1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
//===-- HlfirIntrinsics.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/HlfirIntrinsics.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/IR/Value.h"
#include "llvm/ADT/SmallVector.h"
#include <mlir/IR/ValueRange.h>
namespace {
class HlfirTransformationalIntrinsic {
public:
explicit HlfirTransformationalIntrinsic(fir::FirOpBuilder &builder,
mlir::Location loc)
: builder(builder), loc(loc) {}
virtual ~HlfirTransformationalIntrinsic() = default;
hlfir::EntityWithAttributes
lower(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
mlir::Value res = lowerImpl(loweredActuals, argLowering, stmtResultType);
for (const hlfir::CleanupFunction &fn : cleanupFns)
fn();
return {hlfir::EntityWithAttributes{res}};
}
protected:
fir::FirOpBuilder &builder;
mlir::Location loc;
llvm::SmallVector<hlfir::CleanupFunction, 3> cleanupFns;
virtual mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) = 0;
llvm::SmallVector<mlir::Value> getOperandVector(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering);
mlir::Type computeResultType(mlir::Value argArray, mlir::Type stmtResultType);
template <typename OP, typename... BUILD_ARGS>
inline OP createOp(BUILD_ARGS... args) {
return builder.create<OP>(loc, args...);
}
mlir::Value loadBoxAddress(
const std::optional<Fortran::lower::PreparedActualArgument> &arg);
void addCleanup(std::optional<hlfir::CleanupFunction> cleanup) {
if (cleanup)
cleanupFns.emplace_back(std::move(*cleanup));
}
};
template <typename OP, bool HAS_MASK>
class HlfirReductionIntrinsic : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
using HlfirSumLowering = HlfirReductionIntrinsic<hlfir::SumOp, true>;
using HlfirProductLowering = HlfirReductionIntrinsic<hlfir::ProductOp, true>;
using HlfirAnyLowering = HlfirReductionIntrinsic<hlfir::AnyOp, false>;
using HlfirAllLowering = HlfirReductionIntrinsic<hlfir::AllOp, false>;
template <typename OP>
class HlfirProductIntrinsic : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
using HlfirMatmulLowering = HlfirProductIntrinsic<hlfir::MatmulOp>;
using HlfirDotProductLowering = HlfirProductIntrinsic<hlfir::DotProductOp>;
class HlfirTransposeLowering : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
class HlfirCountLowering : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
class HlfirCharExtremumLowering : public HlfirTransformationalIntrinsic {
public:
HlfirCharExtremumLowering(fir::FirOpBuilder &builder, mlir::Location loc,
hlfir::CharExtremumPredicate pred)
: HlfirTransformationalIntrinsic(builder, loc), pred{pred} {}
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
protected:
hlfir::CharExtremumPredicate pred;
};
} // namespace
mlir::Value HlfirTransformationalIntrinsic::loadBoxAddress(
const std::optional<Fortran::lower::PreparedActualArgument> &arg) {
if (!arg)
return mlir::Value{};
hlfir::Entity actual = arg->getOriginalActual();
if (!arg->handleDynamicOptional()) {
if (actual.isMutableBox()) {
// this is a box address type but is not dynamically optional. Just load
// the box, assuming it is well formed (!fir.ref<!fir.box<...>> ->
// !fir.box<...>)
return builder.create<fir::LoadOp>(loc, actual.getBase());
}
return actual;
}
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, actual);
addCleanup(cleanup);
mlir::Value isPresent = arg->getIsPresent();
// createBox will not do create any invalid memory dereferences if exv is
// absent. The created fir.box will not be usable, but the SelectOp below
// ensures it won't be.
mlir::Value box = builder.createBox(loc, exv);
mlir::Type boxType = box.getType();
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
loc, boxType, isPresent, box, absent);
return boxOrAbsent;
}
llvm::SmallVector<mlir::Value> HlfirTransformationalIntrinsic::getOperandVector(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering) {
llvm::SmallVector<mlir::Value> operands;
operands.reserve(loweredActuals.size());
for (size_t i = 0; i < loweredActuals.size(); ++i) {
std::optional<Fortran::lower::PreparedActualArgument> arg =
loweredActuals[i];
if (!arg) {
operands.emplace_back();
continue;
}
hlfir::Entity actual = arg->getOriginalActual();
mlir::Value valArg;
if (!argLowering) {
valArg = hlfir::loadTrivialScalar(loc, builder, actual);
} else {
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, i);
if (argRules.lowerAs == fir::LowerIntrinsicArgAs::Box)
valArg = loadBoxAddress(arg);
else if (!argRules.handleDynamicOptional &&
argRules.lowerAs != fir::LowerIntrinsicArgAs::Inquired)
valArg = hlfir::derefPointersAndAllocatables(loc, builder, actual);
else if (argRules.handleDynamicOptional)
TODO(loc, "hlfir transformational intrinsic dynamically optional "
"argument without box lowering");
else
valArg = actual.getBase();
}
operands.emplace_back(valArg);
}
return operands;
}
mlir::Type
HlfirTransformationalIntrinsic::computeResultType(mlir::Value argArray,
mlir::Type stmtResultType) {
mlir::Type normalisedResult =
hlfir::getFortranElementOrSequenceType(stmtResultType);
if (auto array = normalisedResult.dyn_cast<fir::SequenceType>()) {
hlfir::ExprType::Shape resultShape =
hlfir::ExprType::Shape{array.getShape()};
mlir::Type elementType = array.getEleTy();
return hlfir::ExprType::get(builder.getContext(), resultShape, elementType,
/*polymorphic=*/false);
}
return normalisedResult;
}
template <typename OP, bool HAS_MASK>
mlir::Value HlfirReductionIntrinsic<OP, HAS_MASK>::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
mlir::Value array = operands[0];
mlir::Value dim = operands[1];
// dim, mask can be NULL if these arguments are not given
if (dim)
dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
mlir::Type resultTy = computeResultType(array, stmtResultType);
OP op;
if constexpr (HAS_MASK)
op = createOp<OP>(resultTy, array, dim,
/*mask=*/operands[2]);
else
op = createOp<OP>(resultTy, array, dim);
return op;
}
template <typename OP>
mlir::Value HlfirProductIntrinsic<OP>::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
mlir::Type resultType = computeResultType(operands[0], stmtResultType);
return createOp<OP>(resultType, operands[0], operands[1]);
}
mlir::Value HlfirTransposeLowering::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
hlfir::ExprType::Shape resultShape;
mlir::Type normalisedResult =
hlfir::getFortranElementOrSequenceType(stmtResultType);
auto array = normalisedResult.cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> arrayShape = array.getShape();
assert(arrayShape.size() == 2 && "arguments to transpose have a rank of 2");
mlir::Type elementType = array.getEleTy();
resultShape.push_back(arrayShape[0]);
resultShape.push_back(arrayShape[1]);
if (auto resCharType = mlir::dyn_cast<fir::CharacterType>(elementType))
if (!resCharType.hasConstantLen()) {
// The FunctionRef expression might have imprecise character
// type at this point, and we can improve it by propagating
// the constant length from the argument.
auto argCharType = mlir::dyn_cast<fir::CharacterType>(
hlfir::getFortranElementType(operands[0].getType()));
if (argCharType && argCharType.hasConstantLen())
elementType = fir::CharacterType::get(
builder.getContext(), resCharType.getFKind(), argCharType.getLen());
}
mlir::Type resultTy =
hlfir::ExprType::get(builder.getContext(), resultShape, elementType,
fir::isPolymorphicType(stmtResultType));
return createOp<hlfir::TransposeOp>(resultTy, operands[0]);
}
mlir::Value HlfirCountLowering::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
mlir::Value array = operands[0];
mlir::Value dim = operands[1];
if (dim)
dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
mlir::Value kind = operands[2];
mlir::Type resultType = computeResultType(array, stmtResultType);
return createOp<hlfir::CountOp>(resultType, array, dim, kind);
}
mlir::Value HlfirCharExtremumLowering::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
assert(operands.size() >= 2);
return createOp<hlfir::CharExtremumOp>(pred, mlir::ValueRange{operands});
}
std::optional<hlfir::EntityWithAttributes> Fortran::lower::lowerHlfirIntrinsic(
fir::FirOpBuilder &builder, mlir::Location loc, const std::string &name,
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
if (name == "sum")
return HlfirSumLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "product")
return HlfirProductLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "any")
return HlfirAnyLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "all")
return HlfirAllLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "matmul")
return HlfirMatmulLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "dot_product")
return HlfirDotProductLowering{builder, loc}.lower(
loweredActuals, argLowering, stmtResultType);
if (name == "transpose")
return HlfirTransposeLowering{builder, loc}.lower(
loweredActuals, argLowering, stmtResultType);
if (name == "count")
return HlfirCountLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (mlir::isa<fir::CharacterType>(stmtResultType)) {
if (name == "min")
return HlfirCharExtremumLowering{builder, loc,
hlfir::CharExtremumPredicate::min}
.lower(loweredActuals, argLowering, stmtResultType);
if (name == "max")
return HlfirCharExtremumLowering{builder, loc,
hlfir::CharExtremumPredicate::max}
.lower(loweredActuals, argLowering, stmtResultType);
}
return std::nullopt;
}
|