1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
//===-- IterationSpace.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/IterationSpace.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Support/Utils.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-iteration-space"
unsigned Fortran::lower::getHashValue(
const Fortran::lower::ExplicitIterSpace::ArrayBases &x) {
return std::visit(
[&](const auto *p) { return HashEvaluateExpr::getHashValue(*p); }, x);
}
bool Fortran::lower::isEqual(
const Fortran::lower::ExplicitIterSpace::ArrayBases &x,
const Fortran::lower::ExplicitIterSpace::ArrayBases &y) {
return std::visit(
Fortran::common::visitors{
// Fortran::semantics::Symbol * are the exception here. These pointers
// have identity; if two Symbol * values are the same (different) then
// they are the same (different) logical symbol.
[&](Fortran::lower::FrontEndSymbol p,
Fortran::lower::FrontEndSymbol q) { return p == q; },
[&](const auto *p, const auto *q) {
if constexpr (std::is_same_v<decltype(p), decltype(q)>) {
LLVM_DEBUG(llvm::dbgs()
<< "is equal: " << p << ' ' << q << ' '
<< IsEqualEvaluateExpr::isEqual(*p, *q) << '\n');
return IsEqualEvaluateExpr::isEqual(*p, *q);
} else {
// Different subtree types are never equal.
return false;
}
}},
x, y);
}
namespace {
/// This class can recover the base array in an expression that contains
/// explicit iteration space symbols. Most of the class can be ignored as it is
/// boilerplate Fortran::evaluate::Expr traversal.
class ArrayBaseFinder {
public:
using RT = bool;
ArrayBaseFinder(llvm::ArrayRef<Fortran::lower::FrontEndSymbol> syms)
: controlVars(syms.begin(), syms.end()) {}
template <typename T>
void operator()(const T &x) {
(void)find(x);
}
/// Get the list of bases.
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases>
getBases() const {
LLVM_DEBUG(llvm::dbgs()
<< "number of array bases found: " << bases.size() << '\n');
return bases;
}
private:
// First, the cases that are of interest.
RT find(const Fortran::semantics::Symbol &symbol) {
if (symbol.Rank() > 0) {
bases.push_back(&symbol);
return true;
}
return {};
}
RT find(const Fortran::evaluate::Component &x) {
auto found = find(x.base());
if (!found && x.base().Rank() == 0 && x.Rank() > 0) {
bases.push_back(&x);
return true;
}
return found;
}
RT find(const Fortran::evaluate::ArrayRef &x) {
for (const auto &sub : x.subscript())
(void)find(sub);
if (x.base().IsSymbol()) {
if (x.Rank() > 0 || intersection(x.subscript())) {
bases.push_back(&x);
return true;
}
return {};
}
auto found = find(x.base());
if (!found && ((x.base().Rank() == 0 && x.Rank() > 0) ||
intersection(x.subscript()))) {
bases.push_back(&x);
return true;
}
return found;
}
RT find(const Fortran::evaluate::Triplet &x) {
if (const auto *lower = x.GetLower())
(void)find(*lower);
if (const auto *upper = x.GetUpper())
(void)find(*upper);
return find(x.GetStride());
}
RT find(const Fortran::evaluate::IndirectSubscriptIntegerExpr &x) {
return find(x.value());
}
RT find(const Fortran::evaluate::Subscript &x) { return find(x.u); }
RT find(const Fortran::evaluate::DataRef &x) { return find(x.u); }
RT find(const Fortran::evaluate::CoarrayRef &x) {
assert(false && "coarray reference");
return {};
}
template <typename A>
bool intersection(const A &subscripts) {
return Fortran::lower::symbolsIntersectSubscripts(controlVars, subscripts);
}
// The rest is traversal boilerplate and can be ignored.
RT find(const Fortran::evaluate::Substring &x) { return find(x.parent()); }
template <typename A>
RT find(const Fortran::semantics::SymbolRef x) {
return find(*x);
}
RT find(const Fortran::evaluate::NamedEntity &x) {
if (x.IsSymbol())
return find(x.GetFirstSymbol());
return find(x.GetComponent());
}
template <typename A, bool C>
RT find(const Fortran::common::Indirection<A, C> &x) {
return find(x.value());
}
template <typename A>
RT find(const std::unique_ptr<A> &x) {
return find(x.get());
}
template <typename A>
RT find(const std::shared_ptr<A> &x) {
return find(x.get());
}
template <typename A>
RT find(const A *x) {
if (x)
return find(*x);
return {};
}
template <typename A>
RT find(const std::optional<A> &x) {
if (x)
return find(*x);
return {};
}
template <typename... A>
RT find(const std::variant<A...> &u) {
return std::visit([&](const auto &v) { return find(v); }, u);
}
template <typename A>
RT find(const std::vector<A> &x) {
for (auto &v : x)
(void)find(v);
return {};
}
RT find(const Fortran::evaluate::BOZLiteralConstant &) { return {}; }
RT find(const Fortran::evaluate::NullPointer &) { return {}; }
template <typename T>
RT find(const Fortran::evaluate::Constant<T> &x) {
return {};
}
RT find(const Fortran::evaluate::StaticDataObject &) { return {}; }
RT find(const Fortran::evaluate::ImpliedDoIndex &) { return {}; }
RT find(const Fortran::evaluate::BaseObject &x) {
(void)find(x.u);
return {};
}
RT find(const Fortran::evaluate::TypeParamInquiry &) { return {}; }
RT find(const Fortran::evaluate::ComplexPart &x) { return {}; }
template <typename T>
RT find(const Fortran::evaluate::Designator<T> &x) {
return find(x.u);
}
template <typename T>
RT find(const Fortran::evaluate::Variable<T> &x) {
return find(x.u);
}
RT find(const Fortran::evaluate::DescriptorInquiry &) { return {}; }
RT find(const Fortran::evaluate::SpecificIntrinsic &) { return {}; }
RT find(const Fortran::evaluate::ProcedureDesignator &x) { return {}; }
RT find(const Fortran::evaluate::ProcedureRef &x) {
(void)find(x.proc());
if (x.IsElemental())
(void)find(x.arguments());
return {};
}
RT find(const Fortran::evaluate::ActualArgument &x) {
if (const auto *sym = x.GetAssumedTypeDummy())
(void)find(*sym);
else
(void)find(x.UnwrapExpr());
return {};
}
template <typename T>
RT find(const Fortran::evaluate::FunctionRef<T> &x) {
(void)find(static_cast<const Fortran::evaluate::ProcedureRef &>(x));
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ArrayConstructorValue<T> &) {
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ArrayConstructorValues<T> &) {
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ImpliedDo<T> &) {
return {};
}
RT find(const Fortran::semantics::ParamValue &) { return {}; }
RT find(const Fortran::semantics::DerivedTypeSpec &) { return {}; }
RT find(const Fortran::evaluate::StructureConstructor &) { return {}; }
template <typename D, typename R, typename O>
RT find(const Fortran::evaluate::Operation<D, R, O> &op) {
(void)find(op.left());
return false;
}
template <typename D, typename R, typename LO, typename RO>
RT find(const Fortran::evaluate::Operation<D, R, LO, RO> &op) {
(void)find(op.left());
(void)find(op.right());
return false;
}
RT find(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x) {
(void)find(x.u);
return {};
}
template <typename T>
RT find(const Fortran::evaluate::Expr<T> &x) {
(void)find(x.u);
return {};
}
llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases> bases;
llvm::SmallVector<Fortran::lower::FrontEndSymbol> controlVars;
};
} // namespace
void Fortran::lower::ExplicitIterSpace::leave() {
ccLoopNest.pop_back();
--forallContextOpen;
conditionalCleanup();
}
void Fortran::lower::ExplicitIterSpace::addSymbol(
Fortran::lower::FrontEndSymbol sym) {
assert(!symbolStack.empty());
symbolStack.back().push_back(sym);
}
void Fortran::lower::ExplicitIterSpace::exprBase(Fortran::lower::FrontEndExpr x,
bool lhs) {
ArrayBaseFinder finder(collectAllSymbols());
finder(*x);
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases> bases =
finder.getBases();
if (rhsBases.empty())
endAssign();
if (lhs) {
if (bases.empty()) {
lhsBases.push_back(std::nullopt);
return;
}
assert(bases.size() >= 1 && "must detect an array reference on lhs");
if (bases.size() > 1)
rhsBases.back().append(bases.begin(), bases.end() - 1);
lhsBases.push_back(bases.back());
return;
}
rhsBases.back().append(bases.begin(), bases.end());
}
void Fortran::lower::ExplicitIterSpace::endAssign() { rhsBases.emplace_back(); }
void Fortran::lower::ExplicitIterSpace::pushLevel() {
symbolStack.push_back(llvm::SmallVector<Fortran::lower::FrontEndSymbol>{});
}
void Fortran::lower::ExplicitIterSpace::popLevel() { symbolStack.pop_back(); }
void Fortran::lower::ExplicitIterSpace::conditionalCleanup() {
if (forallContextOpen == 0) {
// Exiting the outermost FORALL context.
// Cleanup any residual mask buffers.
outermostContext().finalizeAndReset();
// Clear and reset all the cached information.
symbolStack.clear();
lhsBases.clear();
rhsBases.clear();
loadBindings.clear();
ccLoopNest.clear();
innerArgs.clear();
outerLoop = std::nullopt;
clearLoops();
counter = 0;
}
}
std::optional<size_t>
Fortran::lower::ExplicitIterSpace::findArgPosition(fir::ArrayLoadOp load) {
if (lhsBases[counter]) {
auto ld = loadBindings.find(*lhsBases[counter]);
std::optional<size_t> optPos;
if (ld != loadBindings.end() && ld->second == load)
optPos = static_cast<size_t>(0u);
assert(optPos.has_value() && "load does not correspond to lhs");
return optPos;
}
return std::nullopt;
}
llvm::SmallVector<Fortran::lower::FrontEndSymbol>
Fortran::lower::ExplicitIterSpace::collectAllSymbols() {
llvm::SmallVector<Fortran::lower::FrontEndSymbol> result;
for (llvm::SmallVector<FrontEndSymbol> vec : symbolStack)
result.append(vec.begin(), vec.end());
return result;
}
llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
const Fortran::lower::ImplicitIterSpace &e) {
for (const llvm::SmallVector<
Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr> &xs :
e.getMasks()) {
s << "{ ";
for (const Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr &x : xs)
x->AsFortran(s << '(') << "), ";
s << "}\n";
}
return s;
}
llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
const Fortran::lower::ExplicitIterSpace &e) {
auto dump = [&](const auto &u) {
std::visit(Fortran::common::visitors{
[&](const Fortran::semantics::Symbol *y) {
s << " " << *y << '\n';
},
[&](const Fortran::evaluate::ArrayRef *y) {
s << " ";
if (y->base().IsSymbol())
s << y->base().GetFirstSymbol();
else
s << y->base().GetComponent().GetLastSymbol();
s << '\n';
},
[&](const Fortran::evaluate::Component *y) {
s << " " << y->GetLastSymbol() << '\n';
}},
u);
};
s << "LHS bases:\n";
for (const std::optional<Fortran::lower::ExplicitIterSpace::ArrayBases> &u :
e.lhsBases)
if (u)
dump(*u);
s << "RHS bases:\n";
for (const llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases>
&bases : e.rhsBases) {
for (const Fortran::lower::ExplicitIterSpace::ArrayBases &u : bases)
dump(u);
s << '\n';
}
return s;
}
void Fortran::lower::ImplicitIterSpace::dump() const {
llvm::errs() << *this << '\n';
}
void Fortran::lower::ExplicitIterSpace::dump() const {
llvm::errs() << *this << '\n';
}
|