1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
//===-- CustomIntrinsicCall.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Semantics/tools.h"
#include <optional>
/// Is this a call to MIN or MAX intrinsic with arguments that may be absent at
/// runtime? This is a special case because MIN and MAX can have any number of
/// arguments.
static bool isMinOrMaxWithDynamicallyOptionalArg(
llvm::StringRef name, const Fortran::evaluate::ProcedureRef &procRef,
Fortran::evaluate::FoldingContext &foldingContext) {
if (name != "min" && name != "max")
return false;
const auto &args = procRef.arguments();
std::size_t argSize = args.size();
if (argSize <= 2)
return false;
for (std::size_t i = 2; i < argSize; ++i) {
if (auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(args[i]))
if (Fortran::evaluate::MayBePassedAsAbsentOptional(*expr, foldingContext))
return true;
}
return false;
}
/// Is this a call to ISHFTC intrinsic with a SIZE argument that may be absent
/// at runtime? This is a special case because the SIZE value to be applied
/// when absent is not zero.
static bool isIshftcWithDynamicallyOptionalArg(
llvm::StringRef name, const Fortran::evaluate::ProcedureRef &procRef,
Fortran::evaluate::FoldingContext &foldingContext) {
if (name != "ishftc" || procRef.arguments().size() < 3)
return false;
auto *expr = Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(
procRef.arguments()[2]);
return expr &&
Fortran::evaluate::MayBePassedAsAbsentOptional(*expr, foldingContext);
}
/// Is this a call to ASSOCIATED where the TARGET is an OPTIONAL (but not a
/// deallocated allocatable or disassociated pointer)?
/// Subtle: contrary to other intrinsic optional arguments, disassociated
/// POINTER and unallocated ALLOCATABLE actual argument are not considered
/// absent here. This is because ASSOCIATED has special requirements for TARGET
/// actual arguments that are POINTERs. There is no precise requirements for
/// ALLOCATABLEs, but all existing Fortran compilers treat them similarly to
/// POINTERs. That is: unallocated TARGETs cause ASSOCIATED to rerun false. The
/// runtime deals with the disassociated/unallocated case. Simply ensures that
/// TARGET that are OPTIONAL get conditionally emboxed here to convey the
/// optional aspect to the runtime.
static bool isAssociatedWithDynamicallyOptionalArg(
llvm::StringRef name, const Fortran::evaluate::ProcedureRef &procRef,
Fortran::evaluate::FoldingContext &foldingContext) {
if (name != "associated" || procRef.arguments().size() < 2)
return false;
auto *expr = Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(
procRef.arguments()[1]);
const Fortran::semantics::Symbol *sym{
expr ? Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)
: nullptr};
return (sym && Fortran::semantics::IsOptional(*sym));
}
bool Fortran::lower::intrinsicRequiresCustomOptionalHandling(
const Fortran::evaluate::ProcedureRef &procRef,
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
AbstractConverter &converter) {
llvm::StringRef name = intrinsic.name;
Fortran::evaluate::FoldingContext &fldCtx = converter.getFoldingContext();
return isMinOrMaxWithDynamicallyOptionalArg(name, procRef, fldCtx) ||
isIshftcWithDynamicallyOptionalArg(name, procRef, fldCtx) ||
isAssociatedWithDynamicallyOptionalArg(name, procRef, fldCtx);
}
/// Generate the FIR+MLIR operations for the generic intrinsic \p name
/// with arguments \p args and the expected result type \p resultType.
/// Returned fir::ExtendedValue is the returned Fortran intrinsic value.
fir::ExtendedValue
Fortran::lower::genIntrinsicCall(fir::FirOpBuilder &builder, mlir::Location loc,
llvm::StringRef name,
std::optional<mlir::Type> resultType,
llvm::ArrayRef<fir::ExtendedValue> args,
Fortran::lower::StatementContext &stmtCtx) {
auto [result, mustBeFreed] =
fir::genIntrinsicCall(builder, loc, name, resultType, args);
if (mustBeFreed) {
mlir::Value addr = fir::getBase(result);
if (auto *box = result.getBoxOf<fir::BoxValue>())
addr =
builder.create<fir::BoxAddrOp>(loc, box->getMemTy(), box->getAddr());
fir::FirOpBuilder *bldr = &builder;
stmtCtx.attachCleanup([=]() { bldr->create<fir::FreeMemOp>(loc, addr); });
}
return result;
}
static void prepareMinOrMaxArguments(
const Fortran::evaluate::ProcedureRef &procRef,
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
std::optional<mlir::Type> retTy,
const Fortran::lower::OperandPrepare &prepareOptionalArgument,
const Fortran::lower::OperandPrepareAs &prepareOtherArgument,
Fortran::lower::AbstractConverter &converter) {
assert(retTy && "MIN and MAX must have a return type");
mlir::Type resultType = *retTy;
mlir::Location loc = converter.getCurrentLocation();
if (fir::isa_char(resultType))
TODO(loc, "CHARACTER MIN and MAX with dynamically optional arguments");
for (auto arg : llvm::enumerate(procRef.arguments())) {
const auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
if (!expr)
continue;
if (arg.index() <= 1 || !Fortran::evaluate::MayBePassedAsAbsentOptional(
*expr, converter.getFoldingContext())) {
// Non optional arguments.
prepareOtherArgument(*expr, fir::LowerIntrinsicArgAs::Value);
} else {
// Dynamically optional arguments.
// Subtle: even for scalar the if-then-else will be generated in the loop
// nest because the then part will require the current extremum value that
// may depend on previous array element argument and cannot be outlined.
prepareOptionalArgument(*expr);
}
}
}
static fir::ExtendedValue
lowerMinOrMax(fir::FirOpBuilder &builder, mlir::Location loc,
llvm::StringRef name, std::optional<mlir::Type> retTy,
const Fortran::lower::OperandPresent &isPresentCheck,
const Fortran::lower::OperandGetter &getOperand,
std::size_t numOperands,
Fortran::lower::StatementContext &stmtCtx) {
assert(numOperands >= 2 && !isPresentCheck(0) && !isPresentCheck(1) &&
"min/max must have at least two non-optional args");
assert(retTy && "MIN and MAX must have a return type");
mlir::Type resultType = *retTy;
llvm::SmallVector<fir::ExtendedValue> args;
const bool loadOperand = true;
args.push_back(getOperand(0, loadOperand));
args.push_back(getOperand(1, loadOperand));
mlir::Value extremum = fir::getBase(
genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx));
for (std::size_t opIndex = 2; opIndex < numOperands; ++opIndex) {
if (std::optional<mlir::Value> isPresentRuntimeCheck =
isPresentCheck(opIndex)) {
// Argument is dynamically optional.
extremum =
builder
.genIfOp(loc, {resultType}, *isPresentRuntimeCheck,
/*withElseRegion=*/true)
.genThen([&]() {
llvm::SmallVector<fir::ExtendedValue> args;
args.emplace_back(extremum);
args.emplace_back(getOperand(opIndex, loadOperand));
fir::ExtendedValue newExtremum = genIntrinsicCall(
builder, loc, name, resultType, args, stmtCtx);
builder.create<fir::ResultOp>(loc, fir::getBase(newExtremum));
})
.genElse([&]() { builder.create<fir::ResultOp>(loc, extremum); })
.getResults()[0];
} else {
// Argument is know to be present at compile time.
llvm::SmallVector<fir::ExtendedValue> args;
args.emplace_back(extremum);
args.emplace_back(getOperand(opIndex, loadOperand));
extremum = fir::getBase(
genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx));
}
}
return extremum;
}
static void prepareIshftcArguments(
const Fortran::evaluate::ProcedureRef &procRef,
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
std::optional<mlir::Type> retTy,
const Fortran::lower::OperandPrepare &prepareOptionalArgument,
const Fortran::lower::OperandPrepareAs &prepareOtherArgument,
Fortran::lower::AbstractConverter &converter) {
for (auto arg : llvm::enumerate(procRef.arguments())) {
const auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
assert(expr && "expected all ISHFTC argument to be textually present here");
if (arg.index() == 2) {
assert(Fortran::evaluate::MayBePassedAsAbsentOptional(
*expr, converter.getFoldingContext()) &&
"expected ISHFTC SIZE arg to be dynamically optional");
prepareOptionalArgument(*expr);
} else {
// Non optional arguments.
prepareOtherArgument(*expr, fir::LowerIntrinsicArgAs::Value);
}
}
}
static fir::ExtendedValue
lowerIshftc(fir::FirOpBuilder &builder, mlir::Location loc,
llvm::StringRef name, std::optional<mlir::Type> retTy,
const Fortran::lower::OperandPresent &isPresentCheck,
const Fortran::lower::OperandGetter &getOperand,
std::size_t numOperands,
Fortran::lower::StatementContext &stmtCtx) {
assert(numOperands == 3 && !isPresentCheck(0) && !isPresentCheck(1) &&
isPresentCheck(2) &&
"only ISHFTC SIZE arg is expected to be dynamically optional here");
assert(retTy && "ISFHTC must have a return type");
mlir::Type resultType = *retTy;
llvm::SmallVector<fir::ExtendedValue> args;
const bool loadOperand = true;
args.push_back(getOperand(0, loadOperand));
args.push_back(getOperand(1, loadOperand));
auto iPC = isPresentCheck(2);
assert(iPC.has_value());
args.push_back(builder
.genIfOp(loc, {resultType}, *iPC,
/*withElseRegion=*/true)
.genThen([&]() {
fir::ExtendedValue sizeExv = getOperand(2, loadOperand);
mlir::Value size = builder.createConvert(
loc, resultType, fir::getBase(sizeExv));
builder.create<fir::ResultOp>(loc, size);
})
.genElse([&]() {
mlir::Value bitSize = builder.createIntegerConstant(
loc, resultType,
resultType.cast<mlir::IntegerType>().getWidth());
builder.create<fir::ResultOp>(loc, bitSize);
})
.getResults()[0]);
return genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx);
}
static void prepareAssociatedArguments(
const Fortran::evaluate::ProcedureRef &procRef,
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
std::optional<mlir::Type> retTy,
const Fortran::lower::OperandPrepare &prepareOptionalArgument,
const Fortran::lower::OperandPrepareAs &prepareOtherArgument,
Fortran::lower::AbstractConverter &converter) {
const auto *pointer = procRef.UnwrapArgExpr(0);
const auto *optionalTarget = procRef.UnwrapArgExpr(1);
assert(pointer && optionalTarget &&
"expected call to associated with a target");
prepareOtherArgument(*pointer, fir::LowerIntrinsicArgAs::Inquired);
prepareOptionalArgument(*optionalTarget);
}
static fir::ExtendedValue
lowerAssociated(fir::FirOpBuilder &builder, mlir::Location loc,
llvm::StringRef name, std::optional<mlir::Type> resultType,
const Fortran::lower::OperandPresent &isPresentCheck,
const Fortran::lower::OperandGetter &getOperand,
std::size_t numOperands,
Fortran::lower::StatementContext &stmtCtx) {
assert(numOperands == 2 && "expect two arguments when TARGET is OPTIONAL");
llvm::SmallVector<fir::ExtendedValue> args;
args.push_back(getOperand(0, /*loadOperand=*/false));
// Ensure a null descriptor is passed to the code lowering Associated if
// TARGET is absent.
fir::ExtendedValue targetExv = getOperand(1, /*loadOperand=*/false);
mlir::Value targetBase = fir::getBase(targetExv);
// subtle: isPresentCheck would test for an unallocated/disassociated target,
// while the optionality of the target pointer/allocatable is what must be
// checked here.
mlir::Value isPresent =
builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), targetBase);
mlir::Type targetType = fir::unwrapRefType(targetBase.getType());
mlir::Type targetValueType = fir::unwrapPassByRefType(targetType);
mlir::Type boxType = targetType.isa<fir::BaseBoxType>()
? targetType
: fir::BoxType::get(targetValueType);
fir::BoxValue targetBox =
builder
.genIfOp(loc, {boxType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
mlir::Value box = builder.createBox(loc, targetExv);
mlir::Value cast = builder.createConvert(loc, boxType, box);
builder.create<fir::ResultOp>(loc, cast);
})
.genElse([&]() {
mlir::Value absentBox = builder.create<fir::AbsentOp>(loc, boxType);
builder.create<fir::ResultOp>(loc, absentBox);
})
.getResults()[0];
args.emplace_back(std::move(targetBox));
return genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx);
}
void Fortran::lower::prepareCustomIntrinsicArgument(
const Fortran::evaluate::ProcedureRef &procRef,
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
std::optional<mlir::Type> retTy,
const OperandPrepare &prepareOptionalArgument,
const OperandPrepareAs &prepareOtherArgument,
AbstractConverter &converter) {
llvm::StringRef name = intrinsic.name;
if (name == "min" || name == "max")
return prepareMinOrMaxArguments(procRef, intrinsic, retTy,
prepareOptionalArgument,
prepareOtherArgument, converter);
if (name == "associated")
return prepareAssociatedArguments(procRef, intrinsic, retTy,
prepareOptionalArgument,
prepareOtherArgument, converter);
assert(name == "ishftc" && "unexpected custom intrinsic argument call");
return prepareIshftcArguments(procRef, intrinsic, retTy,
prepareOptionalArgument, prepareOtherArgument,
converter);
}
fir::ExtendedValue Fortran::lower::lowerCustomIntrinsic(
fir::FirOpBuilder &builder, mlir::Location loc, llvm::StringRef name,
std::optional<mlir::Type> retTy, const OperandPresent &isPresentCheck,
const OperandGetter &getOperand, std::size_t numOperands,
Fortran::lower::StatementContext &stmtCtx) {
if (name == "min" || name == "max")
return lowerMinOrMax(builder, loc, name, retTy, isPresentCheck, getOperand,
numOperands, stmtCtx);
if (name == "associated")
return lowerAssociated(builder, loc, name, retTy, isPresentCheck,
getOperand, numOperands, stmtCtx);
assert(name == "ishftc" && "unexpected custom intrinsic call");
return lowerIshftc(builder, loc, name, retTy, isPresentCheck, getOperand,
numOperands, stmtCtx);
}
|