1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
//===-- HostAssociations.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/HostAssociations.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/BoxAnalyzer.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Semantics/tools.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-host-assoc"
// Host association inside internal procedures is implemented by allocating an
// mlir tuple (a struct) inside the host containing the addresses and properties
// of variables that are accessed by internal procedures. The address of this
// tuple is passed as an argument by the host when calling internal procedures.
// Internal procedures propagate a reference to this tuple when calling other
// internal procedures of the host.
//
// This file defines how the type of the host tuple is built, how the tuple
// value is created inside the host, and how the host associated variables are
// instantiated inside the internal procedures from the tuple value. The
// CapturedXXX classes define each of these three actions for a specific
// kind of variables by providing a `getType`, a `instantiateHostTuple`, and a
// `getFromTuple` method. These classes are structured as follow:
//
// class CapturedKindOfVar : public CapturedSymbols<CapturedKindOfVar> {
// // Return the type of the tuple element for a host associated
// // variable given its symbol inside the host. This is called when
// // building function interfaces.
// static mlir::Type getType();
// // Build the tuple element value for a host associated variable given its
// // value inside the host. This is called when lowering the host body.
// static void instantiateHostTuple();
// // Instantiate a host variable inside an internal procedure given its
// // tuple element value. This is called when lowering internal procedure
// // bodies.
// static void getFromTuple();
// };
//
// If a new kind of variable requires ad-hoc handling, a new CapturedXXX class
// should be added to handle it, and `walkCaptureCategories` should be updated
// to dispatch this new kind of variable to this new class.
/// Is \p sym a derived type entity with length parameters ?
static bool isDerivedWithLenParameters(const Fortran::semantics::Symbol &sym) {
if (const auto *declTy = sym.GetType())
if (const auto *derived = declTy->AsDerived())
return Fortran::semantics::CountLenParameters(*derived) != 0;
return false;
}
/// Map the extracted fir::ExtendedValue for a host associated variable inside
/// and internal procedure to its symbol. Generates an hlfir.declare in HLFIR.
static void bindCapturedSymbol(const Fortran::semantics::Symbol &sym,
fir::ExtendedValue val,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap) {
if (converter.getLoweringOptions().getLowerToHighLevelFIR()) {
// TODO: add an indication that this is a host variable in the declare to
// allow alias analysis to detect this case.
Fortran::lower::genDeclareSymbol(converter, symMap, sym, val);
} else {
symMap.addSymbol(sym, val);
}
}
namespace {
/// Struct to be used as argument in walkCaptureCategories when building the
/// tuple element type for a host associated variable.
struct GetTypeInTuple {
/// walkCaptureCategories must return a type.
using Result = mlir::Type;
};
/// Struct to be used as argument in walkCaptureCategories when building the
/// tuple element value for a host associated variable.
struct InstantiateHostTuple {
/// walkCaptureCategories returns nothing.
using Result = void;
/// Value of the variable inside the host procedure.
fir::ExtendedValue hostValue;
/// Address of the tuple element of the variable.
mlir::Value addrInTuple;
mlir::Location loc;
};
/// Struct to be used as argument in walkCaptureCategories when instantiating a
/// host associated variables from its tuple element value.
struct GetFromTuple {
/// walkCaptureCategories returns nothing.
using Result = void;
/// Symbol map inside the internal procedure.
Fortran::lower::SymMap &symMap;
/// Value of the tuple element for the host associated variable.
mlir::Value valueInTuple;
mlir::Location loc;
};
/// Base class that must be inherited with CRTP by classes defining
/// how host association is implemented for a type of symbol.
/// It simply dispatches visit() calls to the implementations according
/// to the argument type.
template <typename SymbolCategory>
class CapturedSymbols {
public:
template <typename T>
static void visit(const T &, Fortran::lower::AbstractConverter &,
const Fortran::semantics::Symbol &,
const Fortran::lower::BoxAnalyzer &) {
static_assert(!std::is_same_v<T, T> &&
"default visit must not be instantiated");
}
static mlir::Type visit(const GetTypeInTuple &,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &) {
return SymbolCategory::getType(converter, sym);
}
static void visit(const InstantiateHostTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &) {
return SymbolCategory::instantiateHostTuple(args, converter, sym);
}
static void visit(const GetFromTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &ba) {
return SymbolCategory::getFromTuple(args, converter, sym, ba);
}
};
/// Class defining simple scalars are captured in internal procedures.
/// Simple scalars are non character intrinsic scalars. They are captured
/// as `!fir.ref<T>`, for example `!fir.ref<i32>` for `INTEGER*4`.
class CapturedSimpleScalars : public CapturedSymbols<CapturedSimpleScalars> {
public:
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
return fir::ReferenceType::get(converter.genType(sym));
}
static void instantiateHostTuple(const InstantiateHostTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
assert(typeInTuple && "addrInTuple must be an address");
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
fir::getBase(args.hostValue));
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
}
static void getFromTuple(const GetFromTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &) {
bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
}
};
/// Class defining how dummy procedures and procedure pointers
/// are captured in internal procedures.
class CapturedProcedure : public CapturedSymbols<CapturedProcedure> {
public:
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
if (Fortran::semantics::IsPointer(sym))
TODO(converter.getCurrentLocation(),
"capture procedure pointer in internal procedure");
return Fortran::lower::getDummyProcedureType(sym, converter);
}
static void instantiateHostTuple(const InstantiateHostTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
assert(typeInTuple && "addrInTuple must be an address");
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
fir::getBase(args.hostValue));
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
}
static void getFromTuple(const GetFromTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &) {
bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
}
};
/// Class defining how character scalars are captured in internal procedures.
/// Character scalars are passed as !fir.boxchar<kind> in the tuple.
class CapturedCharacterScalars
: public CapturedSymbols<CapturedCharacterScalars> {
public:
// Note: so far, do not specialize constant length characters. They can be
// implemented by only passing the address. This could be done later in
// lowering or a CapturedStaticLenCharacterScalars class could be added here.
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
fir::KindTy kind =
converter.genType(sym).cast<fir::CharacterType>().getFKind();
return fir::BoxCharType::get(&converter.getMLIRContext(), kind);
}
static void instantiateHostTuple(const InstantiateHostTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &) {
const fir::CharBoxValue *charBox = args.hostValue.getCharBox();
assert(charBox && "host value must be a fir::CharBoxValue");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Value boxchar = fir::factory::CharacterExprHelper(builder, args.loc)
.createEmbox(*charBox);
builder.create<fir::StoreOp>(args.loc, boxchar, args.addrInTuple);
}
static void getFromTuple(const GetFromTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &) {
fir::factory::CharacterExprHelper charHelp(converter.getFirOpBuilder(),
args.loc);
std::pair<mlir::Value, mlir::Value> unboxchar =
charHelp.createUnboxChar(args.valueInTuple);
bindCapturedSymbol(sym,
fir::CharBoxValue{unboxchar.first, unboxchar.second},
converter, args.symMap);
}
};
/// Class defining how polymorphic entities are captured in internal procedures.
/// Polymorphic entities are always boxed as a fir.class box.
class CapturedPolymorphic : public CapturedSymbols<CapturedPolymorphic> {
public:
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
return converter.genType(sym);
}
static void instantiateHostTuple(const InstantiateHostTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
assert(typeInTuple && "addrInTuple must be an address");
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
fir::getBase(args.hostValue));
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
}
static void getFromTuple(const GetFromTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &ba) {
bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
}
};
/// Class defining how allocatable and pointers entities are captured in
/// internal procedures. Allocatable and pointers are simply captured by placing
/// their !fir.ref<fir.box<>> address in the host tuple.
class CapturedAllocatableAndPointer
: public CapturedSymbols<CapturedAllocatableAndPointer> {
public:
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
return fir::ReferenceType::get(converter.genType(sym));
}
static void instantiateHostTuple(const InstantiateHostTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &) {
assert(args.hostValue.getBoxOf<fir::MutableBoxValue>() &&
"host value must be a fir::MutableBoxValue");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
assert(typeInTuple && "addrInTuple must be an address");
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
fir::getBase(args.hostValue));
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
}
static void getFromTuple(const GetFromTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &ba) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = args.loc;
// Non deferred type parameters impact the semantics of some statements
// where allocatables/pointer can appear. For instance, assignment to a
// scalar character allocatable with has a different semantics in F2003 and
// later if the length is non deferred vs when it is deferred. So it is
// important to keep track of the non deferred parameters here.
llvm::SmallVector<mlir::Value> nonDeferredLenParams;
if (ba.isChar()) {
mlir::IndexType idxTy = builder.getIndexType();
if (std::optional<int64_t> len = ba.getCharLenConst()) {
nonDeferredLenParams.push_back(
builder.createIntegerConstant(loc, idxTy, *len));
} else if (Fortran::semantics::IsAssumedLengthCharacter(sym) ||
ba.getCharLenExpr()) {
nonDeferredLenParams.push_back(
Fortran::lower::getAssumedCharAllocatableOrPointerLen(
builder, loc, sym, args.valueInTuple));
}
} else if (isDerivedWithLenParameters(sym)) {
TODO(loc, "host associated derived type allocatable or pointer with "
"length parameters");
}
bindCapturedSymbol(
sym, fir::MutableBoxValue(args.valueInTuple, nonDeferredLenParams, {}),
converter, args.symMap);
}
};
/// Class defining how arrays are captured inside internal procedures.
/// Array are captured via a `fir.box<fir.array<T>>` descriptor that belongs to
/// the host tuple. This allows capturing lower bounds, which can be done by
/// providing a ShapeShiftOp argument to the EmboxOp.
class CapturedArrays : public CapturedSymbols<CapturedArrays> {
// Note: Constant shape arrays are not specialized (their base address would
// be sufficient information inside the tuple). They could be specialized in
// a later FIR pass, or a CapturedStaticShapeArrays could be added to deal
// with them here.
public:
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
mlir::Type type = converter.genType(sym);
assert(type.isa<fir::SequenceType>() && "must be a sequence type");
return fir::BoxType::get(type);
}
static void instantiateHostTuple(const InstantiateHostTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = args.loc;
fir::MutableBoxValue boxInTuple(args.addrInTuple, {}, {});
if (args.hostValue.getBoxOf<fir::BoxValue>() &&
Fortran::semantics::IsOptional(sym)) {
// The assumed shape optional case need some care because it is illegal to
// read the incoming box if it is absent (this would cause segfaults).
// Pointer association requires reading the target box, so it can only be
// done on present optional. For absent optionals, simply create a
// disassociated pointer (it is illegal to inquire about lower bounds or
// lengths of optional according to 15.5.2.12 3 (9) and 10.1.11 2 (7)b).
auto isPresent = builder.create<fir::IsPresentOp>(
loc, builder.getI1Type(), fir::getBase(args.hostValue));
builder.genIfThenElse(loc, isPresent)
.genThen([&]() {
fir::factory::associateMutableBox(builder, loc, boxInTuple,
args.hostValue,
/*lbounds=*/std::nullopt);
})
.genElse([&]() {
fir::factory::disassociateMutableBox(builder, loc, boxInTuple);
})
.end();
} else {
fir::factory::associateMutableBox(
builder, loc, boxInTuple, args.hostValue, /*lbounds=*/std::nullopt);
}
}
static void getFromTuple(const GetFromTuple &args,
Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym,
const Fortran::lower::BoxAnalyzer &ba) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = args.loc;
mlir::Value box = args.valueInTuple;
mlir::IndexType idxTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> lbounds;
if (!ba.lboundIsAllOnes()) {
if (ba.isStaticArray()) {
for (std::int64_t lb : ba.staticLBound())
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, lb));
} else {
// Cannot re-evaluate specification expressions here.
// Operands values may have changed. Get value from fir.box
const unsigned rank = sym.Rank();
for (unsigned dim = 0; dim < rank; ++dim) {
mlir::Value dimVal = builder.createIntegerConstant(loc, idxTy, dim);
auto dims = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
box, dimVal);
lbounds.emplace_back(dims.getResult(0));
}
}
}
if (canReadCapturedBoxValue(converter, sym)) {
fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt);
bindCapturedSymbol(sym,
fir::factory::readBoxValue(builder, loc, boxValue),
converter, args.symMap);
} else {
// Keep variable as a fir.box.
// If this is an optional that is absent, the fir.box needs to be an
// AbsentOp result, otherwise it will not work properly with IsPresentOp
// (absent boxes are null descriptor addresses, not descriptors containing
// a null base address).
if (Fortran::semantics::IsOptional(sym)) {
auto boxTy = box.getType().cast<fir::BoxType>();
auto eleTy = boxTy.getEleTy();
if (!fir::isa_ref_type(eleTy))
eleTy = builder.getRefType(eleTy);
auto addr = builder.create<fir::BoxAddrOp>(loc, eleTy, box);
mlir::Value isPresent = builder.genIsNotNullAddr(loc, addr);
auto absentBox = builder.create<fir::AbsentOp>(loc, boxTy);
box = builder.create<mlir::arith::SelectOp>(loc, isPresent, box,
absentBox);
}
fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt);
bindCapturedSymbol(sym, boxValue, converter, args.symMap);
}
}
private:
/// Can the fir.box from the host link be read into simpler values ?
/// Later, without the symbol information, it might not be possible
/// to tell if the fir::BoxValue from the host link is contiguous.
static bool
canReadCapturedBoxValue(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
bool isScalarOrContiguous =
sym.Rank() == 0 || Fortran::evaluate::IsSimplyContiguous(
Fortran::evaluate::AsGenericExpr(sym).value(),
converter.getFoldingContext());
const Fortran::semantics::DeclTypeSpec *type = sym.GetType();
bool isPolymorphic = type && type->IsPolymorphic();
return isScalarOrContiguous && !isPolymorphic &&
!isDerivedWithLenParameters(sym);
}
};
} // namespace
/// Dispatch \p visitor to the CapturedSymbols which is handling how host
/// association is implemented for this kind of symbols. This ensures the same
/// dispatch decision is taken when building the tuple type, when creating the
/// tuple, and when instantiating host associated variables from it.
template <typename T>
static typename T::Result
walkCaptureCategories(T visitor, Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &sym) {
if (isDerivedWithLenParameters(sym))
// Should be boxed.
TODO(converter.genLocation(sym.name()),
"host associated derived type with length parameters");
Fortran::lower::BoxAnalyzer ba;
// Do not analyze procedures, they may be subroutines with no types that would
// crash the analysis.
if (Fortran::semantics::IsProcedure(sym))
return CapturedProcedure::visit(visitor, converter, sym, ba);
ba.analyze(sym);
if (Fortran::semantics::IsAllocatableOrPointer(sym))
return CapturedAllocatableAndPointer::visit(visitor, converter, sym, ba);
if (Fortran::semantics::IsPolymorphic(sym)) {
if (ba.isArray() && !ba.lboundIsAllOnes())
TODO(converter.genLocation(sym.name()),
"polymorphic array with non default lower bound");
return CapturedPolymorphic::visit(visitor, converter, sym, ba);
}
if (ba.isArray())
return CapturedArrays::visit(visitor, converter, sym, ba);
if (ba.isChar())
return CapturedCharacterScalars::visit(visitor, converter, sym, ba);
assert(ba.isTrivial() && "must be trivial scalar");
return CapturedSimpleScalars::visit(visitor, converter, sym, ba);
}
// `t` should be the result of getArgumentType, which has a type of
// `!fir.ref<tuple<...>>`.
static mlir::TupleType unwrapTupleTy(mlir::Type t) {
return fir::dyn_cast_ptrEleTy(t).cast<mlir::TupleType>();
}
static mlir::Value genTupleCoor(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Type varTy, mlir::Value tupleArg,
mlir::Value offset) {
// fir.ref<fir.ref> and fir.ptr<fir.ref> are forbidden. Use
// fir.llvm_ptr if needed.
auto ty = varTy.isa<fir::ReferenceType>()
? mlir::Type(fir::LLVMPointerType::get(varTy))
: mlir::Type(builder.getRefType(varTy));
return builder.create<fir::CoordinateOp>(loc, ty, tupleArg, offset);
}
void Fortran::lower::HostAssociations::addSymbolsToBind(
const llvm::SetVector<const Fortran::semantics::Symbol *> &symbols,
const Fortran::semantics::Scope &hostScope) {
assert(tupleSymbols.empty() && globalSymbols.empty() &&
"must be initially empty");
this->hostScope = &hostScope;
for (const auto *s : symbols)
if (Fortran::lower::symbolIsGlobal(*s))
// The ultimate symbol is stored here so that global symbols from the
// host scope can later be searched in this set.
globalSymbols.insert(&s->GetUltimate());
else
tupleSymbols.insert(s);
}
void Fortran::lower::HostAssociations::hostProcedureBindings(
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap) {
if (tupleSymbols.empty())
return;
// Create the tuple variable.
mlir::TupleType tupTy = unwrapTupleTy(getArgumentType(converter));
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
auto hostTuple = builder.create<fir::AllocaOp>(loc, tupTy);
mlir::IntegerType offTy = builder.getIntegerType(32);
// Walk the list of tupleSymbols and update the pointers in the tuple.
for (auto s : llvm::enumerate(tupleSymbols)) {
auto indexInTuple = s.index();
mlir::Value off = builder.createIntegerConstant(loc, offTy, indexInTuple);
mlir::Type varTy = tupTy.getType(indexInTuple);
mlir::Value eleOff = genTupleCoor(builder, loc, varTy, hostTuple, off);
InstantiateHostTuple instantiateHostTuple{
converter.getSymbolExtendedValue(*s.value(), &symMap), eleOff, loc};
walkCaptureCategories(instantiateHostTuple, converter, *s.value());
}
converter.bindHostAssocTuple(hostTuple);
}
void Fortran::lower::HostAssociations::internalProcedureBindings(
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap) {
if (!globalSymbols.empty()) {
assert(hostScope && "host scope must have been set");
Fortran::lower::AggregateStoreMap storeMap;
// The host scope variable list is required to deal with host variables
// that are equivalenced and requires instantiating the right global
// AggregateStore.
for (auto &hostVariable : pft::getScopeVariableList(*hostScope))
if ((hostVariable.isAggregateStore() && hostVariable.isGlobal()) ||
(hostVariable.hasSymbol() &&
globalSymbols.contains(&hostVariable.getSymbol().GetUltimate())))
Fortran::lower::instantiateVariable(converter, hostVariable, symMap,
storeMap);
}
if (tupleSymbols.empty())
return;
// Find the argument with the tuple type. The argument ought to be appended.
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type argTy = getArgumentType(converter);
mlir::TupleType tupTy = unwrapTupleTy(argTy);
mlir::Location loc = converter.getCurrentLocation();
mlir::func::FuncOp func = builder.getFunction();
mlir::Value tupleArg;
for (auto [ty, arg] : llvm::reverse(llvm::zip(
func.getFunctionType().getInputs(), func.front().getArguments())))
if (ty == argTy) {
tupleArg = arg;
break;
}
if (!tupleArg)
fir::emitFatalError(loc, "no host association argument found");
converter.bindHostAssocTuple(tupleArg);
mlir::IntegerType offTy = builder.getIntegerType(32);
// Walk the list and add the bindings to the symbol table.
for (auto s : llvm::enumerate(tupleSymbols)) {
mlir::Value off = builder.createIntegerConstant(loc, offTy, s.index());
mlir::Type varTy = tupTy.getType(s.index());
mlir::Value eleOff = genTupleCoor(builder, loc, varTy, tupleArg, off);
mlir::Value valueInTuple = builder.create<fir::LoadOp>(loc, eleOff);
GetFromTuple getFromTuple{symMap, valueInTuple, loc};
walkCaptureCategories(getFromTuple, converter, *s.value());
}
}
mlir::Type Fortran::lower::HostAssociations::getArgumentType(
Fortran::lower::AbstractConverter &converter) {
if (tupleSymbols.empty())
return {};
if (argType)
return argType;
// Walk the list of Symbols and create their types. Wrap them in a reference
// to a tuple.
mlir::MLIRContext *ctxt = &converter.getMLIRContext();
llvm::SmallVector<mlir::Type> tupleTys;
for (const Fortran::semantics::Symbol *sym : tupleSymbols)
tupleTys.emplace_back(
walkCaptureCategories(GetTypeInTuple{}, converter, *sym));
argType = fir::ReferenceType::get(mlir::TupleType::get(ctxt, tupleTys));
return argType;
}
|