();
auto insertPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(&block);
genInit(builder);
builder.restoreInsertionPoint(insertPt);
}
/// Create the global op and its init if it has one
static fir::GlobalOp defineGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
llvm::StringRef globalName,
mlir::StringAttr linkage) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const Fortran::semantics::Symbol &sym = var.getSymbol();
mlir::Location loc = genLocation(converter, sym);
bool isConst = isConstant(sym);
fir::GlobalOp global = builder.getNamedGlobal(globalName);
mlir::Type symTy = converter.genType(var);
if (global && globalIsInitialized(global))
return global;
if (Fortran::semantics::IsProcedurePointer(sym))
TODO(loc, "procedure pointer globals");
// If this is an array, check to see if we can use a dense attribute
// with a tensor mlir type. This optimization currently only supports
// Fortran arrays of integer, real, or logical. The tensor type does
// not support nested structures which are needed for complex numbers.
if (symTy.isa<fir::SequenceType>() &&
!Fortran::semantics::IsAllocatableOrPointer(sym)) {
mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy();
if (eleTy.isa<mlir::IntegerType, mlir::FloatType, fir::LogicalType>()) {
const auto *details =
sym.detailsIf<Fortran::semantics::ObjectEntityDetails>();
if (details->init()) {
global = Fortran::lower::tryCreatingDenseGlobal(
builder, loc, symTy, globalName, linkage, isConst,
details->init().value());
if (global) {
global.setVisibility(mlir::SymbolTable::Visibility::Public);
return global;
}
}
}
}
if (!global)
global = builder.createGlobal(loc, symTy, globalName, linkage,
mlir::Attribute{}, isConst, var.isTarget());
if (Fortran::semantics::IsAllocatableOrPointer(sym)) {
const auto *details =
sym.detailsIf<Fortran::semantics::ObjectEntityDetails>();
if (details && details->init()) {
auto expr = *details->init();
Fortran::lower::createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &b) {
mlir::Value box = Fortran::lower::genInitialDataTarget(
converter, loc, symTy, expr);
b.create<fir::HasValueOp>(loc, box);
});
} else {
// Create unallocated/disassociated descriptor if no explicit init
Fortran::lower::createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &b) {
mlir::Value box =
fir::factory::createUnallocatedBox(b, loc, symTy, std::nullopt);
b.create<fir::HasValueOp>(loc, box);
});
}
} else if (const auto *details =
sym.detailsIf<Fortran::semantics::ObjectEntityDetails>()) {
if (details->init()) {
Fortran::lower::createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
Fortran::lower::StatementContext stmtCtx(
/*cleanupProhibited=*/true);
fir::ExtendedValue initVal = genInitializerExprValue(
converter, loc, details->init().value(), stmtCtx);
mlir::Value castTo =
builder.createConvert(loc, symTy, fir::getBase(initVal));
builder.create<fir::HasValueOp>(loc, castTo);
});
} else if (hasDefaultInitialization(sym)) {
Fortran::lower::createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
Fortran::lower::StatementContext stmtCtx(
/*cleanupProhibited=*/true);
mlir::Value initVal =
genDefaultInitializerValue(converter, loc, sym, symTy, stmtCtx);
mlir::Value castTo = builder.createConvert(loc, symTy, initVal);
builder.create<fir::HasValueOp>(loc, castTo);
});
}
} else if (sym.has<Fortran::semantics::CommonBlockDetails>()) {
mlir::emitError(loc, "COMMON symbol processed elsewhere");
} else {
TODO(loc, "global"); // Procedure pointer or something else
}
// Creates zero or undefined initializer for globals without initializers
// Zero initializer is used for "simple types" (integer, real and logical),
// undefined is used for types aside from those types.
if (!globalIsInitialized(global)) {
// TODO: Is it really required to add the undef init if the Public
// visibility is set ? We need to make sure the global is not optimized out
// by LLVM if unused in the current compilation unit, but at least for
// BIND(C) variables, an initial value may be given in another compilation
// unit (on the C side), and setting an undef init here creates linkage
// conflicts.
if (sym.attrs().test(Fortran::semantics::Attr::BIND_C))
TODO(loc, "BIND(C) module variable linkage");
Fortran::lower::createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
mlir::Value initValue;
if (symTy.isa<mlir::IntegerType, mlir::FloatType, fir::LogicalType>())
initValue = builder.create<fir::ZeroOp>(loc, symTy);
else
initValue = builder.create<fir::UndefOp>(loc, symTy);
builder.create<fir::HasValueOp>(loc, initValue);
});
}
// Set public visibility to prevent global definition to be optimized out
// even if they have no initializer and are unused in this compilation unit.
global.setVisibility(mlir::SymbolTable::Visibility::Public);
return global;
}
/// Return linkage attribute for \p var.
static mlir::StringAttr
getLinkageAttribute(fir::FirOpBuilder &builder,
const Fortran::lower::pft::Variable &var) {
// Runtime type info for a same derived type is identical in each compilation
// unit. It desired to avoid having to link against module that only define a
// type. Therefore the runtime type info is generated everywhere it is needed
// with `linkonce_odr` LLVM linkage.
if (var.hasSymbol() && isRuntimeTypeInfoData(var.getSymbol()))
return builder.createLinkOnceODRLinkage();
if (var.isModuleOrSubmoduleVariable())
return {}; // external linkage
// Otherwise, the variable is owned by a procedure and must not be visible in
// other compilation units.
return builder.createInternalLinkage();
}
/// Instantiate a global variable. If it hasn't already been processed, add
/// the global to the ModuleOp as a new uniqued symbol and initialize it with
/// the correct value. It will be referenced on demand using `fir.addr_of`.
static void instantiateGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
const Fortran::semantics::Symbol &sym = var.getSymbol();
assert(!var.isAlias() && "must be handled in instantiateAlias");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
std::string globalName = converter.mangleName(sym);
mlir::Location loc = genLocation(converter, sym);
fir::GlobalOp global = builder.getNamedGlobal(globalName);
mlir::StringAttr linkage = getLinkageAttribute(builder, var);
if (var.isModuleOrSubmoduleVariable()) {
// A module global was or will be defined when lowering the module. Emit
// only a declaration if the global does not exist at that point.
global = declareGlobal(converter, var, globalName, linkage);
} else {
global = defineGlobal(converter, var, globalName, linkage);
}
auto addrOf = builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
Fortran::lower::StatementContext stmtCtx;
mapSymbolAttributes(converter, var, symMap, stmtCtx, addrOf);
}
//===----------------------------------------------------------------===//
// Local variables instantiation (not for alias)
//===----------------------------------------------------------------===//
/// Create a stack slot for a local variable. Precondition: the insertion
/// point of the builder must be in the entry block, which is currently being
/// constructed.
static mlir::Value createNewLocal(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::pft::Variable &var,
mlir::Value preAlloc,
llvm::ArrayRef<mlir::Value> shape = {},
llvm::ArrayRef<mlir::Value> lenParams = {}) {
if (preAlloc)
return preAlloc;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
std::string nm = converter.mangleName(var.getSymbol());
mlir::Type ty = converter.genType(var);
const Fortran::semantics::Symbol &ultimateSymbol =
var.getSymbol().GetUltimate();
llvm::StringRef symNm = toStringRef(ultimateSymbol.name());
bool isTarg = var.isTarget();
// Let the builder do all the heavy lifting.
return builder.allocateLocal(loc, ty, nm, symNm, shape, lenParams, isTarg);
}
/// Must \p var be default initialized at runtime when entering its scope.
static bool
mustBeDefaultInitializedAtRuntime(const Fortran::lower::pft::Variable &var) {
if (!var.hasSymbol())
return false;
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (var.isGlobal())
// Global variables are statically initialized.
return false;
if (Fortran::semantics::IsDummy(sym) && !Fortran::semantics::IsIntentOut(sym))
return false;
// Polymorphic intent(out) dummy might need default initialization
// at runtime.
if (Fortran::semantics::IsPolymorphic(sym) &&
Fortran::semantics::IsDummy(sym) &&
Fortran::semantics::IsIntentOut(sym) &&
!Fortran::semantics::IsAllocatable(sym) &&
!Fortran::semantics::IsPointer(sym))
return true;
// Local variables (including function results), and intent(out) dummies must
// be default initialized at runtime if their type has default initialization.
return hasDefaultInitialization(sym);
}
/// Call default initialization runtime routine to initialize \p var.
static void
defaultInitializeAtRuntime(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
const Fortran::semantics::Symbol &sym = var.getSymbol();
fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap);
if (Fortran::semantics::IsOptional(sym)) {
// 15.5.2.12 point 3, absent optional dummies are not initialized.
// Creating descriptor/passing null descriptor to the runtime would
// create runtime crashes.
auto isPresent = builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
fir::getBase(exv));
builder.genIfThen(loc, isPresent)
.genThen([&]() {
auto box = builder.createBox(loc, exv);
fir::runtime::genDerivedTypeInitialize(builder, loc, box);
})
.end();
} else {
mlir::Value box = builder.createBox(loc, exv);
fir::runtime::genDerivedTypeInitialize(builder, loc, box);
}
}
/// Check whether a variable needs to be finalized according to clause 7.5.6.3
/// point 3.
/// Must be nonpointer, nonallocatable object that is not a dummy argument or
/// function result.
static bool needEndFinalization(const Fortran::lower::pft::Variable &var) {
if (!var.hasSymbol())
return false;
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (!Fortran::semantics::IsPointer(sym) &&
!Fortran::semantics::IsAllocatable(sym) &&
!Fortran::semantics::IsDummy(sym) &&
!Fortran::semantics::IsFunctionResult(sym) &&
!Fortran::semantics::IsSaved(sym))
return hasFinalization(sym);
return false;
}
/// Check whether a variable needs the be finalized according to clause 7.5.6.3
/// point 7.
/// Must be nonpointer, nonallocatable, INTENT (OUT) dummy argument.
static bool
needDummyIntentoutFinalization(const Fortran::lower::pft::Variable &var) {
if (!var.hasSymbol())
return false;
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (!Fortran::semantics::IsDummy(sym) ||
!Fortran::semantics::IsIntentOut(sym) ||
Fortran::semantics::IsAllocatable(sym) ||
Fortran::semantics::IsPointer(sym))
return false;
// Polymorphic and unlimited polymorphic intent(out) dummy argument might need
// finalization at runtime.
if (Fortran::semantics::IsPolymorphic(sym) ||
Fortran::semantics::IsUnlimitedPolymorphic(sym))
return true;
// Intent(out) dummies must be finalized at runtime if their type has a
// finalization.
return hasFinalization(sym);
}
/// Call default initialization runtime routine to initialize \p var.
static void finalizeAtRuntime(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
const Fortran::semantics::Symbol &sym = var.getSymbol();
fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap);
if (Fortran::semantics::IsOptional(sym)) {
// Only finalize if present.
auto isPresent = builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
fir::getBase(exv));
builder.genIfThen(loc, isPresent)
.genThen([&]() {
auto box = builder.createBox(loc, exv);
fir::runtime::genDerivedTypeDestroy(builder, loc, box);
})
.end();
} else {
mlir::Value box = builder.createBox(loc, exv);
fir::runtime::genDerivedTypeDestroy(builder, loc, box);
}
}
// Fortran 2018 - 9.7.3.2 point 6
// When a procedure is invoked, any allocated allocatable object that is an
// actual argument corresponding to an INTENT(OUT) allocatable dummy argument
// is deallocated; any allocated allocatable object that is a subobject of an
// actual argument corresponding to an INTENT(OUT) dummy argument is
// deallocated.
static void deallocateIntentOut(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
if (!var.hasSymbol())
return;
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (Fortran::semantics::IsDummy(sym) &&
Fortran::semantics::IsIntentOut(sym) &&
Fortran::semantics::IsAllocatable(sym)) {
fir::ExtendedValue extVal = converter.getSymbolExtendedValue(sym, &symMap);
if (auto mutBox = extVal.getBoxOf<fir::MutableBoxValue>()) {
// The dummy argument is not passed in the ENTRY so it should not be
// deallocated.
if (mlir::Operation *op = mutBox->getAddr().getDefiningOp()) {
if (auto declOp = mlir::dyn_cast<hlfir::DeclareOp>(op))
op = declOp.getMemref().getDefiningOp();
if (op && mlir::isa<fir::AllocaOp>(op))
return;
}
mlir::Location loc = converter.getCurrentLocation();
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto genDeallocateWithTypeDesc = [&]() {
if (mutBox->isDerived() || mutBox->isPolymorphic() ||
mutBox->isUnlimitedPolymorphic()) {
mlir::Value isAlloc = fir::factory::genIsAllocatedOrAssociatedTest(
builder, loc, *mutBox);
builder.genIfThen(loc, isAlloc)
.genThen([&]() {
if (mutBox->isPolymorphic()) {
mlir::Value declaredTypeDesc;
assert(sym.GetType());
if (const Fortran::semantics::DerivedTypeSpec
*derivedTypeSpec = sym.GetType()->AsDerived()) {
declaredTypeDesc = Fortran::lower::getTypeDescAddr(
converter, loc, *derivedTypeSpec);
}
genDeallocateBox(converter, *mutBox, loc, declaredTypeDesc);
} else {
genDeallocateBox(converter, *mutBox, loc);
}
})
.end();
} else {
genDeallocateBox(converter, *mutBox, loc);
}
};
if (Fortran::semantics::IsOptional(sym)) {
auto isPresent = builder.create<fir::IsPresentOp>(
loc, builder.getI1Type(), fir::getBase(extVal));
builder.genIfThen(loc, isPresent)
.genThen([&]() { genDeallocateWithTypeDesc(); })
.end();
} else {
genDeallocateWithTypeDesc();
}
}
}
}
/// Instantiate a local variable. Precondition: Each variable will be visited
/// such that if its properties depend on other variables, the variables upon
/// which its properties depend will already have been visited.
static void instantiateLocal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
assert(!var.isAlias());
Fortran::lower::StatementContext stmtCtx;
mapSymbolAttributes(converter, var, symMap, stmtCtx);
deallocateIntentOut(converter, var, symMap);
if (needDummyIntentoutFinalization(var))
finalizeAtRuntime(converter, var, symMap);
if (mustBeDefaultInitializedAtRuntime(var))
defaultInitializeAtRuntime(converter, var, symMap);
if (needEndFinalization(var)) {
auto *builder = &converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
fir::ExtendedValue exv =
converter.getSymbolExtendedValue(var.getSymbol(), &symMap);
converter.getFctCtx().attachCleanup([builder, loc, exv]() {
mlir::Value box = builder->createBox(loc, exv);
fir::runtime::genDerivedTypeDestroy(*builder, loc, box);
});
}
}
//===----------------------------------------------------------------===//
// Aliased (EQUIVALENCE) variables instantiation
//===----------------------------------------------------------------===//
/// Insert \p aggregateStore instance into an AggregateStoreMap.
static void insertAggregateStore(Fortran::lower::AggregateStoreMap &storeMap,
const Fortran::lower::pft::Variable &var,
mlir::Value aggregateStore) {
std::size_t off = var.getAggregateStore().getOffset();
Fortran::lower::AggregateStoreKey key = {var.getOwningScope(), off};
storeMap[key] = aggregateStore;
}
/// Retrieve the aggregate store instance of \p alias from an
/// AggregateStoreMap.
static mlir::Value
getAggregateStore(Fortran::lower::AggregateStoreMap &storeMap,
const Fortran::lower::pft::Variable &alias) {
Fortran::lower::AggregateStoreKey key = {alias.getOwningScope(),
alias.getAliasOffset()};
auto iter = storeMap.find(key);
assert(iter != storeMap.end());
return iter->second;
}
/// Build the name for the storage of a global equivalence.
static std::string mangleGlobalAggregateStore(
Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable::AggregateStore &st) {
return converter.mangleName(st.getNamingSymbol());
}
/// Build the type for the storage of an equivalence.
static mlir::Type
getAggregateType(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable::AggregateStore &st) {
if (const Fortran::semantics::Symbol *initSym = st.getInitialValueSymbol())
return converter.genType(*initSym);
mlir::IntegerType byteTy = converter.getFirOpBuilder().getIntegerType(8);
return fir::SequenceType::get(std::get<1>(st.interval), byteTy);
}
/// Define a GlobalOp for the storage of a global equivalence described
/// by \p aggregate. The global is named \p aggName and is created with
/// the provided \p linkage.
/// If any of the equivalence members are initialized, an initializer is
/// created for the equivalence.
/// This is to be used when lowering the scope that owns the equivalence
/// (as opposed to simply using it through host or use association).
/// This is not to be used for equivalence of common block members (they
/// already have the common block GlobalOp for them, see defineCommonBlock).
static fir::GlobalOp defineGlobalAggregateStore(
Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable::AggregateStore &aggregate,
llvm::StringRef aggName, mlir::StringAttr linkage) {
assert(aggregate.isGlobal() && "not a global interval");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
fir::GlobalOp global = builder.getNamedGlobal(aggName);
if (global && globalIsInitialized(global))
return global;
mlir::Location loc = converter.getCurrentLocation();
mlir::Type aggTy = getAggregateType(converter, aggregate);
if (!global)
global = builder.createGlobal(loc, aggTy, aggName, linkage);
if (const Fortran::semantics::Symbol *initSym =
aggregate.getInitialValueSymbol())
if (const auto *objectDetails =
initSym->detailsIf<Fortran::semantics::ObjectEntityDetails>())
if (objectDetails->init()) {
Fortran::lower::createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value initVal = fir::getBase(genInitializerExprValue(
converter, loc, objectDetails->init().value(), stmtCtx));
builder.create<fir::HasValueOp>(loc, initVal);
});
return global;
}
// Equivalence has no Fortran initial value. Create an undefined FIR initial
// value to ensure this is consider an object definition in the IR regardless
// of the linkage.
Fortran::lower::createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value initVal = builder.create<fir::UndefOp>(loc, aggTy);
builder.create<fir::HasValueOp>(loc, initVal);
});
return global;
}
/// Declare a GlobalOp for the storage of a global equivalence described
/// by \p aggregate. The global is named \p aggName and is created with
/// the provided \p linkage.
/// No initializer is built for the created GlobalOp.
/// This is to be used when lowering the scope that uses members of an
/// equivalence it through host or use association.
/// This is not to be used for equivalence of common block members (they
/// already have the common block GlobalOp for them, see defineCommonBlock).
static fir::GlobalOp declareGlobalAggregateStore(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::lower::pft::Variable::AggregateStore &aggregate,
llvm::StringRef aggName, mlir::StringAttr linkage) {
assert(aggregate.isGlobal() && "not a global interval");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
if (fir::GlobalOp global = builder.getNamedGlobal(aggName))
return global;
mlir::Type aggTy = getAggregateType(converter, aggregate);
return builder.createGlobal(loc, aggTy, aggName, linkage);
}
/// This is an aggregate store for a set of EQUIVALENCED variables. Create the
/// storage on the stack or global memory and add it to the map.
static void
instantiateAggregateStore(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::AggregateStoreMap &storeMap) {
assert(var.isAggregateStore() && "not an interval");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IntegerType i8Ty = builder.getIntegerType(8);
mlir::Location loc = converter.getCurrentLocation();
std::string aggName =
mangleGlobalAggregateStore(converter, var.getAggregateStore());
if (var.isGlobal()) {
fir::GlobalOp global;
auto &aggregate = var.getAggregateStore();
mlir::StringAttr linkage = getLinkageAttribute(builder, var);
if (var.isModuleOrSubmoduleVariable()) {
// A module global was or will be defined when lowering the module. Emit
// only a declaration if the global does not exist at that point.
global = declareGlobalAggregateStore(converter, loc, aggregate, aggName,
linkage);
} else {
global =
defineGlobalAggregateStore(converter, aggregate, aggName, linkage);
}
auto addr = builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
auto size = std::get<1>(var.getInterval());
fir::SequenceType::Shape shape(1, size);
auto seqTy = fir::SequenceType::get(shape, i8Ty);
mlir::Type refTy = builder.getRefType(seqTy);
mlir::Value aggregateStore = builder.createConvert(loc, refTy, addr);
insertAggregateStore(storeMap, var, aggregateStore);
return;
}
// This is a local aggregate, allocate an anonymous block of memory.
auto size = std::get<1>(var.getInterval());
fir::SequenceType::Shape shape(1, size);
auto seqTy = fir::SequenceType::get(shape, i8Ty);
mlir::Value local =
builder.allocateLocal(loc, seqTy, aggName, "", std::nullopt, std::nullopt,
/*target=*/false);
insertAggregateStore(storeMap, var, local);
}
/// Cast an alias address (variable part of an equivalence) to fir.ptr so that
/// the optimizer is conservative and avoids doing copy elision in assignment
/// involving equivalenced variables.
/// TODO: Represent the equivalence aliasing constraint in another way to avoid
/// pessimizing array assignments involving equivalenced variables.
static mlir::Value castAliasToPointer(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type aliasType,
mlir::Value aliasAddr) {
return builder.createConvert(loc, fir::PointerType::get(aliasType),
aliasAddr);
}
/// Instantiate a member of an equivalence. Compute its address in its
/// aggregate storage and lower its attributes.
static void instantiateAlias(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap,
Fortran::lower::AggregateStoreMap &storeMap) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
assert(var.isAlias());
const Fortran::semantics::Symbol &sym = var.getSymbol();
const mlir::Location loc = genLocation(converter, sym);
mlir::IndexType idxTy = builder.getIndexType();
mlir::IntegerType i8Ty = builder.getIntegerType(8);
mlir::Type i8Ptr = builder.getRefType(i8Ty);
mlir::Type symType = converter.genType(sym);
std::size_t off = sym.GetUltimate().offset() - var.getAliasOffset();
mlir::Value storeAddr = getAggregateStore(storeMap, var);
mlir::Value offset = builder.createIntegerConstant(loc, idxTy, off);
mlir::Value bytePtr = builder.create<fir::CoordinateOp>(
loc, i8Ptr, storeAddr, mlir::ValueRange{offset});
mlir::Value typedPtr = castAliasToPointer(builder, loc, symType, bytePtr);
Fortran::lower::StatementContext stmtCtx;
mapSymbolAttributes(converter, var, symMap, stmtCtx, typedPtr);
// Default initialization is possible for equivalence members: see
// F2018 19.5.3.4. Note that if several equivalenced entities have
// default initialization, they must have the same type, and the standard
// allows the storage to be default initialized several times (this has
// no consequences other than wasting some execution time). For now,
// do not try optimizing this to single default initializations of
// the equivalenced storages. Keep lowering simple.
if (mustBeDefaultInitializedAtRuntime(var))
defaultInitializeAtRuntime(converter, var, symMap);
}
//===--------------------------------------------------------------===//
// COMMON blocks instantiation
//===--------------------------------------------------------------===//
/// Does any member of the common block has an initializer ?
static bool
commonBlockHasInit(const Fortran::semantics::MutableSymbolVector &cmnBlkMems) {
for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) {
if (const auto *memDet =
mem->detailsIf<Fortran::semantics::ObjectEntityDetails>())
if (memDet->init())
return true;
}
return false;
}
/// Build a tuple type for a common block based on the common block
/// members and the common block size.
/// This type is only needed to build common block initializers where
/// the initial value is the collection of the member initial values.
static mlir::TupleType getTypeOfCommonWithInit(
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::MutableSymbolVector &cmnBlkMems,
std::size_t commonSize) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
llvm::SmallVector<mlir::Type> members;
std::size_t counter = 0;
for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) {
if (const auto *memDet =
mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) {
if (mem->offset() > counter) {
fir::SequenceType::Shape len = {
static_cast<fir::SequenceType::Extent>(mem->offset() - counter)};
mlir::IntegerType byteTy = builder.getIntegerType(8);
auto memTy = fir::SequenceType::get(len, byteTy);
members.push_back(memTy);
counter = mem->offset();
}
if (memDet->init()) {
mlir::Type memTy = converter.genType(*mem);
members.push_back(memTy);
counter = mem->offset() + mem->size();
}
}
}
if (counter < commonSize) {
fir::SequenceType::Shape len = {
static_cast<fir::SequenceType::Extent>(commonSize - counter)};
mlir::IntegerType byteTy = builder.getIntegerType(8);
auto memTy = fir::SequenceType::get(len, byteTy);
members.push_back(memTy);
}
return mlir::TupleType::get(builder.getContext(), members);
}
/// Common block members may have aliases. They are not in the common block
/// member list from the symbol. We need to know about these aliases if they
/// have initializer to generate the common initializer.
/// This function takes care of adding aliases with initializer to the member
/// list.
static Fortran::semantics::MutableSymbolVector
getCommonMembersWithInitAliases(const Fortran::semantics::Symbol &common) {
const auto &commonDetails =
common.get<Fortran::semantics::CommonBlockDetails>();
auto members = commonDetails.objects();
// The number and size of equivalence and common is expected to be small, so
// no effort is given to optimize this loop of complexity equivalenced
// common members * common members
for (const Fortran::semantics::EquivalenceSet &set :
common.owner().equivalenceSets())
for (const Fortran::semantics::EquivalenceObject &obj : set) {
if (!obj.symbol.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) {
if (const auto &details =
obj.symbol
.detailsIf<Fortran::semantics::ObjectEntityDetails>()) {
const Fortran::semantics::Symbol *com =
FindCommonBlockContaining(obj.symbol);
if (!details->init() || com != &common)
continue;
// This is an alias with an init that belongs to the list
if (!llvm::is_contained(members, obj.symbol))
members.emplace_back(obj.symbol);
}
}
}
return members;
}
/// Return the fir::GlobalOp that was created of COMMON block \p common.
/// It is an error if the fir::GlobalOp was not created before this is
/// called (it cannot be created on the flight because it is not known here
/// what mlir type the GlobalOp should have to satisfy all the
/// appearances in the program).
static fir::GlobalOp
getCommonBlockGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &common) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
std::string commonName = converter.mangleName(common);
fir::GlobalOp global = builder.getNamedGlobal(commonName);
// Common blocks are lowered before any subprograms to deal with common
// whose size may not be the same in every subprograms.
if (!global)
fir::emitFatalError(converter.genLocation(common.name()),
"COMMON block was not lowered before its usage");
return global;
}
/// Create the fir::GlobalOp for COMMON block \p common. If \p common has an
/// initial value, it is not created yet. Instead, the common block list
/// members is returned to later create the initial value in
/// finalizeCommonBlockDefinition.
static std::optional<std::tuple<
fir::GlobalOp, Fortran::semantics::MutableSymbolVector, mlir::Location>>
declareCommonBlock(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &common,
std::size_t commonSize) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
std::string commonName = converter.mangleName(common);
fir::GlobalOp global = builder.getNamedGlobal(commonName);
if (global)
return std::nullopt;
Fortran::semantics::MutableSymbolVector cmnBlkMems =
getCommonMembersWithInitAliases(common);
mlir::Location loc = converter.genLocation(common.name());
mlir::StringAttr linkage = builder.createCommonLinkage();
if (!commonBlockHasInit(cmnBlkMems)) {
// A COMMON block sans initializers is initialized to zero.
// mlir::Vector types must have a strictly positive size, so at least
// temporarily, force a zero size COMMON block to have one byte.
const auto sz =
static_cast<fir::SequenceType::Extent>(commonSize > 0 ? commonSize : 1);
fir::SequenceType::Shape shape = {sz};
mlir::IntegerType i8Ty = builder.getIntegerType(8);
auto commonTy = fir::SequenceType::get(shape, i8Ty);
auto vecTy = mlir::VectorType::get(sz, i8Ty);
mlir::Attribute zero = builder.getIntegerAttr(i8Ty, 0);
auto init = mlir::DenseElementsAttr::get(vecTy, llvm::ArrayRef(zero));
builder.createGlobal(loc, commonTy, commonName, linkage, init);
// No need to add any initial value later.
return std::nullopt;
}
// COMMON block with initializer (note that initialized blank common are
// accepted as an extension by semantics). Sort members by offset before
// generating the type and initializer.
std::sort(cmnBlkMems.begin(), cmnBlkMems.end(),
[](auto &s1, auto &s2) { return s1->offset() < s2->offset(); });
mlir::TupleType commonTy =
getTypeOfCommonWithInit(converter, cmnBlkMems, commonSize);
// Create the global object, the initial value will be added later.
global = builder.createGlobal(loc, commonTy, commonName);
return std::make_tuple(global, std::move(cmnBlkMems), loc);
}
/// Add initial value to a COMMON block fir::GlobalOp \p global given the list
/// \p cmnBlkMems of the common block member symbols that contains symbols with
/// an initial value.
static void finalizeCommonBlockDefinition(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
fir::GlobalOp global,
const Fortran::semantics::MutableSymbolVector &cmnBlkMems) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::TupleType commonTy = global.getType().cast<mlir::TupleType>();
auto initFunc = [&](fir::FirOpBuilder &builder) {
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value cb = builder.create<fir::UndefOp>(loc, commonTy);
unsigned tupIdx = 0;
std::size_t offset = 0;
LLVM_DEBUG(llvm::dbgs() << "block {\n");
for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) {
if (const auto *memDet =
mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) {
if (mem->offset() > offset) {
++tupIdx;
offset = mem->offset();
}
if (memDet->init()) {
LLVM_DEBUG(llvm::dbgs()
<< "offset: " << mem->offset() << " is " << *mem << '\n');
Fortran::lower::StatementContext stmtCtx;
auto initExpr = memDet->init().value();
fir::ExtendedValue initVal =
Fortran::semantics::IsPointer(*mem)
? Fortran::lower::genInitialDataTarget(
converter, loc, converter.genType(*mem), initExpr)
: genInitializerExprValue(converter, loc, initExpr, stmtCtx);
mlir::IntegerAttr offVal = builder.getIntegerAttr(idxTy, tupIdx);
mlir::Value castVal = builder.createConvert(
loc, commonTy.getType(tupIdx), fir::getBase(initVal));
cb = builder.create<fir::InsertValueOp>(loc, commonTy, cb, castVal,
builder.getArrayAttr(offVal));
++tupIdx;
offset = mem->offset() + mem->size();
}
}
}
LLVM_DEBUG(llvm::dbgs() << "}\n");
builder.create<fir::HasValueOp>(loc, cb);
};
Fortran::lower::createGlobalInitialization(builder, global, initFunc);
}
void Fortran::lower::defineCommonBlocks(
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::CommonBlockList &commonBlocks) {
// Common blocks may depend on another common block address (if they contain
// pointers with initial targets). To cover this case, create all common block
// fir::Global before creating the initial values (if any).
std::vector<std::tuple<fir::GlobalOp, Fortran::semantics::MutableSymbolVector,
mlir::Location>>
delayedInitializations;
for (const auto &[common, size] : commonBlocks)
if (auto delayedInit = declareCommonBlock(converter, common, size))
delayedInitializations.emplace_back(std::move(*delayedInit));
for (auto &[global, cmnBlkMems, loc] : delayedInitializations)
finalizeCommonBlockDefinition(loc, converter, global, cmnBlkMems);
}
/// The COMMON block is a global structure. `var` will be at some offset
/// within the COMMON block. Adds the address of `var` (COMMON + offset) to
/// the symbol map.
static void instantiateCommon(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &common,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const Fortran::semantics::Symbol &varSym = var.getSymbol();
mlir::Location loc = converter.genLocation(varSym.name());
mlir::Value commonAddr;
if (Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(common))
commonAddr = symBox.getAddr();
if (!commonAddr) {
// introduce a local AddrOf and add it to the map
fir::GlobalOp global = getCommonBlockGlobal(converter, common);
commonAddr = builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
symMap.addSymbol(common, commonAddr);
}
std::size_t byteOffset = varSym.GetUltimate().offset();
mlir::IntegerType i8Ty = builder.getIntegerType(8);
mlir::Type i8Ptr = builder.getRefType(i8Ty);
mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty));
mlir::Value base = builder.createConvert(loc, seqTy, commonAddr);
mlir::Value offs =
builder.createIntegerConstant(loc, builder.getIndexType(), byteOffset);
auto varAddr = builder.create<fir::CoordinateOp>(loc, i8Ptr, base,
mlir::ValueRange{offs});
mlir::Type symType = converter.genType(var.getSymbol());
mlir::Value local;
if (Fortran::semantics::FindEquivalenceSet(var.getSymbol()) != nullptr)
local = castAliasToPointer(builder, loc, symType, varAddr);
else
local = builder.createConvert(loc, builder.getRefType(symType), varAddr);
Fortran::lower::StatementContext stmtCtx;
mapSymbolAttributes(converter, var, symMap, stmtCtx, local);
}
//===--------------------------------------------------------------===//
// Lower Variables specification expressions and attributes
//===--------------------------------------------------------------===//
/// Helper to decide if a dummy argument must be tracked in an BoxValue.
static bool lowerToBoxValue(const Fortran::semantics::Symbol &sym,
mlir::Value dummyArg) {
// Only dummy arguments coming as fir.box can be tracked in an BoxValue.
if (!dummyArg || !dummyArg.getType().isa<fir::BaseBoxType>())
return false;
// Non contiguous arrays must be tracked in an BoxValue.
if (sym.Rank() > 0 && !sym.attrs().test(Fortran::semantics::Attr::CONTIGUOUS))
return true;
// Assumed rank and optional fir.box cannot yet be read while lowering the
// specifications.
if (Fortran::evaluate::IsAssumedRank(sym) ||
Fortran::semantics::IsOptional(sym))
return true;
// Polymorphic entity should be tracked through a fir.box that has the
// dynamic type info.
if (const Fortran::semantics::DeclTypeSpec *type = sym.GetType())
if (type->IsPolymorphic())
return true;
return false;
}
/// Compute extent from lower and upper bound.
static mlir::Value computeExtent(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value lb, mlir::Value ub) {
mlir::IndexType idxTy = builder.getIndexType();
// Let the folder deal with the common `ub - <const> + 1` case.
auto diff = builder.create<mlir::arith::SubIOp>(loc, idxTy, ub, lb);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
auto rawExtent = builder.create<mlir::arith::AddIOp>(loc, idxTy, diff, one);
return fir::factory::genMaxWithZero(builder, loc, rawExtent);
}
/// Lower explicit lower bounds into \p result. Does nothing if this is not an
/// array, or if the lower bounds are deferred, or all implicit or one.
static void lowerExplicitLowerBounds(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::lower::BoxAnalyzer &box,
llvm::SmallVectorImpl<mlir::Value> &result, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
if (!box.isArray() || box.lboundIsAllOnes())
return;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
if (box.isStaticArray()) {
for (int64_t lb : box.staticLBound())
result.emplace_back(builder.createIntegerConstant(loc, idxTy, lb));
return;
}
for (const Fortran::semantics::ShapeSpec *spec : box.dynamicBound()) {
if (auto low = spec->lbound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*low};
mlir::Value lb = builder.createConvert(
loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx));
result.emplace_back(lb);
}
}
assert(result.empty() || result.size() == box.dynamicBound().size());
}
/// Lower explicit extents into \p result if this is an explicit-shape or
/// assumed-size array. Does nothing if this is not an explicit-shape or
/// assumed-size array.
static void
lowerExplicitExtents(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const Fortran::lower::BoxAnalyzer &box,
llvm::SmallVectorImpl<mlir::Value> &lowerBounds,
llvm::SmallVectorImpl<mlir::Value> &result,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
if (!box.isArray())
return;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
if (box.isStaticArray()) {
for (int64_t extent : box.staticShape())
result.emplace_back(builder.createIntegerConstant(loc, idxTy, extent));
return;
}
for (const auto &spec : llvm::enumerate(box.dynamicBound())) {
if (auto up = spec.value()->ubound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*up};
mlir::Value ub = builder.createConvert(
loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx));
if (lowerBounds.empty())
result.emplace_back(fir::factory::genMaxWithZero(builder, loc, ub));
else
result.emplace_back(
computeExtent(builder, loc, lowerBounds[spec.index()], ub));
} else if (spec.value()->ubound().isStar()) {
// Assumed extent is undefined. Must be provided by user's code.
result.emplace_back(builder.create<fir::UndefOp>(loc, idxTy));
}
}
assert(result.empty() || result.size() == box.dynamicBound().size());
}
/// Lower explicit character length if any. Return empty mlir::Value if no
/// explicit length.
static mlir::Value
lowerExplicitCharLen(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const Fortran::lower::BoxAnalyzer &box,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
if (!box.isChar())
return mlir::Value{};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type lenTy = builder.getCharacterLengthType();
if (std::optional<int64_t> len = box.getCharLenConst())
return builder.createIntegerConstant(loc, lenTy, *len);
if (std::optional<Fortran::lower::SomeExpr> lenExpr = box.getCharLenExpr())
// If the length expression is negative, the length is zero. See F2018
// 7.4.4.2 point 5.
return fir::factory::genMaxWithZero(
builder, loc,
genScalarValue(converter, loc, *lenExpr, symMap, stmtCtx));
return mlir::Value{};
}
/// Treat negative values as undefined. Assumed size arrays will return -1 from
/// the front end for example. Using negative values can produce hard to find
/// bugs much further along in the compilation.
static mlir::Value genExtentValue(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type idxTy,
long frontEndExtent) {
if (frontEndExtent >= 0)
return builder.createIntegerConstant(loc, idxTy, frontEndExtent);
return builder.create<fir::UndefOp>(loc, idxTy);
}
/// If a symbol is an array, it may have been declared with unknown extent
/// parameters (e.g., `*`), but if it has an initial value then the actual size
/// may be available from the initial array value's type.
inline static llvm::SmallVector<std::int64_t>
recoverShapeVector(llvm::ArrayRef<std::int64_t> shapeVec, mlir::Value initVal) {
llvm::SmallVector<std::int64_t> result;
if (initVal) {
if (auto seqTy = fir::unwrapUntilSeqType(initVal.getType())) {
for (auto [fst, snd] : llvm::zip(shapeVec, seqTy.getShape()))
result.push_back(fst == fir::SequenceType::getUnknownExtent() ? snd
: fst);
return result;
}
}
result.assign(shapeVec.begin(), shapeVec.end());
return result;
}
fir::FortranVariableFlagsAttr Fortran::lower::translateSymbolAttributes(
mlir::MLIRContext *mlirContext, const Fortran::semantics::Symbol &sym) {
fir::FortranVariableFlagsEnum flags = fir::FortranVariableFlagsEnum::None;
const auto &attrs = sym.attrs();
if (attrs.test(Fortran::semantics::Attr::ALLOCATABLE))
flags = flags | fir::FortranVariableFlagsEnum::allocatable;
if (attrs.test(Fortran::semantics::Attr::ASYNCHRONOUS))
flags = flags | fir::FortranVariableFlagsEnum::asynchronous;
if (attrs.test(Fortran::semantics::Attr::BIND_C))
flags = flags | fir::FortranVariableFlagsEnum::bind_c;
if (attrs.test(Fortran::semantics::Attr::CONTIGUOUS))
flags = flags | fir::FortranVariableFlagsEnum::contiguous;
if (attrs.test(Fortran::semantics::Attr::INTENT_IN))
flags = flags | fir::FortranVariableFlagsEnum::intent_in;
if (attrs.test(Fortran::semantics::Attr::INTENT_INOUT))
flags = flags | fir::FortranVariableFlagsEnum::intent_inout;
if (attrs.test(Fortran::semantics::Attr::INTENT_OUT))
flags = flags | fir::FortranVariableFlagsEnum::intent_out;
if (attrs.test(Fortran::semantics::Attr::OPTIONAL))
flags = flags | fir::FortranVariableFlagsEnum::optional;
if (attrs.test(Fortran::semantics::Attr::PARAMETER))
flags = flags | fir::FortranVariableFlagsEnum::parameter;
if (attrs.test(Fortran::semantics::Attr::POINTER))
flags = flags | fir::FortranVariableFlagsEnum::pointer;
if (attrs.test(Fortran::semantics::Attr::TARGET))
flags = flags | fir::FortranVariableFlagsEnum::target;
if (attrs.test(Fortran::semantics::Attr::VALUE))
flags = flags | fir::FortranVariableFlagsEnum::value;
if (attrs.test(Fortran::semantics::Attr::VOLATILE))
flags = flags | fir::FortranVariableFlagsEnum::fortran_volatile;
if (flags == fir::FortranVariableFlagsEnum::None)
return {};
return fir::FortranVariableFlagsAttr::get(mlirContext, flags);
}
/// Map a symbol to its FIR address and evaluated specification expressions.
/// Not for symbols lowered to fir.box.
/// Will optionally create fir.declare.
static void genDeclareSymbol(Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::semantics::Symbol &sym,
mlir::Value base, mlir::Value len = {},
llvm::ArrayRef<mlir::Value> shape = std::nullopt,
llvm::ArrayRef<mlir::Value> lbounds = std::nullopt,
bool force = false) {
// In HLFIR, procedure dummy symbols are not added with an hlfir.declare
// because they are "values", and hlfir.declare is intended for variables. It
// would add too much complexity to hlfir.declare to support this case, and
// this would bring very little (the only point being debug info, that are not
// yet emitted) since alias analysis is meaningless for those.
if (converter.getLoweringOptions().getLowerToHighLevelFIR() &&
!Fortran::semantics::IsProcedure(sym)) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const mlir::Location loc = genLocation(converter, sym);
mlir::Value shapeOrShift;
if (!shape.empty() && !lbounds.empty())
shapeOrShift = builder.genShape(loc, lbounds, shape);
else if (!shape.empty())
shapeOrShift = builder.genShape(loc, shape);
else if (!lbounds.empty())
shapeOrShift = builder.genShift(loc, lbounds);
llvm::SmallVector<mlir::Value> lenParams;
if (len)
lenParams.emplace_back(len);
auto name = converter.mangleName(sym);
fir::FortranVariableFlagsAttr attributes =
Fortran::lower::translateSymbolAttributes(builder.getContext(), sym);
auto newBase = builder.create<hlfir::DeclareOp>(
loc, base, name, shapeOrShift, lenParams, attributes);
symMap.addVariableDefinition(sym, newBase, force);
return;
}
if (len) {
if (!shape.empty()) {
if (!lbounds.empty())
symMap.addCharSymbolWithBounds(sym, base, len, shape, lbounds, force);
else
symMap.addCharSymbolWithShape(sym, base, len, shape, force);
} else {
symMap.addCharSymbol(sym, base, len, force);
}
} else {
if (!shape.empty()) {
if (!lbounds.empty())
symMap.addSymbolWithBounds(sym, base, shape, lbounds, force);
else
symMap.addSymbolWithShape(sym, base, shape, force);
} else {
symMap.addSymbol(sym, base, force);
}
}
}
/// Map a symbol to its FIR address and evaluated specification expressions
/// provided as a fir::ExtendedValue. Will optionally create fir.declare.
void Fortran::lower::genDeclareSymbol(
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, const Fortran::semantics::Symbol &sym,
const fir::ExtendedValue &exv, bool force) {
if (converter.getLoweringOptions().getLowerToHighLevelFIR() &&
!Fortran::semantics::IsProcedure(sym)) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const mlir::Location loc = genLocation(converter, sym);
fir::FortranVariableFlagsAttr attributes =
Fortran::lower::translateSymbolAttributes(builder.getContext(), sym);
auto name = converter.mangleName(sym);
hlfir::EntityWithAttributes declare =
hlfir::genDeclare(loc, builder, exv, name, attributes);
symMap.addVariableDefinition(sym, declare.getIfVariableInterface(), force);
return;
}
symMap.addSymbol(sym, exv, force);
}
/// Map an allocatable or pointer symbol to its FIR address and evaluated
/// specification expressions. Will optionally create fir.declare.
static void
genAllocatableOrPointerDeclare(Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::semantics::Symbol &sym,
fir::MutableBoxValue box, bool force = false) {
if (!converter.getLoweringOptions().getLowerToHighLevelFIR()) {
symMap.addAllocatableOrPointer(sym, box, force);
return;
}
assert(!box.isDescribedByVariables() &&
"HLFIR alloctables/pointers must be fir.ref<fir.box>");
mlir::Value base = box.getAddr();
mlir::Value explictLength;
if (box.hasNonDeferredLenParams()) {
if (!box.isCharacter())
TODO(genLocation(converter, sym),
"Pointer or Allocatable parametrized derived type");
explictLength = box.nonDeferredLenParams()[0];
}
genDeclareSymbol(converter, symMap, sym, base, explictLength,
/*shape=*/std::nullopt,
/*lbounds=*/std::nullopt, force);
}
/// Map a symbol represented with a runtime descriptor to its FIR fir.box and
/// evaluated specification expressions. Will optionally create fir.declare.
static void genBoxDeclare(Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::semantics::Symbol &sym,
mlir::Value box, llvm::ArrayRef<mlir::Value> lbounds,
llvm::ArrayRef<mlir::Value> explicitParams,
llvm::ArrayRef<mlir::Value> explicitExtents,
bool replace = false) {
if (converter.getLoweringOptions().getLowerToHighLevelFIR()) {
fir::BoxValue boxValue{box, lbounds, explicitParams, explicitExtents};
Fortran::lower::genDeclareSymbol(converter, symMap, sym,
std::move(boxValue), replace);
return;
}
symMap.addBoxSymbol(sym, box, lbounds, explicitParams, explicitExtents,
replace);
}
/// Lower specification expressions and attributes of variable \p var and
/// add it to the symbol map. For a global or an alias, the address must be
/// pre-computed and provided in \p preAlloc. A dummy argument for the current
/// entry point has already been mapped to an mlir block argument in
/// mapDummiesAndResults. Its mapping may be updated here.
void Fortran::lower::mapSymbolAttributes(
AbstractConverter &converter, const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::Value preAlloc) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const Fortran::semantics::Symbol &sym = var.getSymbol();
const mlir::Location loc = genLocation(converter, sym);
mlir::IndexType idxTy = builder.getIndexType();
const bool isDeclaredDummy = Fortran::semantics::IsDummy(sym);
// An active dummy from the current entry point.
const bool isDummy = isDeclaredDummy && symMap.lookupSymbol(sym).getAddr();
// An unused dummy from another entry point.
const bool isUnusedEntryDummy = isDeclaredDummy && !isDummy;
const bool isResult = Fortran::semantics::IsFunctionResult(sym);
const bool replace = isDummy || isResult;
fir::factory::CharacterExprHelper charHelp{builder, loc};
if (Fortran::semantics::IsProcedure(sym)) {
if (isUnusedEntryDummy) {
// Additional discussion below.
mlir::Type dummyProcType =
Fortran::lower::getDummyProcedureType(sym, converter);
mlir::Value undefOp = builder.create<fir::UndefOp>(loc, dummyProcType);
Fortran::lower::genDeclareSymbol(converter, symMap, sym, undefOp);
}
if (Fortran::semantics::IsPointer(sym))
TODO(loc, "procedure pointers");
return;
}
Fortran::lower::BoxAnalyzer ba;
ba.analyze(sym);
// First deal with pointers and allocatables, because their handling here
// is the same regardless of their rank.
if (Fortran::semantics::IsAllocatableOrPointer(sym)) {
// Get address of fir.box describing the entity.
// global
mlir::Value boxAlloc = preAlloc;
// dummy or passed result
if (!boxAlloc)
if (Fortran::lower::SymbolBox symbox = symMap.lookupSymbol(sym))
boxAlloc = symbox.getAddr();
// local
if (!boxAlloc)
boxAlloc = createNewLocal(converter, loc, var, preAlloc);
// Lower non deferred parameters.
llvm::SmallVector<mlir::Value> nonDeferredLenParams;
if (ba.isChar()) {
if (mlir::Value len =
lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx))
nonDeferredLenParams.push_back(len);
else if (Fortran::semantics::IsAssumedLengthCharacter(sym))
nonDeferredLenParams.push_back(
Fortran::lower::getAssumedCharAllocatableOrPointerLen(
builder, loc, sym, boxAlloc));
} else if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) {
if (const Fortran::semantics::DerivedTypeSpec *derived =
declTy->AsDerived())
if (Fortran::semantics::CountLenParameters(*derived) != 0)
TODO(loc,
"derived type allocatable or pointer with length parameters");
}
fir::MutableBoxValue box = Fortran::lower::createMutableBox(
converter, loc, var, boxAlloc, nonDeferredLenParams,
/*alwaysUseBox=*/
converter.getLoweringOptions().getLowerToHighLevelFIR());
genAllocatableOrPointerDeclare(converter, symMap, var.getSymbol(), box,
replace);
return;
}
if (isDummy) {
mlir::Value dummyArg = symMap.lookupSymbol(sym).getAddr();
if (lowerToBoxValue(sym, dummyArg)) {
llvm::SmallVector<mlir::Value> lbounds;
llvm::SmallVector<mlir::Value> explicitExtents;
llvm::SmallVector<mlir::Value> explicitParams;
// Lower lower bounds, explicit type parameters and explicit
// extents if any.
if (ba.isChar())
if (mlir::Value len =
lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx))
explicitParams.push_back(len);
// TODO: derived type length parameters.
lowerExplicitLowerBounds(converter, loc, ba, lbounds, symMap, stmtCtx);
lowerExplicitExtents(converter, loc, ba, lbounds, explicitExtents, symMap,
stmtCtx);
genBoxDeclare(converter, symMap, sym, dummyArg, lbounds, explicitParams,
explicitExtents, replace);
return;
}
}
// A dummy from another entry point that is not declared in the current
// entry point requires a skeleton definition. Most such "unused" dummies
// will not survive into final generated code, but some will. It is illegal
// to reference one at run time if it does. Such a dummy is mapped to a
// value in one of three ways:
//
// - Generate a fir::UndefOp value. This is lightweight, easy to clean up,
// and often valid, but it may fail for a dummy with dynamic bounds,
// or a dummy used to define another dummy. Information to distinguish
// valid cases is not generally available here, with the exception of
// dummy procedures. See the first function exit above.
//
// - Allocate an uninitialized stack slot. This is an intermediate-weight
// solution that is harder to clean up. It is often valid, but may fail
// for an object with dynamic bounds. This option is "automatically"
// used by default for cases that do not use one of the other options.
//
// - Allocate a heap box/descriptor, initialized to zero. This always
// works, but is more heavyweight and harder to clean up. It is used
// for dynamic objects via calls to genUnusedEntryPointBox.
auto genUnusedEntryPointBox = [&]() {
if (isUnusedEntryDummy) {
assert(!Fortran::semantics::IsAllocatableOrPointer(sym) &&
"handled above");
// The box is read right away because lowering code does not expect
// a non pointer/allocatable symbol to be mapped to a MutableBox.
mlir::Type ty = converter.genType(var);
bool isPolymorphic = false;
if (auto boxTy = ty.dyn_cast<fir::BaseBoxType>()) {
isPolymorphic = ty.isa<fir::ClassType>();
ty = boxTy.getEleTy();
}
Fortran::lower::genDeclareSymbol(
converter, symMap, sym,
fir::factory::genMutableBoxRead(
builder, loc,
fir::factory::createTempMutableBox(builder, loc, ty, {}, {},
isPolymorphic)));
return true;
}
return false;
};
// Helper to generate scalars for the symbol properties.
auto genValue = [&](const Fortran::lower::SomeExpr &expr) {
return genScalarValue(converter, loc, expr, symMap, stmtCtx);
};
// For symbols reaching this point, all properties are constant and can be
// read/computed already into ssa values.
// The origin must be \vec{1}.
auto populateShape = [&](auto &shapes, const auto &bounds, mlir::Value box) {
for (auto iter : llvm::enumerate(bounds)) {
auto *spec = iter.value();
assert(spec->lbound().GetExplicit() &&
"lbound must be explicit with constant value 1");
if (auto high = spec->ubound().GetExplicit()) {
Fortran::lower::SomeExpr highEx{*high};
mlir::Value ub = genValue(highEx);
ub = builder.createConvert(loc, idxTy, ub);
shapes.emplace_back(fir::factory::genMaxWithZero(builder, loc, ub));
} else if (spec->ubound().isColon()) {
assert(box && "assumed bounds require a descriptor");
mlir::Value dim =
builder.createIntegerConstant(loc, idxTy, iter.index());
auto dimInfo =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim);
shapes.emplace_back(dimInfo.getResult(1));
} else if (spec->ubound().isStar()) {
shapes.emplace_back(builder.create<fir::UndefOp>(loc, idxTy));
} else {
llvm::report_fatal_error("unknown bound category");
}
}
};
// The origin is not \vec{1}.
auto populateLBoundsExtents = [&](auto &lbounds, auto &extents,
const auto &bounds, mlir::Value box) {
for (auto iter : llvm::enumerate(bounds)) {
auto *spec = iter.value();
fir::BoxDimsOp dimInfo;
mlir::Value ub, lb;
if (spec->lbound().isColon() || spec->ubound().isColon()) {
// This is an assumed shape because allocatables and pointers extents
// are not constant in the scope and are not read here.
assert(box && "deferred bounds require a descriptor");
mlir::Value dim =
builder.createIntegerConstant(loc, idxTy, iter.index());
dimInfo =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim);
extents.emplace_back(dimInfo.getResult(1));
if (auto low = spec->lbound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*low};
mlir::Value lb = builder.createConvert(loc, idxTy, genValue(expr));
lbounds.emplace_back(lb);
} else {
// Implicit lower bound is 1 (Fortran 2018 section 8.5.8.3 point 3.)
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, 1));
}
} else {
if (auto low = spec->lbound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*low};
lb = builder.createConvert(loc, idxTy, genValue(expr));
} else {
TODO(loc, "support for assumed rank entities");
}
lbounds.emplace_back(lb);
if (auto high = spec->ubound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*high};
ub = builder.createConvert(loc, idxTy, genValue(expr));
extents.emplace_back(computeExtent(builder, loc, lb, ub));
} else {
// An assumed size array. The extent is not computed.
assert(spec->ubound().isStar() && "expected assumed size");
extents.emplace_back(builder.create<fir::UndefOp>(loc, idxTy));
}
}
}
};
//===--------------------------------------------------------------===//
// Non Pointer non allocatable scalar, explicit shape, and assumed
// size arrays.
// Lower the specification expressions.
//===--------------------------------------------------------------===//
mlir::Value len;
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lbounds;
auto arg = symMap.lookupSymbol(sym).getAddr();
mlir::Value addr = preAlloc;
if (arg)
if (auto boxTy = arg.getType().dyn_cast<fir::BaseBoxType>()) {
// Contiguous assumed shape that can be tracked without a fir.box.
mlir::Type refTy = builder.getRefType(boxTy.getEleTy());
addr = builder.create<fir::BoxAddrOp>(loc, refTy, arg);
}
// Compute/Extract character length.
if (ba.isChar()) {
if (arg) {
assert(!preAlloc && "dummy cannot be pre-allocated");
if (arg.getType().isa<fir::BoxCharType>())
std::tie(addr, len) = charHelp.createUnboxChar(arg);
}
if (std::optional<int64_t> cstLen = ba.getCharLenConst()) {
// Static length
len = builder.createIntegerConstant(loc, idxTy, *cstLen);
} else {
// Dynamic length
if (genUnusedEntryPointBox())
return;
if (std::optional<Fortran::lower::SomeExpr> charLenExpr =
ba.getCharLenExpr()) {
// Explicit length
mlir::Value rawLen = genValue(*charLenExpr);
// If the length expression is negative, the length is zero. See
// F2018 7.4.4.2 point 5.
len = fir::factory::genMaxWithZero(builder, loc, rawLen);
} else if (!len) {
// Assumed length fir.box (possible for contiguous assumed shapes).
// Read length from box.
assert(arg && arg.getType().isa<fir::BoxType>() &&
"must be character dummy fir.box");
len = charHelp.readLengthFromBox(arg);
}
}
}
if (addr && addr.getDefiningOp<fir::UnboxCharOp>()) {
// Ensure proper type is given to array/scalar that transited via
// fir.boxchar arg.
mlir::Type castTy = builder.getRefType(converter.genType(var));
addr = builder.createConvert(loc, castTy, addr);
}
// Compute array extents and lower bounds.
if (ba.isArray()) {
if (ba.isStaticArray()) {
if (ba.lboundIsAllOnes()) {
for (std::int64_t extent :
recoverShapeVector(ba.staticShape(), preAlloc))
extents.push_back(genExtentValue(builder, loc, idxTy, extent));
} else {
for (auto [lb, extent] :
llvm::zip(ba.staticLBound(),
recoverShapeVector(ba.staticShape(), preAlloc))) {
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, lb));
extents.emplace_back(genExtentValue(builder, loc, idxTy, extent));
}
}
} else {
// Non compile time constant shape.
if (genUnusedEntryPointBox())
return;
if (ba.lboundIsAllOnes())
populateShape(extents, ba.dynamicBound(), arg);
else
populateLBoundsExtents(lbounds, extents, ba.dynamicBound(), arg);
}
}
// Allocate or extract raw address for the entity
if (!addr) {
if (arg) {
mlir::Type argType = arg.getType();
const bool isCptrByVal = Fortran::semantics::IsBuiltinCPtr(sym) &&
Fortran::lower::isCPtrArgByValueType(argType);
if (isCptrByVal || !fir::conformsWithPassByRef(argType)) {
// Dummy argument passed in register. Place the value in memory at that
// point since lowering expect symbols to be mapped to memory addresses.
if (argType.isa<fir::RecordType>())
TODO(loc, "derived type argument passed by value");
mlir::Type symType = converter.genType(sym);
addr = builder.create<fir::AllocaOp>(loc, symType);
if (isCptrByVal) {
// Place the void* address into the CPTR address component.
mlir::Value addrComponent =
fir::factory::genCPtrOrCFunptrAddr(builder, loc, addr, symType);
builder.createStoreWithConvert(loc, arg, addrComponent);
} else {
builder.createStoreWithConvert(loc, arg, addr);
}
} else {
// Dummy address, or address of result whose storage is passed by the
// caller.
assert(fir::isa_ref_type(argType) && "must be a memory address");
addr = arg;
}
} else {
// Local variables
llvm::SmallVector<mlir::Value> typeParams;
if (len)
typeParams.emplace_back(len);
addr = createNewLocal(converter, loc, var, preAlloc, extents, typeParams);
}
}
::genDeclareSymbol(converter, symMap, sym, addr, len, extents, lbounds,
replace);
return;
}
void Fortran::lower::defineModuleVariable(
AbstractConverter &converter, const Fortran::lower::pft::Variable &var) {
// Use empty linkage for module variables, which makes them available
// for use in another unit.
mlir::StringAttr linkage =
getLinkageAttribute(converter.getFirOpBuilder(), var);
if (!var.isGlobal())
fir::emitFatalError(converter.getCurrentLocation(),
"attempting to lower module variable as local");
// Define aggregate storages for equivalenced objects.
if (var.isAggregateStore()) {
const Fortran::lower::pft::Variable::AggregateStore &aggregate =
var.getAggregateStore();
std::string aggName = mangleGlobalAggregateStore(converter, aggregate);
defineGlobalAggregateStore(converter, aggregate, aggName, linkage);
return;
}
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (const Fortran::semantics::Symbol *common =
Fortran::semantics::FindCommonBlockContaining(var.getSymbol())) {
// Nothing to do, common block are generated before everything. Ensure
// this was done by calling getCommonBlockGlobal.
getCommonBlockGlobal(converter, *common);
} else if (var.isAlias()) {
// Do nothing. Mapping will be done on user side.
} else {
std::string globalName = converter.mangleName(sym);
defineGlobal(converter, var, globalName, linkage);
}
}
void Fortran::lower::instantiateVariable(AbstractConverter &converter,
const pft::Variable &var,
Fortran::lower::SymMap &symMap,
AggregateStoreMap &storeMap) {
if (var.hasSymbol()) {
// Do not try to instantiate symbols twice, except for dummies and results,
// that may have been mapped to the MLIR entry block arguments, and for
// which the explicit specifications, if any, has not yet been lowered.
const auto &sym = var.getSymbol();
if (!IsDummy(sym) && !IsFunctionResult(sym) && symMap.lookupSymbol(sym))
return;
}
LLVM_DEBUG(llvm::dbgs() << "instantiateVariable: "; var.dump());
if (var.isAggregateStore())
instantiateAggregateStore(converter, var, storeMap);
else if (const Fortran::semantics::Symbol *common =
Fortran::semantics::FindCommonBlockContaining(
var.getSymbol().GetUltimate()))
instantiateCommon(converter, *common, var, symMap);
else if (var.isAlias())
instantiateAlias(converter, var, symMap, storeMap);
else if (var.isGlobal())
instantiateGlobal(converter, var, symMap);
else
instantiateLocal(converter, var, symMap);
}
void Fortran::lower::mapCallInterfaceSymbols(
AbstractConverter &converter, const Fortran::lower::CallerInterface &caller,
SymMap &symMap) {
Fortran::lower::AggregateStoreMap storeMap;
const Fortran::semantics::Symbol &result = caller.getResultSymbol();
for (Fortran::lower::pft::Variable var :
Fortran::lower::pft::getDependentVariableList(result)) {
if (var.isAggregateStore()) {
instantiateVariable(converter, var, symMap, storeMap);
continue;
}
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (&sym == &result)
continue;
const auto *hostDetails =
sym.detailsIf<Fortran::semantics::HostAssocDetails>();
if (hostDetails && !var.isModuleOrSubmoduleVariable()) {
// The callee is an internal procedure `A` whose result properties
// depend on host variables. The caller may be the host, or another
// internal procedure `B` contained in the same host. In the first
// case, the host symbol is obviously mapped, in the second case, it
// must also be mapped because
// HostAssociations::internalProcedureBindings that was called when
// lowering `B` will have mapped all host symbols of captured variables
// to the tuple argument containing the composite of all host associated
// variables, whether or not the host symbol is actually referred to in
// `B`. Hence it is possible to simply lookup the variable associated to
// the host symbol without having to go back to the tuple argument.
symMap.copySymbolBinding(hostDetails->symbol(), sym);
// The SymbolBox associated to the host symbols is complete, skip
// instantiateVariable that would try to allocate a new storage.
continue;
}
if (Fortran::semantics::IsDummy(sym) && sym.owner() == result.owner()) {
// Get the argument for the dummy argument symbols of the current call.
symMap.addSymbol(sym, caller.getArgumentValue(sym));
// All the properties of the dummy variable may not come from the actual
// argument, let instantiateVariable handle this.
}
// If this is neither a host associated or dummy symbol, it must be a
// module or common block variable to satisfy specification expression
// requirements in 10.1.11, instantiateVariable will get its address and
// properties.
instantiateVariable(converter, var, symMap, storeMap);
}
}
void Fortran::lower::mapSymbolAttributes(
AbstractConverter &converter, const Fortran::semantics::SymbolRef &symbol,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::Value preAlloc) {
mapSymbolAttributes(converter, pft::Variable{symbol}, symMap, stmtCtx,
preAlloc);
}
void Fortran::lower::createRuntimeTypeInfoGlobal(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::semantics::Symbol &typeInfoSym) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
std::string globalName = converter.mangleName(typeInfoSym);
auto var = Fortran::lower::pft::Variable(typeInfoSym, /*global=*/true);
mlir::StringAttr linkage = getLinkageAttribute(builder, var);
defineGlobal(converter, var, globalName, linkage);
}
|