1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
|
//===-- IO.cpp -- IO statement lowering -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/IO.h"
#include "flang/Common/uint128.h"
#include "flang/Evaluate/tools.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ConvertExpr.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Runtime.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Lower/VectorSubscripts.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Runtime/io-api.h"
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/tools.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-io"
// Define additional runtime type models specific to IO.
namespace fir::runtime {
template <>
constexpr TypeBuilderFunc getModel<Fortran::runtime::io::IoStatementState *>() {
return getModel<char *>();
}
template <>
constexpr TypeBuilderFunc getModel<Fortran::runtime::io::Iostat>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::IntegerType::get(context,
8 * sizeof(Fortran::runtime::io::Iostat));
};
}
template <>
constexpr TypeBuilderFunc
getModel<const Fortran::runtime::io::NamelistGroup &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::ReferenceType::get(mlir::TupleType::get(context));
};
}
template <>
constexpr TypeBuilderFunc
getModel<const Fortran::runtime::io::NonTbpDefinedIoTable *>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::ReferenceType::get(mlir::TupleType::get(context));
};
}
} // namespace fir::runtime
using namespace Fortran::runtime::io;
#define mkIOKey(X) FirmkKey(IONAME(X))
namespace Fortran::lower {
/// Static table of IO runtime calls
///
/// This logical map contains the name and type builder function for each IO
/// runtime function listed in the tuple. This table is fully constructed at
/// compile-time. Use the `mkIOKey` macro to access the table.
static constexpr std::tuple<
mkIOKey(BeginBackspace), mkIOKey(BeginClose), mkIOKey(BeginEndfile),
mkIOKey(BeginExternalFormattedInput), mkIOKey(BeginExternalFormattedOutput),
mkIOKey(BeginExternalListInput), mkIOKey(BeginExternalListOutput),
mkIOKey(BeginFlush), mkIOKey(BeginInquireFile),
mkIOKey(BeginInquireIoLength), mkIOKey(BeginInquireUnit),
mkIOKey(BeginInternalArrayFormattedInput),
mkIOKey(BeginInternalArrayFormattedOutput),
mkIOKey(BeginInternalArrayListInput), mkIOKey(BeginInternalArrayListOutput),
mkIOKey(BeginInternalFormattedInput), mkIOKey(BeginInternalFormattedOutput),
mkIOKey(BeginInternalListInput), mkIOKey(BeginInternalListOutput),
mkIOKey(BeginOpenNewUnit), mkIOKey(BeginOpenUnit), mkIOKey(BeginRewind),
mkIOKey(BeginUnformattedInput), mkIOKey(BeginUnformattedOutput),
mkIOKey(BeginWait), mkIOKey(BeginWaitAll),
mkIOKey(CheckUnitNumberInRange64), mkIOKey(CheckUnitNumberInRange128),
mkIOKey(EnableHandlers), mkIOKey(EndIoStatement), mkIOKey(GetIoLength),
mkIOKey(GetIoMsg), mkIOKey(GetNewUnit), mkIOKey(GetSize),
mkIOKey(InputAscii), mkIOKey(InputComplex32), mkIOKey(InputComplex64),
mkIOKey(InputDerivedType), mkIOKey(InputDescriptor), mkIOKey(InputInteger),
mkIOKey(InputLogical), mkIOKey(InputNamelist), mkIOKey(InputReal32),
mkIOKey(InputReal64), mkIOKey(InputUnformattedBlock),
mkIOKey(InquireCharacter), mkIOKey(InquireInteger64),
mkIOKey(InquireLogical), mkIOKey(InquirePendingId), mkIOKey(OutputAscii),
mkIOKey(OutputComplex32), mkIOKey(OutputComplex64),
mkIOKey(OutputDerivedType), mkIOKey(OutputDescriptor),
mkIOKey(OutputInteger8), mkIOKey(OutputInteger16), mkIOKey(OutputInteger32),
mkIOKey(OutputInteger64), mkIOKey(OutputInteger128), mkIOKey(OutputLogical),
mkIOKey(OutputNamelist), mkIOKey(OutputReal32), mkIOKey(OutputReal64),
mkIOKey(OutputUnformattedBlock), mkIOKey(SetAccess), mkIOKey(SetAction),
mkIOKey(SetAdvance), mkIOKey(SetAsynchronous), mkIOKey(SetBlank),
mkIOKey(SetCarriagecontrol), mkIOKey(SetConvert), mkIOKey(SetDecimal),
mkIOKey(SetDelim), mkIOKey(SetEncoding), mkIOKey(SetFile), mkIOKey(SetForm),
mkIOKey(SetPad), mkIOKey(SetPos), mkIOKey(SetPosition), mkIOKey(SetRec),
mkIOKey(SetRecl), mkIOKey(SetRound), mkIOKey(SetSign), mkIOKey(SetStatus)>
newIOTable;
} // namespace Fortran::lower
namespace {
/// IO statements may require exceptional condition handling. A statement that
/// encounters an exceptional condition may branch to a label given on an ERR
/// (error), END (end-of-file), or EOR (end-of-record) specifier. An IOSTAT
/// specifier variable may be set to a value that indicates some condition,
/// and an IOMSG specifier variable may be set to a description of a condition.
struct ConditionSpecInfo {
const Fortran::lower::SomeExpr *ioStatExpr{};
std::optional<fir::ExtendedValue> ioMsg;
bool hasErr{};
bool hasEnd{};
bool hasEor{};
fir::IfOp bigUnitIfOp;
/// Check for any condition specifier that applies to specifier processing.
bool hasErrorConditionSpec() const { return ioStatExpr != nullptr || hasErr; }
/// Check for any condition specifier that applies to data transfer items
/// in a PRINT, READ, WRITE, or WAIT statement. (WAIT may be irrelevant.)
bool hasTransferConditionSpec() const {
return hasErrorConditionSpec() || hasEnd || hasEor;
}
/// Check for any condition specifier, including IOMSG.
bool hasAnyConditionSpec() const {
return hasTransferConditionSpec() || ioMsg;
}
};
} // namespace
template <typename D>
static void genIoLoop(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie, const D &ioImpliedDo,
bool isFormatted, bool checkResult, mlir::Value &ok,
bool inLoop);
/// Helper function to retrieve the name of the IO function given the key `A`
template <typename A>
static constexpr const char *getName() {
return std::get<A>(Fortran::lower::newIOTable).name;
}
/// Helper function to retrieve the type model signature builder of the IO
/// function as defined by the key `A`
template <typename A>
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return std::get<A>(Fortran::lower::newIOTable).getTypeModel();
}
inline int64_t getLength(mlir::Type argTy) {
return argTy.cast<fir::SequenceType>().getShape()[0];
}
/// Get (or generate) the MLIR FuncOp for a given IO runtime function.
template <typename E>
static mlir::func::FuncOp getIORuntimeFunc(mlir::Location loc,
fir::FirOpBuilder &builder) {
llvm::StringRef name = getName<E>();
mlir::func::FuncOp func = builder.getNamedFunction(name);
if (func)
return func;
auto funTy = getTypeModel<E>()(builder.getContext());
func = builder.createFunction(loc, name, funTy);
func->setAttr(fir::FIROpsDialect::getFirRuntimeAttrName(),
builder.getUnitAttr());
func->setAttr("fir.io", builder.getUnitAttr());
return func;
}
/// Generate calls to end an IO statement. Return the IOSTAT value, if any.
/// It is the caller's responsibility to generate branches on that value.
static mlir::Value genEndIO(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
if (csi.ioMsg) {
mlir::func::FuncOp getIoMsg =
getIORuntimeFunc<mkIOKey(GetIoMsg)>(loc, builder);
builder.create<fir::CallOp>(
loc, getIoMsg,
mlir::ValueRange{
cookie,
builder.createConvert(loc, getIoMsg.getFunctionType().getInput(1),
fir::getBase(*csi.ioMsg)),
builder.createConvert(loc, getIoMsg.getFunctionType().getInput(2),
fir::getLen(*csi.ioMsg))});
}
mlir::func::FuncOp endIoStatement =
getIORuntimeFunc<mkIOKey(EndIoStatement)>(loc, builder);
auto call = builder.create<fir::CallOp>(loc, endIoStatement,
mlir::ValueRange{cookie});
mlir::Value iostat = call.getResult(0);
if (csi.bigUnitIfOp) {
stmtCtx.finalizeAndPop();
builder.create<fir::ResultOp>(loc, iostat);
builder.setInsertionPointAfter(csi.bigUnitIfOp);
iostat = csi.bigUnitIfOp.getResult(0);
}
if (csi.ioStatExpr) {
mlir::Value ioStatVar =
fir::getBase(converter.genExprAddr(loc, csi.ioStatExpr, stmtCtx));
mlir::Value ioStatResult =
builder.createConvert(loc, converter.genType(*csi.ioStatExpr), iostat);
builder.create<fir::StoreOp>(loc, ioStatResult, ioStatVar);
}
return csi.hasTransferConditionSpec() ? iostat : mlir::Value{};
}
/// Make the next call in the IO statement conditional on runtime result `ok`.
/// If a call returns `ok==false`, further suboperation calls for an IO
/// statement will be skipped. This may generate branch heavy, deeply nested
/// conditionals for IO statements with a large number of suboperations.
static void makeNextConditionalOn(fir::FirOpBuilder &builder,
mlir::Location loc, bool checkResult,
mlir::Value ok, bool inLoop = false) {
if (!checkResult || !ok)
// Either no IO calls need to be checked, or this will be the first call.
return;
// A previous IO call for a statement returned the bool `ok`. If this call
// is in a fir.iterate_while loop, the result must be propagated up to the
// loop scope as an extra ifOp result. (The propagation is done in genIoLoop.)
mlir::TypeRange resTy;
if (inLoop)
resTy = builder.getI1Type();
auto ifOp = builder.create<fir::IfOp>(loc, resTy, ok,
/*withElseRegion=*/inLoop);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// Derived type symbols may each be mapped to up to 4 defined IO procedures.
using DefinedIoProcMap = std::multimap<const Fortran::semantics::Symbol *,
Fortran::semantics::NonTbpDefinedIo>;
/// Get the current scope's non-type-bound defined IO procedures.
static DefinedIoProcMap
getDefinedIoProcMap(Fortran::lower::AbstractConverter &converter) {
const Fortran::semantics::Scope *scope = &converter.getCurrentScope();
for (; !scope->IsGlobal(); scope = &scope->parent())
if (scope->kind() == Fortran::semantics::Scope::Kind::MainProgram ||
scope->kind() == Fortran::semantics::Scope::Kind::Subprogram ||
scope->kind() == Fortran::semantics::Scope::Kind::BlockConstruct)
break;
return Fortran::semantics::CollectNonTbpDefinedIoGenericInterfaces(*scope,
false);
}
/// Check a set of defined IO procedures for any procedure pointer or dummy
/// procedures.
static bool hasLocalDefinedIoProc(DefinedIoProcMap &definedIoProcMap) {
for (auto &iface : definedIoProcMap) {
const Fortran::semantics::Symbol *procSym = iface.second.subroutine;
if (!procSym)
continue;
procSym = &procSym->GetUltimate();
if (Fortran::semantics::IsProcedurePointer(*procSym) ||
Fortran::semantics::IsDummy(*procSym))
return true;
}
return false;
}
/// Retrieve or generate a runtime description of the non-type-bound defined
/// IO procedures in the current scope. If any procedure is a dummy or a
/// procedure pointer, the result is local. Otherwise the result is static.
/// If there are no procedures, return a scope-independent default table with
/// an empty procedure list, but with the `ignoreNonTbpEntries` flag set. The
/// form of the description is defined in runtime header file non-tbp-dio.h.
static mlir::Value
getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter,
DefinedIoProcMap &definedIoProcMap) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::MLIRContext *context = builder.getContext();
mlir::Location loc = converter.getCurrentLocation();
mlir::Type refTy = fir::ReferenceType::get(mlir::NoneType::get(context));
std::string suffix = ".nonTbpDefinedIoTable";
std::string tableMangleName = definedIoProcMap.empty()
? "default" + suffix
: converter.mangleName(suffix);
if (auto table = builder.getNamedGlobal(tableMangleName))
return builder.createConvert(
loc, refTy,
builder.create<fir::AddrOfOp>(loc, table.resultType(),
table.getSymbol()));
mlir::StringAttr linkOnce = builder.createLinkOnceLinkage();
mlir::Type idxTy = builder.getIndexType();
mlir::Type sizeTy =
fir::runtime::getModel<std::size_t>()(builder.getContext());
mlir::Type intTy = fir::runtime::getModel<int>()(builder.getContext());
mlir::Type boolTy = fir::runtime::getModel<bool>()(builder.getContext());
mlir::Type listTy = fir::SequenceType::get(
definedIoProcMap.size(),
mlir::TupleType::get(context, {refTy, refTy, intTy, boolTy}));
mlir::Type tableTy = mlir::TupleType::get(
context, {sizeTy, fir::ReferenceType::get(listTy), boolTy});
// Define the list of NonTbpDefinedIo procedures.
bool tableIsLocal =
!definedIoProcMap.empty() && hasLocalDefinedIoProc(definedIoProcMap);
mlir::Value listAddr =
tableIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{};
std::string listMangleName = tableMangleName + ".list";
auto listFunc = [&](fir::FirOpBuilder &builder) {
mlir::Value list = builder.create<fir::UndefOp>(loc, listTy);
mlir::IntegerAttr intAttr[4];
for (int i = 0; i < 4; ++i)
intAttr[i] = builder.getIntegerAttr(idxTy, i);
llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{},
mlir::Attribute{}};
int n0 = 0, n1;
auto insert = [&](mlir::Value val) {
idx[1] = intAttr[n1++];
list = builder.create<fir::InsertValueOp>(loc, listTy, list, val,
builder.getArrayAttr(idx));
};
for (auto &iface : definedIoProcMap) {
idx[0] = builder.getIntegerAttr(idxTy, n0++);
n1 = 0;
// derived type description [const typeInfo::DerivedType &derivedType]
const Fortran::semantics::Symbol &dtSym = iface.first->GetUltimate();
std::string dtName = converter.mangleName(dtSym);
insert(builder.createConvert(
loc, refTy,
builder.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(converter.genType(dtSym)),
builder.getSymbolRefAttr(dtName))));
// defined IO procedure [void (*subroutine)()], may be null
const Fortran::semantics::Symbol *procSym = iface.second.subroutine;
if (procSym) {
procSym = &procSym->GetUltimate();
if (Fortran::semantics::IsProcedurePointer(*procSym)) {
TODO(loc, "defined IO procedure pointers");
} else if (Fortran::semantics::IsDummy(*procSym)) {
Fortran::lower::StatementContext stmtCtx;
insert(builder.create<fir::BoxAddrOp>(
loc, refTy,
fir::getBase(converter.genExprAddr(
loc,
Fortran::lower::SomeExpr{
Fortran::evaluate::ProcedureDesignator{*procSym}},
stmtCtx))));
} else {
std::string procName = converter.mangleName(*procSym);
mlir::func::FuncOp procDef = builder.getNamedFunction(procName);
if (!procDef)
procDef = Fortran::lower::getOrDeclareFunction(
procName, Fortran::evaluate::ProcedureDesignator{*procSym},
converter);
insert(
builder.createConvert(loc, refTy,
builder.create<fir::AddrOfOp>(
loc, procDef.getFunctionType(),
builder.getSymbolRefAttr(procName))));
}
} else {
insert(builder.createNullConstant(loc, refTy));
}
// defined IO variant, one of (read/write, formatted/unformatted)
// [common::DefinedIo definedIo]
insert(builder.createIntegerConstant(
loc, intTy, static_cast<int>(iface.second.definedIo)));
// polymorphic flag is set if first defined IO dummy arg is CLASS(T)
// [bool isDtvArgPolymorphic]
insert(builder.createIntegerConstant(loc, boolTy,
iface.second.isDtvArgPolymorphic));
}
if (tableIsLocal)
builder.create<fir::StoreOp>(loc, list, listAddr);
else
builder.create<fir::HasValueOp>(loc, list);
};
if (!definedIoProcMap.empty()) {
if (tableIsLocal)
listFunc(builder);
else
builder.createGlobalConstant(loc, listTy, listMangleName, listFunc,
linkOnce);
}
// Define the NonTbpDefinedIoTable.
mlir::Value tableAddr = tableIsLocal
? builder.create<fir::AllocaOp>(loc, tableTy)
: mlir::Value{};
auto tableFunc = [&](fir::FirOpBuilder &builder) {
mlir::Value table = builder.create<fir::UndefOp>(loc, tableTy);
// list item count [std::size_t items]
table = builder.create<fir::InsertValueOp>(
loc, tableTy, table,
builder.createIntegerConstant(loc, sizeTy, definedIoProcMap.size()),
builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0)));
// item list [const NonTbpDefinedIo *item]
if (definedIoProcMap.empty())
listAddr = builder.createNullConstant(loc, builder.getRefType(listTy));
else if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName))
listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(),
list.getSymbol());
assert(listAddr && "missing namelist object list");
table = builder.create<fir::InsertValueOp>(
loc, tableTy, table, listAddr,
builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1)));
// [bool ignoreNonTbpEntries] conservatively set to true
table = builder.create<fir::InsertValueOp>(
loc, tableTy, table, builder.createIntegerConstant(loc, boolTy, true),
builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2)));
if (tableIsLocal)
builder.create<fir::StoreOp>(loc, table, tableAddr);
else
builder.create<fir::HasValueOp>(loc, table);
};
if (tableIsLocal) {
tableFunc(builder);
} else {
fir::GlobalOp table = builder.createGlobal(
loc, tableTy, tableMangleName,
/*isConst=*/true, /*isTarget=*/false, tableFunc, linkOnce);
tableAddr = builder.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(tableTy), table.getSymbol());
}
assert(tableAddr && "missing NonTbpDefinedIo table result");
return builder.createConvert(loc, refTy, tableAddr);
}
static mlir::Value
getNonTbpDefinedIoTableAddr(Fortran::lower::AbstractConverter &converter) {
DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter);
return getNonTbpDefinedIoTableAddr(converter, definedIoProcMap);
}
/// Retrieve or generate a runtime description of NAMELIST group \p symbol.
/// The form of the description is defined in runtime header file namelist.h.
/// Static descriptors are generated for global objects; local descriptors for
/// local objects. If all descriptors and defined IO procedures are static,
/// the NamelistGroup is static.
static mlir::Value
getNamelistGroup(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &symbol,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
std::string groupMangleName = converter.mangleName(symbol);
if (auto group = builder.getNamedGlobal(groupMangleName))
return builder.create<fir::AddrOfOp>(loc, group.resultType(),
group.getSymbol());
const auto &details =
symbol.GetUltimate().get<Fortran::semantics::NamelistDetails>();
mlir::MLIRContext *context = builder.getContext();
mlir::StringAttr linkOnce = builder.createLinkOnceLinkage();
mlir::Type idxTy = builder.getIndexType();
mlir::Type sizeTy =
fir::runtime::getModel<std::size_t>()(builder.getContext());
mlir::Type charRefTy = fir::ReferenceType::get(builder.getIntegerType(8));
mlir::Type descRefTy =
fir::ReferenceType::get(fir::BoxType::get(mlir::NoneType::get(context)));
mlir::Type listTy = fir::SequenceType::get(
details.objects().size(),
mlir::TupleType::get(context, {charRefTy, descRefTy}));
mlir::Type groupTy = mlir::TupleType::get(
context, {charRefTy, sizeTy, fir::ReferenceType::get(listTy),
fir::ReferenceType::get(mlir::NoneType::get(context))});
auto stringAddress = [&](const Fortran::semantics::Symbol &symbol) {
return fir::factory::createStringLiteral(builder, loc,
symbol.name().ToString() + '\0');
};
// Define variable names, and static descriptors for global variables.
DefinedIoProcMap definedIoProcMap = getDefinedIoProcMap(converter);
bool groupIsLocal = hasLocalDefinedIoProc(definedIoProcMap);
stringAddress(symbol);
for (const Fortran::semantics::Symbol &s : details.objects()) {
stringAddress(s);
if (!Fortran::lower::symbolIsGlobal(s)) {
groupIsLocal = true;
continue;
}
// A global pointer or allocatable variable has a descriptor for typical
// accesses. Variables in multiple namelist groups may already have one.
// Create descriptors for other cases.
if (!IsAllocatableOrPointer(s)) {
std::string mangleName =
Fortran::lower::mangle::globalNamelistDescriptorName(s);
if (builder.getNamedGlobal(mangleName))
continue;
const auto expr = Fortran::evaluate::AsGenericExpr(s);
fir::BoxType boxTy =
fir::BoxType::get(fir::PointerType::get(converter.genType(s)));
auto descFunc = [&](fir::FirOpBuilder &b) {
auto box = Fortran::lower::genInitialDataTarget(
converter, loc, boxTy, *expr, /*couldBeInEquivalence=*/true);
b.create<fir::HasValueOp>(loc, box);
};
builder.createGlobalConstant(loc, boxTy, mangleName, descFunc, linkOnce);
}
}
// Define the list of Items.
mlir::Value listAddr =
groupIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{};
std::string listMangleName = groupMangleName + ".list";
auto listFunc = [&](fir::FirOpBuilder &builder) {
mlir::Value list = builder.create<fir::UndefOp>(loc, listTy);
mlir::IntegerAttr zero = builder.getIntegerAttr(idxTy, 0);
mlir::IntegerAttr one = builder.getIntegerAttr(idxTy, 1);
llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{},
mlir::Attribute{}};
int n = 0;
for (const Fortran::semantics::Symbol &s : details.objects()) {
idx[0] = builder.getIntegerAttr(idxTy, n++);
idx[1] = zero;
mlir::Value nameAddr =
builder.createConvert(loc, charRefTy, fir::getBase(stringAddress(s)));
list = builder.create<fir::InsertValueOp>(loc, listTy, list, nameAddr,
builder.getArrayAttr(idx));
idx[1] = one;
mlir::Value descAddr;
if (auto desc = builder.getNamedGlobal(
Fortran::lower::mangle::globalNamelistDescriptorName(s))) {
descAddr = builder.create<fir::AddrOfOp>(loc, desc.resultType(),
desc.getSymbol());
} else if (Fortran::semantics::FindCommonBlockContaining(s) &&
IsAllocatableOrPointer(s)) {
mlir::Type symType = converter.genType(s);
const Fortran::semantics::Symbol *commonBlockSym =
Fortran::semantics::FindCommonBlockContaining(s);
std::string commonBlockName = converter.mangleName(*commonBlockSym);
fir::GlobalOp commonGlobal = builder.getNamedGlobal(commonBlockName);
mlir::Value commonBlockAddr = builder.create<fir::AddrOfOp>(
loc, commonGlobal.resultType(), commonGlobal.getSymbol());
mlir::IntegerType i8Ty = builder.getIntegerType(8);
mlir::Type i8Ptr = builder.getRefType(i8Ty);
mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty));
mlir::Value base = builder.createConvert(loc, seqTy, commonBlockAddr);
std::size_t byteOffset = s.GetUltimate().offset();
mlir::Value offs = builder.createIntegerConstant(
loc, builder.getIndexType(), byteOffset);
mlir::Value varAddr = builder.create<fir::CoordinateOp>(
loc, i8Ptr, base, mlir::ValueRange{offs});
descAddr =
builder.createConvert(loc, builder.getRefType(symType), varAddr);
} else {
const auto expr = Fortran::evaluate::AsGenericExpr(s);
fir::ExtendedValue exv = converter.genExprAddr(*expr, stmtCtx);
mlir::Type type = fir::getBase(exv).getType();
if (mlir::Type baseTy = fir::dyn_cast_ptrOrBoxEleTy(type))
type = baseTy;
fir::BoxType boxType = fir::BoxType::get(fir::PointerType::get(type));
descAddr = builder.createTemporary(loc, boxType);
fir::MutableBoxValue box = fir::MutableBoxValue(descAddr, {}, {});
fir::factory::associateMutableBox(builder, loc, box, exv,
/*lbounds=*/std::nullopt);
}
descAddr = builder.createConvert(loc, descRefTy, descAddr);
list = builder.create<fir::InsertValueOp>(loc, listTy, list, descAddr,
builder.getArrayAttr(idx));
}
if (groupIsLocal)
builder.create<fir::StoreOp>(loc, list, listAddr);
else
builder.create<fir::HasValueOp>(loc, list);
};
if (groupIsLocal)
listFunc(builder);
else
builder.createGlobalConstant(loc, listTy, listMangleName, listFunc,
linkOnce);
// Define the group.
mlir::Value groupAddr = groupIsLocal
? builder.create<fir::AllocaOp>(loc, groupTy)
: mlir::Value{};
auto groupFunc = [&](fir::FirOpBuilder &builder) {
mlir::Value group = builder.create<fir::UndefOp>(loc, groupTy);
// group name [const char *groupName]
group = builder.create<fir::InsertValueOp>(
loc, groupTy, group,
builder.createConvert(loc, charRefTy,
fir::getBase(stringAddress(symbol))),
builder.getArrayAttr(builder.getIntegerAttr(idxTy, 0)));
// list item count [std::size_t items]
group = builder.create<fir::InsertValueOp>(
loc, groupTy, group,
builder.createIntegerConstant(loc, sizeTy, details.objects().size()),
builder.getArrayAttr(builder.getIntegerAttr(idxTy, 1)));
// item list [const Item *item]
if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName))
listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(),
list.getSymbol());
assert(listAddr && "missing namelist object list");
group = builder.create<fir::InsertValueOp>(
loc, groupTy, group, listAddr,
builder.getArrayAttr(builder.getIntegerAttr(idxTy, 2)));
// non-type-bound defined IO procedures
// [const NonTbpDefinedIoTable *nonTbpDefinedIo]
group = builder.create<fir::InsertValueOp>(
loc, groupTy, group,
getNonTbpDefinedIoTableAddr(converter, definedIoProcMap),
builder.getArrayAttr(builder.getIntegerAttr(idxTy, 3)));
if (groupIsLocal)
builder.create<fir::StoreOp>(loc, group, groupAddr);
else
builder.create<fir::HasValueOp>(loc, group);
};
if (groupIsLocal) {
groupFunc(builder);
} else {
fir::GlobalOp group = builder.createGlobal(
loc, groupTy, groupMangleName,
/*isConst=*/true, /*isTarget=*/false, groupFunc, linkOnce);
groupAddr = builder.create<fir::AddrOfOp>(loc, group.resultType(),
group.getSymbol());
}
assert(groupAddr && "missing namelist group result");
return groupAddr;
}
/// Generate a namelist IO call.
static void genNamelistIO(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie, mlir::func::FuncOp funcOp,
Fortran::semantics::Symbol &symbol, bool checkResult,
mlir::Value &ok,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
makeNextConditionalOn(builder, loc, checkResult, ok);
mlir::Type argType = funcOp.getFunctionType().getInput(1);
mlir::Value groupAddr = getNamelistGroup(converter, symbol, stmtCtx);
groupAddr = builder.createConvert(loc, argType, groupAddr);
llvm::SmallVector<mlir::Value> args = {cookie, groupAddr};
ok = builder.create<fir::CallOp>(loc, funcOp, args).getResult(0);
}
/// Get the output function to call for a value of the given type.
static mlir::func::FuncOp getOutputFunc(mlir::Location loc,
fir::FirOpBuilder &builder,
mlir::Type type, bool isFormatted) {
if (type.isa<fir::RecordType>())
return getIORuntimeFunc<mkIOKey(OutputDerivedType)>(loc, builder);
if (!isFormatted)
return getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, builder);
if (auto ty = type.dyn_cast<mlir::IntegerType>()) {
switch (ty.getWidth()) {
case 1:
return getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder);
case 8:
return getIORuntimeFunc<mkIOKey(OutputInteger8)>(loc, builder);
case 16:
return getIORuntimeFunc<mkIOKey(OutputInteger16)>(loc, builder);
case 32:
return getIORuntimeFunc<mkIOKey(OutputInteger32)>(loc, builder);
case 64:
return getIORuntimeFunc<mkIOKey(OutputInteger64)>(loc, builder);
case 128:
return getIORuntimeFunc<mkIOKey(OutputInteger128)>(loc, builder);
}
llvm_unreachable("unknown OutputInteger kind");
}
if (auto ty = type.dyn_cast<mlir::FloatType>()) {
if (auto width = ty.getWidth(); width == 32)
return getIORuntimeFunc<mkIOKey(OutputReal32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(OutputReal64)>(loc, builder);
}
auto kindMap = fir::getKindMapping(builder.getModule());
if (auto ty = type.dyn_cast<fir::ComplexType>()) {
// COMPLEX(KIND=k) corresponds to a pair of REAL(KIND=k).
auto width = kindMap.getRealBitsize(ty.getFKind());
if (width == 32)
return getIORuntimeFunc<mkIOKey(OutputComplex32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(OutputComplex64)>(loc, builder);
}
if (type.isa<fir::LogicalType>())
return getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder);
if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) {
// TODO: What would it mean if the default CHARACTER KIND is set to a wide
// character encoding scheme? How do we handle UTF-8? Is it a distinct KIND
// value? For now, assume that if the default CHARACTER KIND is 8 bit,
// then it is an ASCII string and UTF-8 is unsupported.
auto asciiKind = kindMap.defaultCharacterKind();
if (kindMap.getCharacterBitsize(asciiKind) == 8 &&
fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind)
return getIORuntimeFunc<mkIOKey(OutputAscii)>(loc, builder);
}
return getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, builder);
}
/// Generate a sequence of output data transfer calls.
static void genOutputItemList(
Fortran::lower::AbstractConverter &converter, mlir::Value cookie,
const std::list<Fortran::parser::OutputItem> &items, bool isFormatted,
bool checkResult, mlir::Value &ok, bool inLoop) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const Fortran::parser::OutputItem &item : items) {
if (const auto &impliedDo = std::get_if<1>(&item.u)) {
genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult,
ok, inLoop);
continue;
}
auto &pExpr = std::get<Fortran::parser::Expr>(item.u);
mlir::Location loc = converter.genLocation(pExpr.source);
makeNextConditionalOn(builder, loc, checkResult, ok, inLoop);
Fortran::lower::StatementContext stmtCtx;
const auto *expr = Fortran::semantics::GetExpr(pExpr);
if (!expr)
fir::emitFatalError(loc, "internal error: could not get evaluate::Expr");
mlir::Type itemTy = converter.genType(*expr);
mlir::func::FuncOp outputFunc =
getOutputFunc(loc, builder, itemTy, isFormatted);
mlir::Type argType = outputFunc.getFunctionType().getInput(1);
assert((isFormatted || argType.isa<fir::BoxType>()) &&
"expect descriptor for unformatted IO runtime");
llvm::SmallVector<mlir::Value> outputFuncArgs = {cookie};
fir::factory::CharacterExprHelper helper{builder, loc};
if (argType.isa<fir::BoxType>()) {
mlir::Value box = fir::getBase(converter.genExprBox(loc, *expr, stmtCtx));
outputFuncArgs.push_back(builder.createConvert(loc, argType, box));
if (itemTy.isa<fir::RecordType>())
outputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter));
} else if (helper.isCharacterScalar(itemTy)) {
fir::ExtendedValue exv = converter.genExprAddr(loc, expr, stmtCtx);
// scalar allocatable/pointer may also get here, not clear if
// genExprAddr will lower them as CharBoxValue or BoxValue.
if (!exv.getCharBox())
llvm::report_fatal_error(
"internal error: scalar character not in CharBox");
outputFuncArgs.push_back(builder.createConvert(
loc, outputFunc.getFunctionType().getInput(1), fir::getBase(exv)));
outputFuncArgs.push_back(builder.createConvert(
loc, outputFunc.getFunctionType().getInput(2), fir::getLen(exv)));
} else {
fir::ExtendedValue itemBox = converter.genExprValue(loc, expr, stmtCtx);
mlir::Value itemValue = fir::getBase(itemBox);
if (fir::isa_complex(itemTy)) {
auto parts =
fir::factory::Complex{builder, loc}.extractParts(itemValue);
outputFuncArgs.push_back(parts.first);
outputFuncArgs.push_back(parts.second);
} else {
itemValue = builder.createConvert(loc, argType, itemValue);
outputFuncArgs.push_back(itemValue);
}
}
ok = builder.create<fir::CallOp>(loc, outputFunc, outputFuncArgs)
.getResult(0);
}
}
/// Get the input function to call for a value of the given type.
static mlir::func::FuncOp getInputFunc(mlir::Location loc,
fir::FirOpBuilder &builder,
mlir::Type type, bool isFormatted) {
if (type.isa<fir::RecordType>())
return getIORuntimeFunc<mkIOKey(InputDerivedType)>(loc, builder);
if (!isFormatted)
return getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder);
if (auto ty = type.dyn_cast<mlir::IntegerType>())
return ty.getWidth() == 1
? getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder)
: getIORuntimeFunc<mkIOKey(InputInteger)>(loc, builder);
if (auto ty = type.dyn_cast<mlir::FloatType>()) {
if (auto width = ty.getWidth(); width == 32)
return getIORuntimeFunc<mkIOKey(InputReal32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(InputReal64)>(loc, builder);
}
auto kindMap = fir::getKindMapping(builder.getModule());
if (auto ty = type.dyn_cast<fir::ComplexType>()) {
auto width = kindMap.getRealBitsize(ty.getFKind());
if (width == 32)
return getIORuntimeFunc<mkIOKey(InputComplex32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(InputComplex64)>(loc, builder);
}
if (type.isa<fir::LogicalType>())
return getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder);
if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) {
auto asciiKind = kindMap.defaultCharacterKind();
if (kindMap.getCharacterBitsize(asciiKind) == 8 &&
fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind)
return getIORuntimeFunc<mkIOKey(InputAscii)>(loc, builder);
}
return getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder);
}
/// Interpret the lowest byte of a LOGICAL and store that value into the full
/// storage of the LOGICAL. The load, convert, and store effectively (sign or
/// zero) extends the lowest byte into the full LOGICAL value storage, as the
/// runtime is unaware of the LOGICAL value's actual bit width (it was passed
/// as a `bool&` to the runtime in order to be set).
static void boolRefToLogical(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value addr) {
auto boolType = builder.getRefType(builder.getI1Type());
auto boolAddr = builder.createConvert(loc, boolType, addr);
auto boolValue = builder.create<fir::LoadOp>(loc, boolAddr);
auto logicalType = fir::unwrapPassByRefType(addr.getType());
// The convert avoid making any assumptions about how LOGICALs are actually
// represented (it might end-up being either a signed or zero extension).
auto logicalValue = builder.createConvert(loc, logicalType, boolValue);
builder.create<fir::StoreOp>(loc, logicalValue, addr);
}
static mlir::Value
createIoRuntimeCallForItem(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::func::FuncOp inputFunc,
mlir::Value cookie, const fir::ExtendedValue &item) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type argType = inputFunc.getFunctionType().getInput(1);
llvm::SmallVector<mlir::Value> inputFuncArgs = {cookie};
if (argType.isa<fir::BaseBoxType>()) {
mlir::Value box = fir::getBase(item);
auto boxTy = box.getType().dyn_cast<fir::BaseBoxType>();
assert(boxTy && "must be previously emboxed");
inputFuncArgs.push_back(builder.createConvert(loc, argType, box));
if (boxTy.getEleTy().isa<fir::RecordType>())
inputFuncArgs.push_back(getNonTbpDefinedIoTableAddr(converter));
} else {
mlir::Value itemAddr = fir::getBase(item);
mlir::Type itemTy = fir::unwrapPassByRefType(itemAddr.getType());
inputFuncArgs.push_back(builder.createConvert(loc, argType, itemAddr));
fir::factory::CharacterExprHelper charHelper{builder, loc};
if (charHelper.isCharacterScalar(itemTy)) {
mlir::Value len = fir::getLen(item);
inputFuncArgs.push_back(builder.createConvert(
loc, inputFunc.getFunctionType().getInput(2), len));
} else if (itemTy.isa<mlir::IntegerType>()) {
inputFuncArgs.push_back(builder.create<mlir::arith::ConstantOp>(
loc, builder.getI32IntegerAttr(
itemTy.cast<mlir::IntegerType>().getWidth() / 8)));
}
}
auto call = builder.create<fir::CallOp>(loc, inputFunc, inputFuncArgs);
auto itemAddr = fir::getBase(item);
auto itemTy = fir::unwrapRefType(itemAddr.getType());
if (itemTy.isa<fir::LogicalType>())
boolRefToLogical(loc, builder, itemAddr);
return call.getResult(0);
}
/// Generate a sequence of input data transfer calls.
static void genInputItemList(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie,
const std::list<Fortran::parser::InputItem> &items,
bool isFormatted, bool checkResult,
mlir::Value &ok, bool inLoop) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const Fortran::parser::InputItem &item : items) {
if (const auto &impliedDo = std::get_if<1>(&item.u)) {
genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult,
ok, inLoop);
continue;
}
auto &pVar = std::get<Fortran::parser::Variable>(item.u);
mlir::Location loc = converter.genLocation(pVar.GetSource());
makeNextConditionalOn(builder, loc, checkResult, ok, inLoop);
Fortran::lower::StatementContext stmtCtx;
const auto *expr = Fortran::semantics::GetExpr(pVar);
if (!expr)
fir::emitFatalError(loc, "internal error: could not get evaluate::Expr");
if (Fortran::evaluate::HasVectorSubscript(*expr)) {
auto vectorSubscriptBox =
Fortran::lower::genVectorSubscriptBox(loc, converter, stmtCtx, *expr);
mlir::func::FuncOp inputFunc = getInputFunc(
loc, builder, vectorSubscriptBox.getElementType(), isFormatted);
const bool mustBox =
inputFunc.getFunctionType().getInput(1).isa<fir::BoxType>();
if (!checkResult) {
auto elementalGenerator = [&](const fir::ExtendedValue &element) {
createIoRuntimeCallForItem(converter, loc, inputFunc, cookie,
mustBox ? builder.createBox(loc, element)
: element);
};
vectorSubscriptBox.loopOverElements(builder, loc, elementalGenerator);
} else {
auto elementalGenerator =
[&](const fir::ExtendedValue &element) -> mlir::Value {
return createIoRuntimeCallForItem(
converter, loc, inputFunc, cookie,
mustBox ? builder.createBox(loc, element) : element);
};
if (!ok)
ok = builder.createBool(loc, true);
ok = vectorSubscriptBox.loopOverElementsWhile(builder, loc,
elementalGenerator, ok);
}
continue;
}
mlir::Type itemTy = converter.genType(*expr);
mlir::func::FuncOp inputFunc =
getInputFunc(loc, builder, itemTy, isFormatted);
auto itemExv = inputFunc.getFunctionType().getInput(1).isa<fir::BoxType>()
? converter.genExprBox(loc, *expr, stmtCtx)
: converter.genExprAddr(loc, expr, stmtCtx);
ok = createIoRuntimeCallForItem(converter, loc, inputFunc, cookie, itemExv);
}
}
/// Generate an io-implied-do loop.
template <typename D>
static void genIoLoop(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie, const D &ioImpliedDo,
bool isFormatted, bool checkResult, mlir::Value &ok,
bool inLoop) {
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
makeNextConditionalOn(builder, loc, checkResult, ok, inLoop);
const auto &itemList = std::get<0>(ioImpliedDo.t);
const auto &control = std::get<1>(ioImpliedDo.t);
const auto &loopSym = *control.name.thing.thing.symbol;
mlir::Value loopVar = fir::getBase(converter.genExprAddr(
Fortran::evaluate::AsGenericExpr(loopSym).value(), stmtCtx));
auto genControlValue = [&](const Fortran::parser::ScalarIntExpr &expr) {
mlir::Value v = fir::getBase(
converter.genExprValue(*Fortran::semantics::GetExpr(expr), stmtCtx));
return builder.createConvert(loc, builder.getIndexType(), v);
};
mlir::Value lowerValue = genControlValue(control.lower);
mlir::Value upperValue = genControlValue(control.upper);
mlir::Value stepValue =
control.step.has_value()
? genControlValue(*control.step)
: builder.create<mlir::arith::ConstantIndexOp>(loc, 1);
auto genItemList = [&](const D &ioImpliedDo) {
if constexpr (std::is_same_v<D, Fortran::parser::InputImpliedDo>)
genInputItemList(converter, cookie, itemList, isFormatted, checkResult,
ok, /*inLoop=*/true);
else
genOutputItemList(converter, cookie, itemList, isFormatted, checkResult,
ok, /*inLoop=*/true);
};
if (!checkResult) {
// No IO call result checks - the loop is a fir.do_loop op.
auto doLoopOp = builder.create<fir::DoLoopOp>(
loc, lowerValue, upperValue, stepValue, /*unordered=*/false,
/*finalCountValue=*/true);
builder.setInsertionPointToStart(doLoopOp.getBody());
mlir::Value lcv = builder.createConvert(
loc, fir::unwrapRefType(loopVar.getType()), doLoopOp.getInductionVar());
builder.create<fir::StoreOp>(loc, lcv, loopVar);
genItemList(ioImpliedDo);
builder.setInsertionPointToEnd(doLoopOp.getBody());
mlir::Value result = builder.create<mlir::arith::AddIOp>(
loc, doLoopOp.getInductionVar(), doLoopOp.getStep());
builder.create<fir::ResultOp>(loc, result);
builder.setInsertionPointAfter(doLoopOp);
// The loop control variable may be used after the loop.
lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()),
doLoopOp.getResult(0));
builder.create<fir::StoreOp>(loc, lcv, loopVar);
return;
}
// Check IO call results - the loop is a fir.iterate_while op.
if (!ok)
ok = builder.createBool(loc, true);
auto iterWhileOp = builder.create<fir::IterWhileOp>(
loc, lowerValue, upperValue, stepValue, ok, /*finalCountValue*/ true);
builder.setInsertionPointToStart(iterWhileOp.getBody());
mlir::Value lcv =
builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()),
iterWhileOp.getInductionVar());
builder.create<fir::StoreOp>(loc, lcv, loopVar);
ok = iterWhileOp.getIterateVar();
mlir::Value falseValue =
builder.createIntegerConstant(loc, builder.getI1Type(), 0);
genItemList(ioImpliedDo);
// Unwind nested IO call scopes, filling in true and false ResultOp's.
for (mlir::Operation *op = builder.getBlock()->getParentOp();
mlir::isa<fir::IfOp>(op); op = op->getBlock()->getParentOp()) {
auto ifOp = mlir::dyn_cast<fir::IfOp>(op);
mlir::Operation *lastOp = &ifOp.getThenRegion().front().back();
builder.setInsertionPointAfter(lastOp);
// The primary ifOp result is the result of an IO call or loop.
if (mlir::isa<fir::CallOp, fir::IfOp>(*lastOp))
builder.create<fir::ResultOp>(loc, lastOp->getResult(0));
else
builder.create<fir::ResultOp>(loc, ok); // loop result
// The else branch propagates an early exit false result.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, falseValue);
}
builder.setInsertionPointToEnd(iterWhileOp.getBody());
mlir::OpResult iterateResult = builder.getBlock()->back().getResult(0);
mlir::Value inductionResult0 = iterWhileOp.getInductionVar();
auto inductionResult1 = builder.create<mlir::arith::AddIOp>(
loc, inductionResult0, iterWhileOp.getStep());
auto inductionResult = builder.create<mlir::arith::SelectOp>(
loc, iterateResult, inductionResult1, inductionResult0);
llvm::SmallVector<mlir::Value> results = {inductionResult, iterateResult};
builder.create<fir::ResultOp>(loc, results);
ok = iterWhileOp.getResult(1);
builder.setInsertionPointAfter(iterWhileOp);
// The loop control variable may be used after the loop.
lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()),
iterWhileOp.getResult(0));
builder.create<fir::StoreOp>(loc, lcv, loopVar);
}
//===----------------------------------------------------------------------===//
// Default argument generation.
//===----------------------------------------------------------------------===//
static mlir::Value locToFilename(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Type toType) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
return builder.createConvert(loc, toType,
fir::factory::locationToFilename(builder, loc));
}
static mlir::Value locToLineNo(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Type toType) {
return fir::factory::locationToLineNo(converter.getFirOpBuilder(), loc,
toType);
}
static mlir::Value getDefaultScratch(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type toType) {
mlir::Value null = builder.create<mlir::arith::ConstantOp>(
loc, builder.getI64IntegerAttr(0));
return builder.createConvert(loc, toType, null);
}
static mlir::Value getDefaultScratchLen(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type toType) {
return builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(toType, 0));
}
/// Generate a reference to a buffer and the length of buffer given
/// a character expression. An array expression will be cast to scalar
/// character as long as they are contiguous.
static std::tuple<mlir::Value, mlir::Value>
genBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::lower::SomeExpr &expr, mlir::Type strTy,
mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
fir::ExtendedValue exprAddr = converter.genExprAddr(expr, stmtCtx);
fir::factory::CharacterExprHelper helper(builder, loc);
using ValuePair = std::pair<mlir::Value, mlir::Value>;
auto [buff, len] = exprAddr.match(
[&](const fir::CharBoxValue &x) -> ValuePair {
return {x.getBuffer(), x.getLen()};
},
[&](const fir::CharArrayBoxValue &x) -> ValuePair {
fir::CharBoxValue scalar = helper.toScalarCharacter(x);
return {scalar.getBuffer(), scalar.getLen()};
},
[&](const fir::BoxValue &) -> ValuePair {
// May need to copy before after IO to handle contiguous
// aspect. Not sure descriptor can get here though.
TODO(loc, "character descriptor to contiguous buffer");
},
[&](const auto &) -> ValuePair {
llvm::report_fatal_error(
"internal error: IO buffer is not a character");
});
buff = builder.createConvert(loc, strTy, buff);
len = builder.createConvert(loc, lenTy, len);
return {buff, len};
}
/// Lower a string literal. Many arguments to the runtime are conveyed as
/// Fortran CHARACTER literals.
template <typename A>
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
lowerStringLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
Fortran::lower::StatementContext &stmtCtx, const A &syntax,
mlir::Type strTy, mlir::Type lenTy, mlir::Type ty2 = {}) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto *expr = Fortran::semantics::GetExpr(syntax);
if (!expr)
fir::emitFatalError(loc, "internal error: null semantic expr in IO");
auto [buff, len] = genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx);
mlir::Value kind;
if (ty2) {
auto kindVal = expr->GetType().value().kind();
kind = builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(ty2, kindVal));
}
return {buff, len, kind};
}
/// Pass the body of the FORMAT statement in as if it were a CHARACTER literal
/// constant. NB: This is the prescribed manner in which the front-end passes
/// this information to lowering.
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
lowerSourceTextAsStringLit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, llvm::StringRef text,
mlir::Type strTy, mlir::Type lenTy) {
text = text.drop_front(text.find('('));
text = text.take_front(text.rfind(')') + 1);
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Value addrGlobalStringLit =
fir::getBase(fir::factory::createStringLiteral(builder, loc, text));
mlir::Value buff = builder.createConvert(loc, strTy, addrGlobalStringLit);
mlir::Value len = builder.createIntegerConstant(loc, lenTy, text.size());
return {buff, len, mlir::Value{}};
}
//===----------------------------------------------------------------------===//
// Handle IO statement specifiers.
// These are threaded together for a single statement via the passed cookie.
//===----------------------------------------------------------------------===//
/// Generic to build an integral argument to the runtime.
template <typename A, typename B>
mlir::Value genIntIOOption(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const B &spec) {
Fortran::lower::StatementContext localStatementCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc = getIORuntimeFunc<A>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
mlir::Value expr = fir::getBase(converter.genExprValue(
loc, Fortran::semantics::GetExpr(spec.v), localStatementCtx));
mlir::Value val = builder.createConvert(loc, ioFuncTy.getInput(1), expr);
llvm::SmallVector<mlir::Value> ioArgs = {cookie, val};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
/// Generic to build a string argument to the runtime. This passes a CHARACTER
/// as a pointer to the buffer and a LEN parameter.
template <typename A, typename B>
mlir::Value genCharIOOption(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const B &spec) {
Fortran::lower::StatementContext localStatementCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc = getIORuntimeFunc<A>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx, spec,
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <typename A>
mlir::Value genIOOption(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie, const A &spec) {
// These specifiers are processed in advance elsewhere - skip them here.
using PreprocessedSpecs =
std::tuple<Fortran::parser::EndLabel, Fortran::parser::EorLabel,
Fortran::parser::ErrLabel, Fortran::parser::FileUnitNumber,
Fortran::parser::Format, Fortran::parser::IoUnit,
Fortran::parser::MsgVariable, Fortran::parser::Name,
Fortran::parser::StatVariable>;
static_assert(Fortran::common::HasMember<A, PreprocessedSpecs>,
"missing genIOOPtion specialization");
return {};
}
template <>
mlir::Value genIOOption<Fortran::parser::FileNameExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::FileNameExpr &spec) {
Fortran::lower::StatementContext localStatementCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// has an extra KIND argument
mlir::func::FuncOp ioFunc = getIORuntimeFunc<mkIOKey(SetFile)>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx, spec,
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs{cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <>
mlir::Value genIOOption<Fortran::parser::ConnectSpec::CharExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::ConnectSpec::CharExpr &spec) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc;
switch (std::get<Fortran::parser::ConnectSpec::CharExpr::Kind>(spec.t)) {
case Fortran::parser::ConnectSpec::CharExpr::Kind::Access:
ioFunc = getIORuntimeFunc<mkIOKey(SetAccess)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Action:
ioFunc = getIORuntimeFunc<mkIOKey(SetAction)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Asynchronous:
ioFunc = getIORuntimeFunc<mkIOKey(SetAsynchronous)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Blank:
ioFunc = getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Decimal:
ioFunc = getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Delim:
ioFunc = getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Encoding:
ioFunc = getIORuntimeFunc<mkIOKey(SetEncoding)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Form:
ioFunc = getIORuntimeFunc<mkIOKey(SetForm)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Pad:
ioFunc = getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Position:
ioFunc = getIORuntimeFunc<mkIOKey(SetPosition)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Round:
ioFunc = getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Sign:
ioFunc = getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Carriagecontrol:
ioFunc = getIORuntimeFunc<mkIOKey(SetCarriagecontrol)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Convert:
ioFunc = getIORuntimeFunc<mkIOKey(SetConvert)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Dispose:
TODO(loc, "DISPOSE not part of the runtime::io interface");
}
Fortran::lower::StatementContext localStatementCtx;
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx,
std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t),
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <>
mlir::Value genIOOption<Fortran::parser::ConnectSpec::Recl>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::ConnectSpec::Recl &spec) {
return genIntIOOption<mkIOKey(SetRecl)>(converter, loc, cookie, spec);
}
template <>
mlir::Value genIOOption<Fortran::parser::StatusExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::StatusExpr &spec) {
return genCharIOOption<mkIOKey(SetStatus)>(converter, loc, cookie, spec.v);
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::CharExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IoControlSpec::CharExpr &spec) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc;
switch (std::get<Fortran::parser::IoControlSpec::CharExpr::Kind>(spec.t)) {
case Fortran::parser::IoControlSpec::CharExpr::Kind::Advance:
ioFunc = getIORuntimeFunc<mkIOKey(SetAdvance)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Blank:
ioFunc = getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Decimal:
ioFunc = getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Delim:
ioFunc = getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Pad:
ioFunc = getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Round:
ioFunc = getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Sign:
ioFunc = getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder);
break;
}
Fortran::lower::StatementContext localStatementCtx;
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx,
std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t),
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::Asynchronous>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie,
const Fortran::parser::IoControlSpec::Asynchronous &spec) {
return genCharIOOption<mkIOKey(SetAsynchronous)>(converter, loc, cookie,
spec.v);
}
template <>
mlir::Value genIOOption<Fortran::parser::IdVariable>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IdVariable &spec) {
TODO(loc, "asynchronous ID not implemented");
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::Pos>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IoControlSpec::Pos &spec) {
return genIntIOOption<mkIOKey(SetPos)>(converter, loc, cookie, spec);
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::Rec>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IoControlSpec::Rec &spec) {
return genIntIOOption<mkIOKey(SetRec)>(converter, loc, cookie, spec);
}
/// Generate runtime call to query the read size after an input statement if
/// the statement has SIZE control-spec.
template <typename A>
static void genIOReadSize(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const A &specList, bool checkResult) {
// This call is not conditional on the current IO status (ok) because the size
// needs to be filled even if some error condition (end-of-file...) was met
// during the input statement (in which case the runtime may return zero for
// the size read).
for (const auto &spec : specList)
if (const auto *size =
std::get_if<Fortran::parser::IoControlSpec::Size>(&spec.u)) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc =
getIORuntimeFunc<mkIOKey(GetSize)>(loc, builder);
auto sizeValue =
builder.create<fir::CallOp>(loc, ioFunc, mlir::ValueRange{cookie})
.getResult(0);
Fortran::lower::StatementContext localStatementCtx;
fir::ExtendedValue var = converter.genExprAddr(
loc, Fortran::semantics::GetExpr(size->v), localStatementCtx);
mlir::Value varAddr = fir::getBase(var);
mlir::Type varType = fir::unwrapPassByRefType(varAddr.getType());
mlir::Value sizeCast = builder.createConvert(loc, varType, sizeValue);
builder.create<fir::StoreOp>(loc, sizeCast, varAddr);
break;
}
}
//===----------------------------------------------------------------------===//
// Gather IO statement condition specifier information (if any).
//===----------------------------------------------------------------------===//
template <typename SEEK, typename A>
static bool hasX(const A &list) {
for (const auto &spec : list)
if (std::holds_alternative<SEEK>(spec.u))
return true;
return false;
}
template <typename SEEK, typename A>
static bool hasSpec(const A &stmt) {
return hasX<SEEK>(stmt.v);
}
/// Get the sought expression from the specifier list.
template <typename SEEK, typename A>
static const Fortran::lower::SomeExpr *getExpr(const A &stmt) {
for (const auto &spec : stmt.v)
if (auto *f = std::get_if<SEEK>(&spec.u))
return Fortran::semantics::GetExpr(f->v);
llvm::report_fatal_error("must have a file unit");
}
/// For each specifier, build the appropriate call, threading the cookie.
template <typename A>
static void threadSpecs(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const A &specList, bool checkResult, mlir::Value &ok) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const auto &spec : specList) {
makeNextConditionalOn(builder, loc, checkResult, ok);
ok = std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::IoControlSpec::Size &x) -> mlir::Value {
// Size must be queried after the related READ runtime calls, not
// before.
return ok;
},
[&](const Fortran::parser::ConnectSpec::Newunit &x) -> mlir::Value {
// Newunit must be queried after OPEN specifier runtime calls
// that may fail to avoid modifying the newunit variable if
// there is an error.
return ok;
},
[&](const auto &x) {
return genIOOption(converter, loc, cookie, x);
}},
spec.u);
}
}
/// Most IO statements allow one or more of five optional exception condition
/// handling specifiers: ERR, EOR, END, IOSTAT, and IOMSG. The first three
/// cause control flow to transfer to another statement. The final two return
/// information from the runtime, via a variable, about the nature of the
/// condition that occurred. These condition specifiers are handled here.
template <typename A>
ConditionSpecInfo lowerErrorSpec(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const A &specList) {
ConditionSpecInfo csi;
const Fortran::lower::SomeExpr *ioMsgExpr = nullptr;
for (const auto &spec : specList) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::StatVariable &var) {
csi.ioStatExpr = Fortran::semantics::GetExpr(var);
},
[&](const Fortran::parser::InquireSpec::IntVar &var) {
if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) ==
Fortran::parser::InquireSpec::IntVar::Kind::Iostat)
csi.ioStatExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarIntVariable>(var.t));
},
[&](const Fortran::parser::MsgVariable &var) {
ioMsgExpr = Fortran::semantics::GetExpr(var);
},
[&](const Fortran::parser::InquireSpec::CharVar &var) {
if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>(
var.t) ==
Fortran::parser::InquireSpec::CharVar::Kind::Iomsg)
ioMsgExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarDefaultCharVariable>(
var.t));
},
[&](const Fortran::parser::EndLabel &) { csi.hasEnd = true; },
[&](const Fortran::parser::EorLabel &) { csi.hasEor = true; },
[&](const Fortran::parser::ErrLabel &) { csi.hasErr = true; },
[](const auto &) {}},
spec.u);
}
if (ioMsgExpr) {
// iomsg is a variable, its evaluation may require temps, but it cannot
// itself be a temp, and it is ok to us a local statement context here.
Fortran::lower::StatementContext stmtCtx;
csi.ioMsg = converter.genExprAddr(loc, ioMsgExpr, stmtCtx);
}
return csi;
}
template <typename A>
static void
genConditionHandlerCall(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const A &specList, ConditionSpecInfo &csi) {
if (!csi.hasAnyConditionSpec())
return;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp enableHandlers =
getIORuntimeFunc<mkIOKey(EnableHandlers)>(loc, builder);
mlir::Type boolType = enableHandlers.getFunctionType().getInput(1);
auto boolValue = [&](bool specifierIsPresent) {
return builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(boolType, specifierIsPresent));
};
llvm::SmallVector<mlir::Value> ioArgs = {cookie,
boolValue(csi.ioStatExpr != nullptr),
boolValue(csi.hasErr),
boolValue(csi.hasEnd),
boolValue(csi.hasEor),
boolValue(csi.ioMsg.has_value())};
builder.create<fir::CallOp>(loc, enableHandlers, ioArgs);
}
//===----------------------------------------------------------------------===//
// Data transfer helpers
//===----------------------------------------------------------------------===//
template <typename SEEK, typename A>
static bool hasIOControl(const A &stmt) {
return hasX<SEEK>(stmt.controls);
}
template <typename SEEK, typename A>
static const auto *getIOControl(const A &stmt) {
for (const auto &spec : stmt.controls)
if (const auto *result = std::get_if<SEEK>(&spec.u))
return result;
return static_cast<const SEEK *>(nullptr);
}
/// Returns true iff the expression in the parse tree is not really a format but
/// rather a namelist group.
template <typename A>
static bool formatIsActuallyNamelist(const A &format) {
if (auto *e = std::get_if<Fortran::parser::Expr>(&format.u)) {
auto *expr = Fortran::semantics::GetExpr(*e);
if (const Fortran::semantics::Symbol *y =
Fortran::evaluate::UnwrapWholeSymbolDataRef(*expr))
return y->has<Fortran::semantics::NamelistDetails>();
}
return false;
}
template <typename A>
static bool isDataTransferFormatted(const A &stmt) {
if (stmt.format)
return !formatIsActuallyNamelist(*stmt.format);
return hasIOControl<Fortran::parser::Format>(stmt);
}
template <>
constexpr bool isDataTransferFormatted<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &) {
return true; // PRINT is always formatted
}
template <typename A>
static bool isDataTransferList(const A &stmt) {
if (stmt.format)
return std::holds_alternative<Fortran::parser::Star>(stmt.format->u);
if (auto *mem = getIOControl<Fortran::parser::Format>(stmt))
return std::holds_alternative<Fortran::parser::Star>(mem->u);
return false;
}
template <>
bool isDataTransferList<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &stmt) {
return std::holds_alternative<Fortran::parser::Star>(
std::get<Fortran::parser::Format>(stmt.t).u);
}
template <typename A>
static bool isDataTransferInternal(const A &stmt) {
if (stmt.iounit.has_value())
return std::holds_alternative<Fortran::parser::Variable>(stmt.iounit->u);
if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt))
return std::holds_alternative<Fortran::parser::Variable>(unit->u);
return false;
}
template <>
constexpr bool isDataTransferInternal<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &) {
return false;
}
/// If the variable `var` is an array or of a KIND other than the default
/// (normally 1), then a descriptor is required by the runtime IO API. This
/// condition holds even in F77 sources.
static std::optional<fir::ExtendedValue> getVariableBufferRequiredDescriptor(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::parser::Variable &var,
Fortran::lower::StatementContext &stmtCtx) {
fir::ExtendedValue varBox =
converter.genExprBox(loc, var.typedExpr->v.value(), stmtCtx);
fir::KindTy defCharKind = converter.getKindMap().defaultCharacterKind();
mlir::Value varAddr = fir::getBase(varBox);
if (fir::factory::CharacterExprHelper::getCharacterOrSequenceKind(
varAddr.getType()) != defCharKind)
return varBox;
if (fir::factory::CharacterExprHelper::isArray(varAddr.getType()))
return varBox;
return std::nullopt;
}
template <typename A>
static std::optional<fir::ExtendedValue>
maybeGetInternalIODescriptor(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const A &stmt,
Fortran::lower::StatementContext &stmtCtx) {
if (stmt.iounit.has_value())
if (auto *var = std::get_if<Fortran::parser::Variable>(&stmt.iounit->u))
return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx);
if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt))
if (auto *var = std::get_if<Fortran::parser::Variable>(&unit->u))
return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx);
return std::nullopt;
}
template <>
inline std::optional<fir::ExtendedValue>
maybeGetInternalIODescriptor<Fortran::parser::PrintStmt>(
Fortran::lower::AbstractConverter &, mlir::Location loc,
const Fortran::parser::PrintStmt &, Fortran::lower::StatementContext &) {
return std::nullopt;
}
template <typename A>
static bool isDataTransferAsynchronous(mlir::Location loc, const A &stmt) {
if (auto *asynch =
getIOControl<Fortran::parser::IoControlSpec::Asynchronous>(stmt)) {
// FIXME: should contain a string of YES or NO
TODO(loc, "asynchronous transfers not implemented in runtime");
}
return false;
}
template <>
bool isDataTransferAsynchronous<Fortran::parser::PrintStmt>(
mlir::Location, const Fortran::parser::PrintStmt &) {
return false;
}
template <typename A>
static bool isDataTransferNamelist(const A &stmt) {
if (stmt.format)
return formatIsActuallyNamelist(*stmt.format);
return hasIOControl<Fortran::parser::Name>(stmt);
}
template <>
constexpr bool isDataTransferNamelist<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &) {
return false;
}
/// Lowers a format statment that uses an assigned variable label reference as
/// a select operation to allow for run-time selection of the format statement.
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
lowerReferenceAsStringSelect(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &expr,
mlir::Type strTy, mlir::Type lenTy,
Fortran::lower::StatementContext &stmtCtx) {
// Possible optimization TODO: Instead of inlining a selectOp every time there
// is a variable reference to a format statement, a function with the selectOp
// could be generated to reduce code size. It is not clear if such an
// optimization would be deployed very often or improve the object code
// beyond, say, what GVN/GCM might produce.
// Create the requisite blocks to inline a selectOp.
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Block *startBlock = builder.getBlock();
mlir::Block *endBlock = startBlock->splitBlock(builder.getInsertionPoint());
mlir::Block *block = startBlock->splitBlock(builder.getInsertionPoint());
builder.setInsertionPointToEnd(block);
llvm::SmallVector<int64_t> indexList;
llvm::SmallVector<mlir::Block *> blockList;
auto symbol = GetLastSymbol(&expr);
Fortran::lower::pft::LabelSet labels;
[[maybe_unused]] auto foundLabelSet =
converter.lookupLabelSet(*symbol, labels);
assert(foundLabelSet && "Label not found in map");
for (auto label : labels) {
indexList.push_back(label);
auto *eval = converter.lookupLabel(label);
assert(eval && "Label is missing from the table");
llvm::StringRef text = toStringRef(eval->position);
mlir::Value stringRef;
mlir::Value stringLen;
if (eval->isA<Fortran::parser::FormatStmt>()) {
assert(text.contains('(') && "FORMAT is unexpectedly ill-formed");
// This is a format statement, so extract the spec from the text.
std::tuple<mlir::Value, mlir::Value, mlir::Value> stringLit =
lowerSourceTextAsStringLit(converter, loc, text, strTy, lenTy);
stringRef = std::get<0>(stringLit);
stringLen = std::get<1>(stringLit);
} else {
// This is not a format statement, so use null.
stringRef = builder.createConvert(
loc, strTy,
builder.createIntegerConstant(loc, builder.getIndexType(), 0));
stringLen = builder.createIntegerConstant(loc, lenTy, 0);
}
// Pass the format string reference and the string length out of the select
// statement.
llvm::SmallVector<mlir::Value> args = {stringRef, stringLen};
builder.create<mlir::cf::BranchOp>(loc, endBlock, args);
// Add block to the list of cases and make a new one.
blockList.push_back(block);
block = block->splitBlock(builder.getInsertionPoint());
builder.setInsertionPointToEnd(block);
}
// Create the unit case which should result in an error.
auto *unitBlock = block->splitBlock(builder.getInsertionPoint());
builder.setInsertionPointToEnd(unitBlock);
// Crash the program.
builder.create<fir::UnreachableOp>(loc);
// Add unit case to the select statement.
blockList.push_back(unitBlock);
// Lower the selectOp.
builder.setInsertionPointToEnd(startBlock);
auto label = fir::getBase(converter.genExprValue(loc, &expr, stmtCtx));
builder.create<fir::SelectOp>(loc, label, indexList, blockList);
builder.setInsertionPointToEnd(endBlock);
endBlock->addArgument(strTy, loc);
endBlock->addArgument(lenTy, loc);
// Handle and return the string reference and length selected by the selectOp.
auto buff = endBlock->getArgument(0);
auto len = endBlock->getArgument(1);
return {buff, len, mlir::Value{}};
}
/// Generate a reference to a format string. There are four cases - a format
/// statement label, a character format expression, an integer that holds the
/// label of a format statement, and the * case. The first three are done here.
/// The * case is done elsewhere.
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
genFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::parser::Format &format, mlir::Type strTy,
mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) {
if (const auto *label = std::get_if<Fortran::parser::Label>(&format.u)) {
// format statement label
auto eval = converter.lookupLabel(*label);
assert(eval && "FORMAT not found in PROCEDURE");
return lowerSourceTextAsStringLit(
converter, loc, toStringRef(eval->position), strTy, lenTy);
}
const auto *pExpr = std::get_if<Fortran::parser::Expr>(&format.u);
assert(pExpr && "missing format expression");
auto e = Fortran::semantics::GetExpr(*pExpr);
if (Fortran::semantics::ExprHasTypeCategory(
*e, Fortran::common::TypeCategory::Character)) {
// character expression
if (e->Rank())
// Array: return address(descriptor) and no length (and no kind value).
return {fir::getBase(converter.genExprBox(loc, *e, stmtCtx)),
mlir::Value{}, mlir::Value{}};
// Scalar: return address(format) and format length (and no kind value).
return lowerStringLit(converter, loc, stmtCtx, *pExpr, strTy, lenTy);
}
if (Fortran::semantics::ExprHasTypeCategory(
*e, Fortran::common::TypeCategory::Integer) &&
e->Rank() == 0 && Fortran::evaluate::UnwrapWholeSymbolDataRef(*e)) {
// Treat as a scalar integer variable containing an ASSIGN label.
return lowerReferenceAsStringSelect(converter, loc, *e, strTy, lenTy,
stmtCtx);
}
// Legacy extension: it is possible that `*e` is not a scalar INTEGER
// variable containing a label value. The output appears to be the source text
// that initialized the variable? Needs more investigatation.
TODO(loc, "io-control-spec contains a reference to a non-integer, "
"non-scalar, or non-variable");
}
template <typename A>
std::tuple<mlir::Value, mlir::Value, mlir::Value>
getFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const A &stmt, mlir::Type strTy, mlir::Type lenTy,
Fortran ::lower::StatementContext &stmtCtx) {
if (stmt.format && !formatIsActuallyNamelist(*stmt.format))
return genFormat(converter, loc, *stmt.format, strTy, lenTy, stmtCtx);
return genFormat(converter, loc, *getIOControl<Fortran::parser::Format>(stmt),
strTy, lenTy, stmtCtx);
}
template <>
std::tuple<mlir::Value, mlir::Value, mlir::Value>
getFormat<Fortran::parser::PrintStmt>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::parser::PrintStmt &stmt, mlir::Type strTy, mlir::Type lenTy,
Fortran::lower::StatementContext &stmtCtx) {
return genFormat(converter, loc, std::get<Fortran::parser::Format>(stmt.t),
strTy, lenTy, stmtCtx);
}
/// Get a buffer for an internal file data transfer.
template <typename A>
std::tuple<mlir::Value, mlir::Value>
getBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const A &stmt, mlir::Type strTy, mlir::Type lenTy,
Fortran::lower::StatementContext &stmtCtx) {
const Fortran::parser::IoUnit *iounit =
stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt);
if (iounit)
if (auto *var = std::get_if<Fortran::parser::Variable>(&iounit->u))
if (auto *expr = Fortran::semantics::GetExpr(*var))
return genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx);
llvm::report_fatal_error("failed to get IoUnit expr");
}
static mlir::Value genIOUnitNumber(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr *iounit,
mlir::Type ty, ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
auto rawUnit = fir::getBase(converter.genExprValue(loc, iounit, stmtCtx));
unsigned rawUnitWidth =
rawUnit.getType().cast<mlir::IntegerType>().getWidth();
unsigned runtimeArgWidth = ty.cast<mlir::IntegerType>().getWidth();
// The IO runtime supports `int` unit numbers, if the unit number may
// overflow when passed to the IO runtime, check that the unit number is
// in range before calling the BeginXXX.
if (rawUnitWidth > runtimeArgWidth) {
mlir::func::FuncOp check =
rawUnitWidth <= 64
? getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange64)>(loc, builder)
: getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange128)>(loc,
builder);
mlir::FunctionType funcTy = check.getFunctionType();
llvm::SmallVector<mlir::Value> args;
args.push_back(builder.createConvert(loc, funcTy.getInput(0), rawUnit));
args.push_back(builder.createBool(loc, csi.hasErrorConditionSpec()));
if (csi.ioMsg) {
args.push_back(builder.createConvert(loc, funcTy.getInput(2),
fir::getBase(*csi.ioMsg)));
args.push_back(builder.createConvert(loc, funcTy.getInput(3),
fir::getLen(*csi.ioMsg)));
} else {
args.push_back(builder.createNullConstant(loc, funcTy.getInput(2)));
args.push_back(
fir::factory::createZeroValue(builder, loc, funcTy.getInput(3)));
}
mlir::Value file = locToFilename(converter, loc, funcTy.getInput(4));
mlir::Value line = locToLineNo(converter, loc, funcTy.getInput(5));
args.push_back(file);
args.push_back(line);
auto checkCall = builder.create<fir::CallOp>(loc, check, args);
if (csi.hasErrorConditionSpec()) {
mlir::Value iostat = checkCall.getResult(0);
mlir::Type iostatTy = iostat.getType();
mlir::Value zero = fir::factory::createZeroValue(builder, loc, iostatTy);
mlir::Value unitIsOK = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, iostat, zero);
auto ifOp = builder.create<fir::IfOp>(loc, iostatTy, unitIsOK,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, iostat);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
stmtCtx.pushScope();
csi.bigUnitIfOp = ifOp;
}
}
return builder.createConvert(loc, ty, rawUnit);
}
static mlir::Value genIOUnit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::parser::IoUnit *iounit,
mlir::Type ty, ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
if (iounit)
if (auto *e = std::get_if<Fortran::parser::FileUnitNumber>(&iounit->u))
return genIOUnitNumber(converter, loc, Fortran::semantics::GetExpr(*e),
ty, csi, stmtCtx);
return builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(ty, Fortran::runtime::io::DefaultUnit));
}
template <typename A>
static mlir::Value getIOUnit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const A &stmt, mlir::Type ty,
ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
const Fortran::parser::IoUnit *iounit =
stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt);
return genIOUnit(converter, loc, iounit, ty, csi, stmtCtx);
}
//===----------------------------------------------------------------------===//
// Generators for each IO statement type.
//===----------------------------------------------------------------------===//
template <typename K, typename S>
static mlir::Value genBasicIOStmt(Fortran::lower::AbstractConverter &converter,
const S &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v);
mlir::func::FuncOp beginFunc = getIORuntimeFunc<K>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(
converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt),
beginFuncTy.getInput(0), csi, stmtCtx);
mlir::Value un = builder.createConvert(loc, beginFuncTy.getInput(0), unit);
mlir::Value file = locToFilename(converter, loc, beginFuncTy.getInput(1));
mlir::Value line = locToLineNo(converter, loc, beginFuncTy.getInput(2));
auto call = builder.create<fir::CallOp>(loc, beginFunc,
mlir::ValueRange{un, file, line});
mlir::Value cookie = call.getResult(0);
genConditionHandlerCall(converter, loc, cookie, stmt.v, csi);
mlir::Value ok;
auto insertPt = builder.saveInsertionPoint();
threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok);
builder.restoreInsertionPoint(insertPt);
return genEndIO(converter, converter.getCurrentLocation(), cookie, csi,
stmtCtx);
}
mlir::Value Fortran::lower::genBackspaceStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::BackspaceStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginBackspace)>(converter, stmt);
}
mlir::Value Fortran::lower::genEndfileStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::EndfileStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginEndfile)>(converter, stmt);
}
mlir::Value
Fortran::lower::genFlushStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::FlushStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginFlush)>(converter, stmt);
}
mlir::Value
Fortran::lower::genRewindStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::RewindStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginRewind)>(converter, stmt);
}
static mlir::Value
genNewunitSpec(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie,
const std::list<Fortran::parser::ConnectSpec> &specList) {
for (const auto &spec : specList)
if (auto *newunit =
std::get_if<Fortran::parser::ConnectSpec::Newunit>(&spec.u)) {
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc =
getIORuntimeFunc<mkIOKey(GetNewUnit)>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
const auto *var = Fortran::semantics::GetExpr(newunit->v);
mlir::Value addr = builder.createConvert(
loc, ioFuncTy.getInput(1),
fir::getBase(converter.genExprAddr(loc, var, stmtCtx)));
auto kind = builder.createIntegerConstant(loc, ioFuncTy.getInput(2),
var->GetType().value().kind());
llvm::SmallVector<mlir::Value> ioArgs = {cookie, addr, kind};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
llvm_unreachable("missing Newunit spec");
}
mlir::Value
Fortran::lower::genOpenStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::OpenStmt &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::func::FuncOp beginFunc;
llvm::SmallVector<mlir::Value> beginArgs;
mlir::Location loc = converter.getCurrentLocation();
ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v);
bool hasNewunitSpec = false;
if (hasSpec<Fortran::parser::FileUnitNumber>(stmt)) {
beginFunc = getIORuntimeFunc<mkIOKey(BeginOpenUnit)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(
converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt),
beginFuncTy.getInput(0), csi, stmtCtx);
beginArgs.push_back(unit);
beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1)));
beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2)));
} else {
hasNewunitSpec = hasSpec<Fortran::parser::ConnectSpec::Newunit>(stmt);
assert(hasNewunitSpec && "missing unit specifier");
beginFunc = getIORuntimeFunc<mkIOKey(BeginOpenNewUnit)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(0)));
beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(1)));
}
auto cookie =
builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0);
genConditionHandlerCall(converter, loc, cookie, stmt.v, csi);
mlir::Value ok;
auto insertPt = builder.saveInsertionPoint();
threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok);
if (hasNewunitSpec)
genNewunitSpec(converter, loc, cookie, stmt.v);
builder.restoreInsertionPoint(insertPt);
return genEndIO(converter, loc, cookie, csi, stmtCtx);
}
mlir::Value
Fortran::lower::genCloseStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::CloseStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginClose)>(converter, stmt);
}
mlir::Value
Fortran::lower::genWaitStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::WaitStmt &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v);
bool hasId = hasSpec<Fortran::parser::IdExpr>(stmt);
mlir::func::FuncOp beginFunc =
hasId ? getIORuntimeFunc<mkIOKey(BeginWait)>(loc, builder)
: getIORuntimeFunc<mkIOKey(BeginWaitAll)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(
converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt),
beginFuncTy.getInput(0), csi, stmtCtx);
llvm::SmallVector<mlir::Value> args{unit};
if (hasId) {
mlir::Value id = fir::getBase(converter.genExprValue(
loc, getExpr<Fortran::parser::IdExpr>(stmt), stmtCtx));
args.push_back(builder.createConvert(loc, beginFuncTy.getInput(1), id));
args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(2)));
args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(3)));
} else {
args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1)));
args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2)));
}
auto cookie = builder.create<fir::CallOp>(loc, beginFunc, args).getResult(0);
genConditionHandlerCall(converter, loc, cookie, stmt.v, csi);
return genEndIO(converter, converter.getCurrentLocation(), cookie, csi,
stmtCtx);
}
//===----------------------------------------------------------------------===//
// Data transfer statements.
//
// There are several dimensions to the API with regard to data transfer
// statements that need to be considered.
//
// - input (READ) vs. output (WRITE, PRINT)
// - unformatted vs. formatted vs. list vs. namelist
// - synchronous vs. asynchronous
// - external vs. internal
//===----------------------------------------------------------------------===//
// Get the begin data transfer IO function to call for the given values.
template <bool isInput>
mlir::func::FuncOp
getBeginDataTransferFunc(mlir::Location loc, fir::FirOpBuilder &builder,
bool isFormatted, bool isListOrNml, bool isInternal,
bool isInternalWithDesc, bool isAsync) {
if constexpr (isInput) {
if (isFormatted || isListOrNml) {
if (isInternal) {
if (isInternalWithDesc) {
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalArrayListInput)>(
loc, builder);
return getIORuntimeFunc<mkIOKey(BeginInternalArrayFormattedInput)>(
loc, builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalListInput)>(loc,
builder);
return getIORuntimeFunc<mkIOKey(BeginInternalFormattedInput)>(loc,
builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginExternalListInput)>(loc, builder);
return getIORuntimeFunc<mkIOKey(BeginExternalFormattedInput)>(loc,
builder);
}
return getIORuntimeFunc<mkIOKey(BeginUnformattedInput)>(loc, builder);
} else {
if (isFormatted || isListOrNml) {
if (isInternal) {
if (isInternalWithDesc) {
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalArrayListOutput)>(
loc, builder);
return getIORuntimeFunc<mkIOKey(BeginInternalArrayFormattedOutput)>(
loc, builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalListOutput)>(loc,
builder);
return getIORuntimeFunc<mkIOKey(BeginInternalFormattedOutput)>(loc,
builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginExternalListOutput)>(loc, builder);
return getIORuntimeFunc<mkIOKey(BeginExternalFormattedOutput)>(loc,
builder);
}
return getIORuntimeFunc<mkIOKey(BeginUnformattedOutput)>(loc, builder);
}
}
/// Generate the arguments of a begin data transfer statement call.
template <bool hasIOCtrl, typename A>
void genBeginDataTransferCallArgs(
llvm::SmallVectorImpl<mlir::Value> &ioArgs,
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const A &stmt, mlir::FunctionType ioFuncTy, bool isFormatted,
bool isListOrNml, [[maybe_unused]] bool isInternal,
[[maybe_unused]] bool isAsync,
const std::optional<fir::ExtendedValue> &descRef, ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto maybeGetFormatArgs = [&]() {
if (!isFormatted || isListOrNml)
return;
std::tuple triple =
getFormat(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()),
ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx);
mlir::Value address = std::get<0>(triple);
mlir::Value length = std::get<1>(triple);
if (length) {
// Scalar format: string arg + length arg; no format descriptor arg
ioArgs.push_back(address); // format string
ioArgs.push_back(length); // format length
ioArgs.push_back(
builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size())));
return;
}
// Array format: no string arg, no length arg; format descriptor arg
ioArgs.push_back(
builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back(
builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back( // format descriptor
builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), address));
};
if constexpr (hasIOCtrl) { // READ or WRITE
if (isInternal) {
// descriptor or scalar variable; maybe explicit format; scratch area
if (descRef) {
mlir::Value desc = builder.createBox(loc, *descRef);
ioArgs.push_back(
builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), desc));
} else {
std::tuple<mlir::Value, mlir::Value> pair =
getBuffer(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()),
ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx);
ioArgs.push_back(std::get<0>(pair)); // scalar character variable
ioArgs.push_back(std::get<1>(pair)); // character length
}
maybeGetFormatArgs();
ioArgs.push_back( // internal scratch area buffer
getDefaultScratch(builder, loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back( // buffer length
getDefaultScratchLen(builder, loc, ioFuncTy.getInput(ioArgs.size())));
} else { // external IO - maybe explicit format; unit
if (isAsync)
TODO(loc, "asynchronous");
maybeGetFormatArgs();
ioArgs.push_back(getIOUnit(converter, loc, stmt,
ioFuncTy.getInput(ioArgs.size()), csi,
stmtCtx));
}
} else { // PRINT - maybe explicit format; default unit
maybeGetFormatArgs();
ioArgs.push_back(builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(ioFuncTy.getInput(ioArgs.size()),
Fortran::runtime::io::DefaultUnit)));
}
// File name and line number are always the last two arguments.
ioArgs.push_back(
locToFilename(converter, loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back(
locToLineNo(converter, loc, ioFuncTy.getInput(ioArgs.size())));
}
template <bool isInput, bool hasIOCtrl = true, typename A>
static mlir::Value
genDataTransferStmt(Fortran::lower::AbstractConverter &converter,
const A &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
const bool isFormatted = isDataTransferFormatted(stmt);
const bool isList = isFormatted ? isDataTransferList(stmt) : false;
const bool isInternal = isDataTransferInternal(stmt);
std::optional<fir::ExtendedValue> descRef =
isInternal ? maybeGetInternalIODescriptor(converter, loc, stmt, stmtCtx)
: std::nullopt;
const bool isInternalWithDesc = descRef.has_value();
const bool isAsync = isDataTransferAsynchronous(loc, stmt);
const bool isNml = isDataTransferNamelist(stmt);
// Generate an EnableHandlers call and remaining specifier calls.
ConditionSpecInfo csi;
if constexpr (hasIOCtrl) {
csi = lowerErrorSpec(converter, loc, stmt.controls);
}
// Generate the begin data transfer function call.
mlir::func::FuncOp ioFunc = getBeginDataTransferFunc<isInput>(
loc, builder, isFormatted, isList || isNml, isInternal,
isInternalWithDesc, isAsync);
llvm::SmallVector<mlir::Value> ioArgs;
genBeginDataTransferCallArgs<hasIOCtrl>(
ioArgs, converter, loc, stmt, ioFunc.getFunctionType(), isFormatted,
isList || isNml, isInternal, isAsync, descRef, csi, stmtCtx);
mlir::Value cookie =
builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
auto insertPt = builder.saveInsertionPoint();
mlir::Value ok;
if constexpr (hasIOCtrl) {
genConditionHandlerCall(converter, loc, cookie, stmt.controls, csi);
threadSpecs(converter, loc, cookie, stmt.controls,
csi.hasErrorConditionSpec(), ok);
}
// Generate data transfer list calls.
if constexpr (isInput) { // READ
if (isNml)
genNamelistIO(converter, cookie,
getIORuntimeFunc<mkIOKey(InputNamelist)>(loc, builder),
*getIOControl<Fortran::parser::Name>(stmt)->symbol,
csi.hasTransferConditionSpec(), ok, stmtCtx);
else
genInputItemList(converter, cookie, stmt.items, isFormatted,
csi.hasTransferConditionSpec(), ok, /*inLoop=*/false);
} else if constexpr (std::is_same_v<A, Fortran::parser::WriteStmt>) {
if (isNml)
genNamelistIO(converter, cookie,
getIORuntimeFunc<mkIOKey(OutputNamelist)>(loc, builder),
*getIOControl<Fortran::parser::Name>(stmt)->symbol,
csi.hasTransferConditionSpec(), ok, stmtCtx);
else
genOutputItemList(converter, cookie, stmt.items, isFormatted,
csi.hasTransferConditionSpec(), ok,
/*inLoop=*/false);
} else { // PRINT
genOutputItemList(converter, cookie, std::get<1>(stmt.t), isFormatted,
csi.hasTransferConditionSpec(), ok,
/*inLoop=*/false);
}
builder.restoreInsertionPoint(insertPt);
if constexpr (hasIOCtrl) {
genIOReadSize(converter, loc, cookie, stmt.controls,
csi.hasErrorConditionSpec());
}
// Generate end statement call/s.
mlir::Value result = genEndIO(converter, loc, cookie, csi, stmtCtx);
stmtCtx.finalizeAndReset();
return result;
}
void Fortran::lower::genPrintStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::PrintStmt &stmt) {
// PRINT does not take an io-control-spec. It only has a format specifier, so
// it is a simplified case of WRITE.
genDataTransferStmt</*isInput=*/false, /*ioCtrl=*/false>(converter, stmt);
}
mlir::Value
Fortran::lower::genWriteStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::WriteStmt &stmt) {
return genDataTransferStmt</*isInput=*/false>(converter, stmt);
}
mlir::Value
Fortran::lower::genReadStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::ReadStmt &stmt) {
return genDataTransferStmt</*isInput=*/true>(converter, stmt);
}
/// Get the file expression from the inquire spec list. Also return if the
/// expression is a file name.
static std::pair<const Fortran::lower::SomeExpr *, bool>
getInquireFileExpr(const std::list<Fortran::parser::InquireSpec> *stmt) {
if (!stmt)
return {nullptr, /*filename?=*/false};
for (const Fortran::parser::InquireSpec &spec : *stmt) {
if (auto *f = std::get_if<Fortran::parser::FileUnitNumber>(&spec.u))
return {Fortran::semantics::GetExpr(*f), /*filename?=*/false};
if (auto *f = std::get_if<Fortran::parser::FileNameExpr>(&spec.u))
return {Fortran::semantics::GetExpr(*f), /*filename?=*/true};
}
// semantics should have already caught this condition
llvm::report_fatal_error("inquire spec must have a file");
}
/// Generate calls to the four distinct INQUIRE subhandlers. An INQUIRE may
/// return values of type CHARACTER, INTEGER, or LOGICAL. There is one
/// additional special case for INQUIRE with both PENDING and ID specifiers.
template <typename A>
static mlir::Value genInquireSpec(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
mlir::Value idExpr, const A &var,
Fortran::lower::StatementContext &stmtCtx) {
// default case: do nothing
return {};
}
/// Specialization for CHARACTER.
template <>
mlir::Value genInquireSpec<Fortran::parser::InquireSpec::CharVar>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, mlir::Value idExpr,
const Fortran::parser::InquireSpec::CharVar &var,
Fortran::lower::StatementContext &stmtCtx) {
// IOMSG is handled with exception conditions
if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t) ==
Fortran::parser::InquireSpec::CharVar::Kind::Iomsg)
return {};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp specFunc =
getIORuntimeFunc<mkIOKey(InquireCharacter)>(loc, builder);
mlir::FunctionType specFuncTy = specFunc.getFunctionType();
const auto *varExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarDefaultCharVariable>(var.t));
fir::ExtendedValue str = converter.genExprAddr(loc, varExpr, stmtCtx);
llvm::SmallVector<mlir::Value> args = {
builder.createConvert(loc, specFuncTy.getInput(0), cookie),
builder.createIntegerConstant(
loc, specFuncTy.getInput(1),
Fortran::runtime::io::HashInquiryKeyword(std::string{
Fortran::parser::InquireSpec::CharVar::EnumToString(
std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t))}
.c_str())),
builder.createConvert(loc, specFuncTy.getInput(2), fir::getBase(str)),
builder.createConvert(loc, specFuncTy.getInput(3), fir::getLen(str))};
return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0);
}
/// Specialization for INTEGER.
template <>
mlir::Value genInquireSpec<Fortran::parser::InquireSpec::IntVar>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, mlir::Value idExpr,
const Fortran::parser::InquireSpec::IntVar &var,
Fortran::lower::StatementContext &stmtCtx) {
// IOSTAT is handled with exception conditions
if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) ==
Fortran::parser::InquireSpec::IntVar::Kind::Iostat)
return {};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp specFunc =
getIORuntimeFunc<mkIOKey(InquireInteger64)>(loc, builder);
mlir::FunctionType specFuncTy = specFunc.getFunctionType();
const auto *varExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarIntVariable>(var.t));
mlir::Value addr = fir::getBase(converter.genExprAddr(loc, varExpr, stmtCtx));
mlir::Type eleTy = fir::dyn_cast_ptrEleTy(addr.getType());
if (!eleTy)
fir::emitFatalError(loc,
"internal error: expected a memory reference type");
auto width = eleTy.cast<mlir::IntegerType>().getWidth();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value kind = builder.createIntegerConstant(loc, idxTy, width / 8);
llvm::SmallVector<mlir::Value> args = {
builder.createConvert(loc, specFuncTy.getInput(0), cookie),
builder.createIntegerConstant(
loc, specFuncTy.getInput(1),
Fortran::runtime::io::HashInquiryKeyword(std::string{
Fortran::parser::InquireSpec::IntVar::EnumToString(
std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t))}
.c_str())),
builder.createConvert(loc, specFuncTy.getInput(2), addr),
builder.createConvert(loc, specFuncTy.getInput(3), kind)};
return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0);
}
/// Specialization for LOGICAL and (PENDING + ID).
template <>
mlir::Value genInquireSpec<Fortran::parser::InquireSpec::LogVar>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, mlir::Value idExpr,
const Fortran::parser::InquireSpec::LogVar &var,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto logVarKind = std::get<Fortran::parser::InquireSpec::LogVar::Kind>(var.t);
bool pendId =
idExpr &&
logVarKind == Fortran::parser::InquireSpec::LogVar::Kind::Pending;
mlir::func::FuncOp specFunc =
pendId ? getIORuntimeFunc<mkIOKey(InquirePendingId)>(loc, builder)
: getIORuntimeFunc<mkIOKey(InquireLogical)>(loc, builder);
mlir::FunctionType specFuncTy = specFunc.getFunctionType();
mlir::Value addr = fir::getBase(converter.genExprAddr(
loc,
Fortran::semantics::GetExpr(
std::get<Fortran::parser::Scalar<
Fortran::parser::Logical<Fortran::parser::Variable>>>(var.t)),
stmtCtx));
llvm::SmallVector<mlir::Value> args = {
builder.createConvert(loc, specFuncTy.getInput(0), cookie)};
if (pendId)
args.push_back(builder.createConvert(loc, specFuncTy.getInput(1), idExpr));
else
args.push_back(builder.createIntegerConstant(
loc, specFuncTy.getInput(1),
Fortran::runtime::io::HashInquiryKeyword(std::string{
Fortran::parser::InquireSpec::LogVar::EnumToString(logVarKind)}
.c_str())));
args.push_back(builder.createConvert(loc, specFuncTy.getInput(2), addr));
auto call = builder.create<fir::CallOp>(loc, specFunc, args);
boolRefToLogical(loc, builder, addr);
return call.getResult(0);
}
/// If there is an IdExpr in the list of inquire-specs, then lower it and return
/// the resulting Value. Otherwise, return null.
static mlir::Value
lowerIdExpr(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const std::list<Fortran::parser::InquireSpec> &ispecs,
Fortran::lower::StatementContext &stmtCtx) {
for (const Fortran::parser::InquireSpec &spec : ispecs)
if (mlir::Value v = std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::IdExpr &idExpr) {
return fir::getBase(converter.genExprValue(
loc, Fortran::semantics::GetExpr(idExpr), stmtCtx));
},
[](const auto &) { return mlir::Value{}; }},
spec.u))
return v;
return {};
}
/// For each inquire-spec, build the appropriate call, threading the cookie.
static void threadInquire(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const std::list<Fortran::parser::InquireSpec> &ispecs,
bool checkResult, mlir::Value &ok,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Value idExpr = lowerIdExpr(converter, loc, ispecs, stmtCtx);
for (const Fortran::parser::InquireSpec &spec : ispecs) {
makeNextConditionalOn(builder, loc, checkResult, ok);
ok = std::visit(Fortran::common::visitors{[&](const auto &x) {
return genInquireSpec(converter, loc, cookie, idExpr, x,
stmtCtx);
}},
spec.u);
}
}
mlir::Value Fortran::lower::genInquireStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::InquireStmt &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
mlir::func::FuncOp beginFunc;
llvm::SmallVector<mlir::Value> beginArgs;
const auto *list =
std::get_if<std::list<Fortran::parser::InquireSpec>>(&stmt.u);
auto exprPair = getInquireFileExpr(list);
auto inquireFileUnit = [&]() -> bool {
return exprPair.first && !exprPair.second;
};
auto inquireFileName = [&]() -> bool {
return exprPair.first && exprPair.second;
};
ConditionSpecInfo csi =
list ? lowerErrorSpec(converter, loc, *list) : ConditionSpecInfo{};
// Make one of three BeginInquire calls.
if (inquireFileUnit()) {
// Inquire by unit -- [UNIT=]file-unit-number.
beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireUnit)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(converter, loc, exprPair.first,
beginFuncTy.getInput(0), csi, stmtCtx);
beginArgs = {unit, locToFilename(converter, loc, beginFuncTy.getInput(1)),
locToLineNo(converter, loc, beginFuncTy.getInput(2))};
} else if (inquireFileName()) {
// Inquire by file -- FILE=file-name-expr.
beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireFile)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
fir::ExtendedValue file =
converter.genExprAddr(loc, exprPair.first, stmtCtx);
beginArgs = {
builder.createConvert(loc, beginFuncTy.getInput(0), fir::getBase(file)),
builder.createConvert(loc, beginFuncTy.getInput(1), fir::getLen(file)),
locToFilename(converter, loc, beginFuncTy.getInput(2)),
locToLineNo(converter, loc, beginFuncTy.getInput(3))};
} else {
// Inquire by output list -- IOLENGTH=scalar-int-variable.
const auto *ioLength =
std::get_if<Fortran::parser::InquireStmt::Iolength>(&stmt.u);
assert(ioLength && "must have an IOLENGTH specifier");
beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireIoLength)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
beginArgs = {locToFilename(converter, loc, beginFuncTy.getInput(0)),
locToLineNo(converter, loc, beginFuncTy.getInput(1))};
auto cookie =
builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0);
mlir::Value ok;
genOutputItemList(
converter, cookie,
std::get<std::list<Fortran::parser::OutputItem>>(ioLength->t),
/*isFormatted=*/false, /*checkResult=*/false, ok, /*inLoop=*/false);
auto *ioLengthVar = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarIntVariable>(ioLength->t));
mlir::Value ioLengthVarAddr =
fir::getBase(converter.genExprAddr(loc, ioLengthVar, stmtCtx));
llvm::SmallVector<mlir::Value> args = {cookie};
mlir::Value length =
builder
.create<fir::CallOp>(
loc, getIORuntimeFunc<mkIOKey(GetIoLength)>(loc, builder), args)
.getResult(0);
mlir::Value length1 =
builder.createConvert(loc, converter.genType(*ioLengthVar), length);
builder.create<fir::StoreOp>(loc, length1, ioLengthVarAddr);
return genEndIO(converter, loc, cookie, csi, stmtCtx);
}
// Common handling for inquire by unit or file.
assert(list && "inquire-spec list must be present");
auto cookie =
builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0);
genConditionHandlerCall(converter, loc, cookie, *list, csi);
// Handle remaining arguments in specifier list.
mlir::Value ok;
auto insertPt = builder.saveInsertionPoint();
threadInquire(converter, loc, cookie, *list, csi.hasErrorConditionSpec(), ok,
stmtCtx);
builder.restoreInsertionPoint(insertPt);
// Generate end statement call.
return genEndIO(converter, loc, cookie, csi, stmtCtx);
}
|