File: OpenMP.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (3119 lines) | stat: -rw-r--r-- 141,273 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
//===-- OpenMP.cpp -- Open MP directive lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/OpenMP.h"
#include "flang/Common/idioms.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/ConvertExpr.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/tools.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"

using namespace mlir;

void Fortran::lower::genOpenMPTerminator(fir::FirOpBuilder &builder,
                                         Operation *op, mlir::Location loc) {
  if (mlir::isa<omp::WsLoopOp, omp::ReductionDeclareOp, omp::AtomicUpdateOp,
                omp::SimdLoopOp>(op))
    builder.create<omp::YieldOp>(loc);
  else
    builder.create<omp::TerminatorOp>(loc);
}

int64_t Fortran::lower::getCollapseValue(
    const Fortran::parser::OmpClauseList &clauseList) {
  for (const auto &clause : clauseList.v) {
    if (const auto &collapseClause =
            std::get_if<Fortran::parser::OmpClause::Collapse>(&clause.u)) {
      const auto *expr = Fortran::semantics::GetExpr(collapseClause->v);
      return Fortran::evaluate::ToInt64(*expr).value();
    }
  }
  return 1;
}

static Fortran::semantics::Symbol *
getOmpObjectSymbol(const Fortran::parser::OmpObject &ompObject) {
  Fortran::semantics::Symbol *sym = nullptr;
  std::visit(Fortran::common::visitors{
                 [&](const Fortran::parser::Designator &designator) {
                   if (const Fortran::parser::Name *name =
                           Fortran::semantics::getDesignatorNameIfDataRef(
                               designator)) {
                     sym = name->symbol;
                   }
                 },
                 [&](const Fortran::parser::Name &name) { sym = name.symbol; }},
             ompObject.u);
  return sym;
}

class DataSharingProcessor {
  bool hasLastPrivateOp;
  mlir::OpBuilder::InsertPoint lastPrivIP;
  mlir::OpBuilder::InsertPoint insPt;
  // Symbols in private, firstprivate, and/or lastprivate clauses.
  llvm::SetVector<const Fortran::semantics::Symbol *> privatizedSymbols;
  llvm::SetVector<const Fortran::semantics::Symbol *> defaultSymbols;
  llvm::SetVector<const Fortran::semantics::Symbol *> symbolsInNestedRegions;
  llvm::SetVector<const Fortran::semantics::Symbol *> symbolsInParentRegions;
  Fortran::lower::AbstractConverter &converter;
  fir::FirOpBuilder &firOpBuilder;
  const Fortran::parser::OmpClauseList &opClauseList;
  Fortran::lower::pft::Evaluation &eval;

  bool needBarrier();
  void collectSymbols(Fortran::semantics::Symbol::Flag flag);
  void collectOmpObjectListSymbol(
      const Fortran::parser::OmpObjectList &ompObjectList,
      llvm::SetVector<const Fortran::semantics::Symbol *> &symbolSet);
  void collectSymbolsForPrivatization();
  void insertBarrier();
  void collectDefaultSymbols();
  void privatize();
  void defaultPrivatize();
  void copyLastPrivatize(mlir::Operation *op);
  void insertLastPrivateCompare(mlir::Operation *op);
  void cloneSymbol(const Fortran::semantics::Symbol *sym);
  void copyFirstPrivateSymbol(const Fortran::semantics::Symbol *sym);
  void copyLastPrivateSymbol(const Fortran::semantics::Symbol *sym,
                             mlir::OpBuilder::InsertPoint *lastPrivIP);
  void insertDeallocs();

public:
  DataSharingProcessor(Fortran::lower::AbstractConverter &converter,
                       const Fortran::parser::OmpClauseList &opClauseList,
                       Fortran::lower::pft::Evaluation &eval)
      : hasLastPrivateOp(false), converter(converter),
        firOpBuilder(converter.getFirOpBuilder()), opClauseList(opClauseList),
        eval(eval) {}
  // Privatisation is split into two steps.
  // Step1 performs cloning of all privatisation clauses and copying for
  // firstprivates. Step1 is performed at the place where process/processStep1
  // is called. This is usually inside the Operation corresponding to the OpenMP
  // construct, for looping constructs this is just before the Operation. The
  // split into two steps was performed basically to be able to call
  // privatisation for looping constructs before the operation is created since
  // the bounds of the MLIR OpenMP operation can be privatised.
  // Step2 performs the copying for lastprivates and requires knowledge of the
  // MLIR operation to insert the last private update. Step2 adds
  // dealocation code as well.
  void processStep1();
  void processStep2(mlir::Operation *op, bool is_loop);
};

void DataSharingProcessor::processStep1() {
  collectSymbolsForPrivatization();
  collectDefaultSymbols();
  privatize();
  defaultPrivatize();
  insertBarrier();
}

void DataSharingProcessor::processStep2(mlir::Operation *op, bool is_loop) {
  insPt = firOpBuilder.saveInsertionPoint();
  copyLastPrivatize(op);
  firOpBuilder.restoreInsertionPoint(insPt);

  if (is_loop) {
    // push deallocs out of the loop
    firOpBuilder.setInsertionPointAfter(op);
    insertDeallocs();
  } else {
    // insert dummy instruction to mark the insertion position
    mlir::Value undefMarker = firOpBuilder.create<fir::UndefOp>(
        op->getLoc(), firOpBuilder.getIndexType());
    insertDeallocs();
    firOpBuilder.setInsertionPointAfter(undefMarker.getDefiningOp());
  }
}

void DataSharingProcessor::insertDeallocs() {
  for (auto sym : privatizedSymbols)
    if (Fortran::semantics::IsAllocatable(sym->GetUltimate())) {
      converter.createHostAssociateVarCloneDealloc(*sym);
    }
}

void DataSharingProcessor::cloneSymbol(const Fortran::semantics::Symbol *sym) {
  // Privatization for symbols which are pre-determined (like loop index
  // variables) happen separately, for everything else privatize here.
  if (sym->test(Fortran::semantics::Symbol::Flag::OmpPreDetermined))
    return;
  bool success = converter.createHostAssociateVarClone(*sym);
  (void)success;
  assert(success && "Privatization failed due to existing binding");
}

void DataSharingProcessor::copyFirstPrivateSymbol(
    const Fortran::semantics::Symbol *sym) {
  if (sym->test(Fortran::semantics::Symbol::Flag::OmpFirstPrivate))
    converter.copyHostAssociateVar(*sym);
}

void DataSharingProcessor::copyLastPrivateSymbol(
    const Fortran::semantics::Symbol *sym,
    [[maybe_unused]] mlir::OpBuilder::InsertPoint *lastPrivIP) {
  if (sym->test(Fortran::semantics::Symbol::Flag::OmpLastPrivate))
    converter.copyHostAssociateVar(*sym, lastPrivIP);
}

void DataSharingProcessor::collectOmpObjectListSymbol(
    const Fortran::parser::OmpObjectList &ompObjectList,
    llvm::SetVector<const Fortran::semantics::Symbol *> &symbolSet) {
  for (const Fortran::parser::OmpObject &ompObject : ompObjectList.v) {
    Fortran::semantics::Symbol *sym = getOmpObjectSymbol(ompObject);
    symbolSet.insert(sym);
  }
}

void DataSharingProcessor::collectSymbolsForPrivatization() {
  bool hasCollapse = false;
  for (const Fortran::parser::OmpClause &clause : opClauseList.v) {
    if (const auto &privateClause =
            std::get_if<Fortran::parser::OmpClause::Private>(&clause.u)) {
      collectOmpObjectListSymbol(privateClause->v, privatizedSymbols);
    } else if (const auto &firstPrivateClause =
                   std::get_if<Fortran::parser::OmpClause::Firstprivate>(
                       &clause.u)) {
      collectOmpObjectListSymbol(firstPrivateClause->v, privatizedSymbols);
    } else if (const auto &lastPrivateClause =
                   std::get_if<Fortran::parser::OmpClause::Lastprivate>(
                       &clause.u)) {
      collectOmpObjectListSymbol(lastPrivateClause->v, privatizedSymbols);
      hasLastPrivateOp = true;
    } else if (std::get_if<Fortran::parser::OmpClause::Collapse>(&clause.u)) {
      hasCollapse = true;
    }
  }

  for (auto *ps : privatizedSymbols) {
    if (ps->has<Fortran::semantics::CommonBlockDetails>())
      TODO(converter.getCurrentLocation(),
           "Common Block in privatization clause");
  }

  if (hasCollapse && hasLastPrivateOp)
    TODO(converter.getCurrentLocation(), "Collapse clause with lastprivate");
}

bool DataSharingProcessor ::needBarrier() {
  for (auto sym : privatizedSymbols) {
    if (sym->test(Fortran::semantics::Symbol::Flag::OmpFirstPrivate) &&
        sym->test(Fortran::semantics::Symbol::Flag::OmpLastPrivate))
      return true;
  }
  return false;
}

void DataSharingProcessor ::insertBarrier() {
  // Emit implicit barrier to synchronize threads and avoid data races on
  // initialization of firstprivate variables and post-update of lastprivate
  // variables.
  // FIXME: Emit barrier for lastprivate clause when 'sections' directive has
  // 'nowait' clause. Otherwise, emit barrier when 'sections' directive has
  // both firstprivate and lastprivate clause.
  // Emit implicit barrier for linear clause. Maybe on somewhere else.
  if (needBarrier())
    firOpBuilder.create<mlir::omp::BarrierOp>(converter.getCurrentLocation());
}

void DataSharingProcessor::insertLastPrivateCompare(mlir::Operation *op) {
  mlir::arith::CmpIOp cmpOp;
  bool cmpCreated = false;
  mlir::OpBuilder::InsertPoint localInsPt = firOpBuilder.saveInsertionPoint();
  for (const Fortran::parser::OmpClause &clause : opClauseList.v) {
    if (std::get_if<Fortran::parser::OmpClause::Lastprivate>(&clause.u)) {
      // TODO: Add lastprivate support for simd construct
      if (mlir::isa<omp::SectionOp>(op)) {
        if (&eval == &eval.parentConstruct->getLastNestedEvaluation()) {
          // For `omp.sections`, lastprivatized variables occur in
          // lexically final `omp.section` operation. The following FIR
          // shall be generated for the same:
          //
          // omp.sections lastprivate(...) {
          //  omp.section {...}
          //  omp.section {...}
          //  omp.section {
          //      fir.allocate for `private`/`firstprivate`
          //      <More operations here>
          //      fir.if %true {
          //          ^%lpv_update_blk
          //      }
          //  }
          // }
          //
          // To keep code consistency while handling privatization
          // through this control flow, add a `fir.if` operation
          // that always evaluates to true, in order to create
          // a dedicated sub-region in `omp.section` where
          // lastprivate FIR can reside. Later canonicalizations
          // will optimize away this operation.
          if (!eval.lowerAsUnstructured()) {
            auto ifOp = firOpBuilder.create<fir::IfOp>(
                op->getLoc(),
                firOpBuilder.createIntegerConstant(
                    op->getLoc(), firOpBuilder.getIntegerType(1), 0x1),
                /*else*/ false);
            firOpBuilder.setInsertionPointToStart(
                &ifOp.getThenRegion().front());

            const Fortran::parser::OpenMPConstruct *parentOmpConstruct =
                eval.parentConstruct->getIf<Fortran::parser::OpenMPConstruct>();
            assert(parentOmpConstruct &&
                   "Expected a valid enclosing OpenMP construct");
            const Fortran::parser::OpenMPSectionsConstruct *sectionsConstruct =
                std::get_if<Fortran::parser::OpenMPSectionsConstruct>(
                    &parentOmpConstruct->u);
            assert(sectionsConstruct &&
                   "Expected an enclosing omp.sections construct");
            const Fortran::parser::OmpClauseList &sectionsEndClauseList =
                std::get<Fortran::parser::OmpClauseList>(
                    std::get<Fortran::parser::OmpEndSectionsDirective>(
                        sectionsConstruct->t)
                        .t);
            for (const Fortran::parser::OmpClause &otherClause :
                 sectionsEndClauseList.v)
              if (std::get_if<Fortran::parser::OmpClause::Nowait>(
                      &otherClause.u))
                // Emit implicit barrier to synchronize threads and avoid data
                // races on post-update of lastprivate variables when `nowait`
                // clause is present.
                firOpBuilder.create<mlir::omp::BarrierOp>(
                    converter.getCurrentLocation());
            firOpBuilder.setInsertionPointToStart(
                &ifOp.getThenRegion().front());
            lastPrivIP = firOpBuilder.saveInsertionPoint();
            firOpBuilder.setInsertionPoint(ifOp);
            insPt = firOpBuilder.saveInsertionPoint();
          } else {
            // Lastprivate operation is inserted at the end
            // of the lexically last section in the sections
            // construct
            mlir::OpBuilder::InsertPoint unstructuredSectionsIP =
                firOpBuilder.saveInsertionPoint();
            firOpBuilder.setInsertionPointToStart(&op->getRegion(0).back());
            lastPrivIP = firOpBuilder.saveInsertionPoint();
            firOpBuilder.restoreInsertionPoint(unstructuredSectionsIP);
          }
        }
      } else if (mlir::isa<omp::WsLoopOp>(op)) {
        mlir::Operation *lastOper = op->getRegion(0).back().getTerminator();
        firOpBuilder.setInsertionPoint(lastOper);

        // Update the original variable just before exiting the worksharing
        // loop. Conversion as follows:
        //
        //                       omp.wsloop {
        // omp.wsloop {            ...
        //    ...                  store
        //    store       ===>     %cmp = llvm.icmp "eq" %iv %ub
        //    omp.yield            fir.if %cmp {
        // }                         ^%lpv_update_blk:
        //                         }
        //                         omp.yield
        //                       }
        //

        // Only generate the compare once in presence of multiple LastPrivate
        // clauses.
        if (!cmpCreated) {
          cmpOp = firOpBuilder.create<mlir::arith::CmpIOp>(
              op->getLoc(), mlir::arith::CmpIPredicate::eq,
              op->getRegion(0).front().getArguments()[0],
              mlir::dyn_cast<mlir::omp::WsLoopOp>(op).getUpperBound()[0]);
        }
        auto ifOp =
            firOpBuilder.create<fir::IfOp>(op->getLoc(), cmpOp, /*else*/ false);
        firOpBuilder.setInsertionPointToStart(&ifOp.getThenRegion().front());
        lastPrivIP = firOpBuilder.saveInsertionPoint();
      } else {
        TODO(converter.getCurrentLocation(),
             "lastprivate clause in constructs other than "
             "simd/worksharing-loop");
      }
    }
  }
  firOpBuilder.restoreInsertionPoint(localInsPt);
}

void DataSharingProcessor::collectSymbols(
    Fortran::semantics::Symbol::Flag flag) {
  converter.collectSymbolSet(eval, defaultSymbols, flag,
                             /*collectSymbols=*/true,
                             /*collectHostAssociatedSymbols=*/true);
  for (auto &e : eval.getNestedEvaluations()) {
    if (e.hasNestedEvaluations())
      converter.collectSymbolSet(e, symbolsInNestedRegions, flag,
                                 /*collectSymbols=*/true,
                                 /*collectHostAssociatedSymbols=*/false);
    else
      converter.collectSymbolSet(e, symbolsInParentRegions, flag,
                                 /*collectSymbols=*/false,
                                 /*collectHostAssociatedSymbols=*/true);
  }
}

void DataSharingProcessor::collectDefaultSymbols() {
  for (const Fortran::parser::OmpClause &clause : opClauseList.v) {
    if (const auto &defaultClause =
            std::get_if<Fortran::parser::OmpClause::Default>(&clause.u)) {
      if (defaultClause->v.v ==
          Fortran::parser::OmpDefaultClause::Type::Private)
        collectSymbols(Fortran::semantics::Symbol::Flag::OmpPrivate);
      else if (defaultClause->v.v ==
               Fortran::parser::OmpDefaultClause::Type::Firstprivate)
        collectSymbols(Fortran::semantics::Symbol::Flag::OmpFirstPrivate);
    }
  }
}

void DataSharingProcessor::privatize() {
  for (auto sym : privatizedSymbols) {
    cloneSymbol(sym);
    copyFirstPrivateSymbol(sym);
  }
}

void DataSharingProcessor::copyLastPrivatize(mlir::Operation *op) {
  insertLastPrivateCompare(op);
  for (auto sym : privatizedSymbols)
    copyLastPrivateSymbol(sym, &lastPrivIP);
}

void DataSharingProcessor::defaultPrivatize() {
  for (auto sym : defaultSymbols) {
    if (!symbolsInNestedRegions.contains(sym) &&
        !symbolsInParentRegions.contains(sym) &&
        !privatizedSymbols.contains(sym)) {
      cloneSymbol(sym);
      copyFirstPrivateSymbol(sym);
    }
  }
}

/// The COMMON block is a global structure. \p commonValue is the base address
/// of the the COMMON block. As the offset from the symbol \p sym, generate the
/// COMMON block member value (commonValue + offset) for the symbol.
/// FIXME: Share the code with `instantiateCommon` in ConvertVariable.cpp.
static mlir::Value
genCommonBlockMember(Fortran::lower::AbstractConverter &converter,
                     const Fortran::semantics::Symbol &sym,
                     mlir::Value commonValue) {
  auto &firOpBuilder = converter.getFirOpBuilder();
  mlir::Location currentLocation = converter.getCurrentLocation();
  mlir::IntegerType i8Ty = firOpBuilder.getIntegerType(8);
  mlir::Type i8Ptr = firOpBuilder.getRefType(i8Ty);
  mlir::Type seqTy = firOpBuilder.getRefType(firOpBuilder.getVarLenSeqTy(i8Ty));
  mlir::Value base =
      firOpBuilder.createConvert(currentLocation, seqTy, commonValue);
  std::size_t byteOffset = sym.GetUltimate().offset();
  mlir::Value offs = firOpBuilder.createIntegerConstant(
      currentLocation, firOpBuilder.getIndexType(), byteOffset);
  mlir::Value varAddr = firOpBuilder.create<fir::CoordinateOp>(
      currentLocation, i8Ptr, base, mlir::ValueRange{offs});
  mlir::Type symType = converter.genType(sym);
  return firOpBuilder.createConvert(currentLocation,
                                    firOpBuilder.getRefType(symType), varAddr);
}

// Get the extended value for \p val by extracting additional variable
// information from \p base.
static fir::ExtendedValue getExtendedValue(fir::ExtendedValue base,
                                           mlir::Value val) {
  return base.match(
      [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
        return fir::MutableBoxValue(val, box.nonDeferredLenParams(), {});
      },
      [&](const auto &) -> fir::ExtendedValue {
        return fir::substBase(base, val);
      });
}

static void threadPrivatizeVars(Fortran::lower::AbstractConverter &converter,
                                Fortran::lower::pft::Evaluation &eval) {
  auto &firOpBuilder = converter.getFirOpBuilder();
  mlir::Location currentLocation = converter.getCurrentLocation();
  auto insPt = firOpBuilder.saveInsertionPoint();
  firOpBuilder.setInsertionPointToStart(firOpBuilder.getAllocaBlock());

  // Get the original ThreadprivateOp corresponding to the symbol and use the
  // symbol value from that opeartion to create one ThreadprivateOp copy
  // operation inside the parallel region.
  auto genThreadprivateOp = [&](Fortran::lower::SymbolRef sym) -> mlir::Value {
    mlir::Value symOriThreadprivateValue = converter.getSymbolAddress(sym);
    mlir::Operation *op = symOriThreadprivateValue.getDefiningOp();
    assert(mlir::isa<mlir::omp::ThreadprivateOp>(op) &&
           "The threadprivate operation not created");
    mlir::Value symValue =
        mlir::dyn_cast<mlir::omp::ThreadprivateOp>(op).getSymAddr();
    return firOpBuilder.create<mlir::omp::ThreadprivateOp>(
        currentLocation, symValue.getType(), symValue);
  };

  llvm::SetVector<const Fortran::semantics::Symbol *> threadprivateSyms;
  converter.collectSymbolSet(
      eval, threadprivateSyms,
      Fortran::semantics::Symbol::Flag::OmpThreadprivate);
  std::set<Fortran::semantics::SourceName> threadprivateSymNames;

  // For a COMMON block, the ThreadprivateOp is generated for itself instead of
  // its members, so only bind the value of the new copied ThreadprivateOp
  // inside the parallel region to the common block symbol only once for
  // multiple members in one COMMON block.
  llvm::SetVector<const Fortran::semantics::Symbol *> commonSyms;
  for (std::size_t i = 0; i < threadprivateSyms.size(); i++) {
    auto sym = threadprivateSyms[i];
    mlir::Value symThreadprivateValue;
    // The variable may be used more than once, and each reference has one
    // symbol with the same name. Only do once for references of one variable.
    if (threadprivateSymNames.find(sym->name()) != threadprivateSymNames.end())
      continue;
    threadprivateSymNames.insert(sym->name());
    if (const Fortran::semantics::Symbol *common =
            Fortran::semantics::FindCommonBlockContaining(sym->GetUltimate())) {
      mlir::Value commonThreadprivateValue;
      if (commonSyms.contains(common)) {
        commonThreadprivateValue = converter.getSymbolAddress(*common);
      } else {
        commonThreadprivateValue = genThreadprivateOp(*common);
        converter.bindSymbol(*common, commonThreadprivateValue);
        commonSyms.insert(common);
      }
      symThreadprivateValue =
          genCommonBlockMember(converter, *sym, commonThreadprivateValue);
    } else {
      symThreadprivateValue = genThreadprivateOp(*sym);
    }

    fir::ExtendedValue sexv = converter.getSymbolExtendedValue(*sym);
    fir::ExtendedValue symThreadprivateExv =
        getExtendedValue(sexv, symThreadprivateValue);
    converter.bindSymbol(*sym, symThreadprivateExv);
  }

  firOpBuilder.restoreInsertionPoint(insPt);
}

static void
genCopyinClause(Fortran::lower::AbstractConverter &converter,
                const Fortran::parser::OmpClauseList &opClauseList) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  mlir::OpBuilder::InsertPoint insPt = firOpBuilder.saveInsertionPoint();
  firOpBuilder.setInsertionPointToStart(firOpBuilder.getAllocaBlock());
  bool hasCopyin = false;
  for (const Fortran::parser::OmpClause &clause : opClauseList.v) {
    if (const auto &copyinClause =
            std::get_if<Fortran::parser::OmpClause::Copyin>(&clause.u)) {
      hasCopyin = true;
      const Fortran::parser::OmpObjectList &ompObjectList = copyinClause->v;
      for (const Fortran::parser::OmpObject &ompObject : ompObjectList.v) {
        Fortran::semantics::Symbol *sym = getOmpObjectSymbol(ompObject);
        if (sym->has<Fortran::semantics::CommonBlockDetails>())
          TODO(converter.getCurrentLocation(), "common block in Copyin clause");
        if (Fortran::semantics::IsAllocatableOrPointer(sym->GetUltimate()))
          TODO(converter.getCurrentLocation(),
               "pointer or allocatable variables in Copyin clause");
        assert(sym->has<Fortran::semantics::HostAssocDetails>() &&
               "No host-association found");
        converter.copyHostAssociateVar(*sym);
      }
    }
  }
  // [OMP 5.0, 2.19.6.1] The copy is done after the team is formed and prior to
  // the execution of the associated structured block. Emit implicit barrier to
  // synchronize threads and avoid data races on propagation master's thread
  // values of threadprivate variables to local instances of that variables of
  // all other implicit threads.
  if (hasCopyin)
    firOpBuilder.create<mlir::omp::BarrierOp>(converter.getCurrentLocation());
  firOpBuilder.restoreInsertionPoint(insPt);
}

static void genObjectList(const Fortran::parser::OmpObjectList &objectList,
                          Fortran::lower::AbstractConverter &converter,
                          llvm::SmallVectorImpl<Value> &operands) {
  auto addOperands = [&](Fortran::lower::SymbolRef sym) {
    const mlir::Value variable = converter.getSymbolAddress(sym);
    if (variable) {
      operands.push_back(variable);
    } else {
      if (const auto *details =
              sym->detailsIf<Fortran::semantics::HostAssocDetails>()) {
        operands.push_back(converter.getSymbolAddress(details->symbol()));
        converter.copySymbolBinding(details->symbol(), sym);
      }
    }
  };
  for (const Fortran::parser::OmpObject &ompObject : objectList.v) {
    Fortran::semantics::Symbol *sym = getOmpObjectSymbol(ompObject);
    addOperands(*sym);
  }
}

static mlir::Value
getIfClauseOperand(Fortran::lower::AbstractConverter &converter,
                   Fortran::lower::StatementContext &stmtCtx,
                   const Fortran::parser::OmpClause::If *ifClause,
                   mlir::Location clauseLocation) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  auto &expr = std::get<Fortran::parser::ScalarLogicalExpr>(ifClause->v.t);
  mlir::Value ifVal = fir::getBase(
      converter.genExprValue(*Fortran::semantics::GetExpr(expr), stmtCtx));
  return firOpBuilder.createConvert(clauseLocation, firOpBuilder.getI1Type(),
                                    ifVal);
}

static mlir::Type getLoopVarType(Fortran::lower::AbstractConverter &converter,
                                 std::size_t loopVarTypeSize) {
  // OpenMP runtime requires 32-bit or 64-bit loop variables.
  loopVarTypeSize = loopVarTypeSize * 8;
  if (loopVarTypeSize < 32) {
    loopVarTypeSize = 32;
  } else if (loopVarTypeSize > 64) {
    loopVarTypeSize = 64;
    mlir::emitWarning(converter.getCurrentLocation(),
                      "OpenMP loop iteration variable cannot have more than 64 "
                      "bits size and will be narrowed into 64 bits.");
  }
  assert((loopVarTypeSize == 32 || loopVarTypeSize == 64) &&
         "OpenMP loop iteration variable size must be transformed into 32-bit "
         "or 64-bit");
  return converter.getFirOpBuilder().getIntegerType(loopVarTypeSize);
}

/// Create empty blocks for the current region.
/// These blocks replace blocks parented to an enclosing region.
void createEmptyRegionBlocks(
    fir::FirOpBuilder &firOpBuilder,
    std::list<Fortran::lower::pft::Evaluation> &evaluationList) {
  auto *region = &firOpBuilder.getRegion();
  for (auto &eval : evaluationList) {
    if (eval.block) {
      if (eval.block->empty()) {
        eval.block->erase();
        eval.block = firOpBuilder.createBlock(region);
      } else {
        [[maybe_unused]] auto &terminatorOp = eval.block->back();
        assert((mlir::isa<mlir::omp::TerminatorOp>(terminatorOp) ||
                mlir::isa<mlir::omp::YieldOp>(terminatorOp)) &&
               "expected terminator op");
      }
    }
    if (!eval.isDirective() && eval.hasNestedEvaluations())
      createEmptyRegionBlocks(firOpBuilder, eval.getNestedEvaluations());
  }
}

void resetBeforeTerminator(fir::FirOpBuilder &firOpBuilder,
                           mlir::Operation *storeOp, mlir::Block &block) {
  if (storeOp)
    firOpBuilder.setInsertionPointAfter(storeOp);
  else
    firOpBuilder.setInsertionPointToStart(&block);
}

/// Create the body (block) for an OpenMP Operation.
///
/// \param [in]    op - the operation the body belongs to.
/// \param [inout] converter - converter to use for the clauses.
/// \param [in]    loc - location in source code.
/// \param [in]    eval - current PFT node/evaluation.
/// \oaran [in]    clauses - list of clauses to process.
/// \param [in]    args - block arguments (induction variable[s]) for the
////                      region.
/// \param [in]    outerCombined - is this an outer operation - prevents
///                                privatization.
template <typename Op>
static void
createBodyOfOp(Op &op, Fortran::lower::AbstractConverter &converter,
               mlir::Location &loc, Fortran::lower::pft::Evaluation &eval,
               const Fortran::parser::OmpClauseList *clauses = nullptr,
               const SmallVector<const Fortran::semantics::Symbol *> &args = {},
               bool outerCombined = false,
               DataSharingProcessor *dsp = nullptr) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  // If an argument for the region is provided then create the block with that
  // argument. Also update the symbol's address with the mlir argument value.
  // e.g. For loops the argument is the induction variable. And all further
  // uses of the induction variable should use this mlir value.
  mlir::Operation *storeOp = nullptr;
  if (args.size()) {
    std::size_t loopVarTypeSize = 0;
    for (const Fortran::semantics::Symbol *arg : args)
      loopVarTypeSize = std::max(loopVarTypeSize, arg->GetUltimate().size());
    mlir::Type loopVarType = getLoopVarType(converter, loopVarTypeSize);
    SmallVector<Type> tiv;
    SmallVector<Location> locs;
    for (int i = 0; i < (int)args.size(); i++) {
      tiv.push_back(loopVarType);
      locs.push_back(loc);
    }
    firOpBuilder.createBlock(&op.getRegion(), {}, tiv, locs);
    int argIndex = 0;
    // The argument is not currently in memory, so make a temporary for the
    // argument, and store it there, then bind that location to the argument.
    for (const Fortran::semantics::Symbol *arg : args) {
      mlir::Value val =
          fir::getBase(op.getRegion().front().getArgument(argIndex));
      mlir::Value temp = firOpBuilder.createTemporary(
          loc, loopVarType,
          llvm::ArrayRef<mlir::NamedAttribute>{
              Fortran::lower::getAdaptToByRefAttr(firOpBuilder)});
      storeOp = firOpBuilder.create<fir::StoreOp>(loc, val, temp);
      converter.bindSymbol(*arg, temp);
      argIndex++;
    }
  } else {
    firOpBuilder.createBlock(&op.getRegion());
  }
  // Set the insert for the terminator operation to go at the end of the
  // block - this is either empty or the block with the stores above,
  // the end of the block works for both.
  mlir::Block &block = op.getRegion().back();
  firOpBuilder.setInsertionPointToEnd(&block);

  // If it is an unstructured region and is not the outer region of a combined
  // construct, create empty blocks for all evaluations.
  if (eval.lowerAsUnstructured() && !outerCombined)
    createEmptyRegionBlocks(firOpBuilder, eval.getNestedEvaluations());

  // Insert the terminator.
  if constexpr (std::is_same_v<Op, omp::WsLoopOp> ||
                std::is_same_v<Op, omp::SimdLoopOp>) {
    mlir::ValueRange results;
    firOpBuilder.create<mlir::omp::YieldOp>(loc, results);
  } else {
    firOpBuilder.create<mlir::omp::TerminatorOp>(loc);
  }
  // Reset the insert point to before the terminator.
  resetBeforeTerminator(firOpBuilder, storeOp, block);

  // Handle privatization. Do not privatize if this is the outer operation.
  if (clauses && !outerCombined) {
    constexpr bool is_loop = std::is_same_v<Op, omp::WsLoopOp> ||
                             std::is_same_v<Op, omp::SimdLoopOp>;
    if (!dsp) {
      DataSharingProcessor proc(converter, *clauses, eval);
      proc.processStep1();
      proc.processStep2(op, is_loop);
    } else {
      dsp->processStep2(op, is_loop);
    }

    if (storeOp)
      firOpBuilder.setInsertionPointAfter(storeOp);
  }

  if constexpr (std::is_same_v<Op, omp::ParallelOp>) {
    threadPrivatizeVars(converter, eval);
    if (clauses)
      genCopyinClause(converter, *clauses);
  }
}

static void createBodyOfTargetOp(
    Fortran::lower::AbstractConverter &converter, mlir::omp::DataOp &dataOp,
    const llvm::SmallVector<mlir::Type> &useDeviceTypes,
    const llvm::SmallVector<mlir::Location> &useDeviceLocs,
    const SmallVector<const Fortran::semantics::Symbol *> &useDeviceSymbols,
    const mlir::Location &currentLocation) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  mlir::Region &region = dataOp.getRegion();

  firOpBuilder.createBlock(&region, {}, useDeviceTypes, useDeviceLocs);
  firOpBuilder.create<mlir::omp::TerminatorOp>(currentLocation);
  firOpBuilder.setInsertionPointToStart(&region.front());

  unsigned argIndex = 0;
  for (auto *sym : useDeviceSymbols) {
    const mlir::BlockArgument &arg = region.front().getArgument(argIndex);
    mlir::Value val = fir::getBase(arg);
    fir::ExtendedValue extVal = converter.getSymbolExtendedValue(*sym);
    if (auto refType = val.getType().dyn_cast<fir::ReferenceType>()) {
      if (fir::isa_builtin_cptr_type(refType.getElementType())) {
        converter.bindSymbol(*sym, val);
      } else {
        extVal.match(
            [&](const fir::MutableBoxValue &mbv) {
              converter.bindSymbol(
                  *sym,
                  fir::MutableBoxValue(
                      val, fir::factory::getNonDeferredLenParams(extVal), {}));
            },
            [&](const auto &) {
              TODO(converter.getCurrentLocation(),
                   "use_device clause operand unsupported type");
            });
      }
    } else {
      TODO(converter.getCurrentLocation(),
           "use_device clause operand unsupported type");
    }
    argIndex++;
  }
}

static void createTargetOp(Fortran::lower::AbstractConverter &converter,
                           const Fortran::parser::OmpClauseList &opClauseList,
                           const llvm::omp::Directive &directive,
                           mlir::Location currentLocation,
                           Fortran::lower::pft::Evaluation *eval = nullptr) {
  Fortran::lower::StatementContext stmtCtx;
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();

  mlir::Value ifClauseOperand, deviceOperand, threadLmtOperand;
  mlir::UnitAttr nowaitAttr;
  llvm::SmallVector<mlir::Value> mapOperands, devicePtrOperands,
      deviceAddrOperands;
  llvm::SmallVector<mlir::IntegerAttr> mapTypes;
  llvm::SmallVector<mlir::Type> useDeviceTypes;
  llvm::SmallVector<mlir::Location> useDeviceLocs;
  SmallVector<const Fortran::semantics::Symbol *> useDeviceSymbols;

  /// Check for unsupported map operand types.
  auto checkType = [](mlir::Location location, mlir::Type type) {
    if (auto refType = type.dyn_cast<fir::ReferenceType>())
      type = refType.getElementType();
    if (auto boxType = type.dyn_cast_or_null<fir::BoxType>())
      if (!boxType.getElementType().isa<fir::PointerType>())
        TODO(location, "OMPD_target_data MapOperand BoxType");
  };

  auto addMapClause = [&](const auto &mapClause, mlir::Location &location) {
    const auto &oMapType =
        std::get<std::optional<Fortran::parser::OmpMapType>>(mapClause->v.t);
    llvm::omp::OpenMPOffloadMappingFlags mapTypeBits =
        llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_NONE;
    // If the map type is specified, then process it else Tofrom is the default.
    if (oMapType) {
      const Fortran::parser::OmpMapType::Type &mapType =
          std::get<Fortran::parser::OmpMapType::Type>(oMapType->t);
      switch (mapType) {
      case Fortran::parser::OmpMapType::Type::To:
        mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
        break;
      case Fortran::parser::OmpMapType::Type::From:
        mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
        break;
      case Fortran::parser::OmpMapType::Type::Tofrom:
        mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO |
                       llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
        break;
      case Fortran::parser::OmpMapType::Type::Alloc:
      case Fortran::parser::OmpMapType::Type::Release:
        // alloc and release is the default map_type for the Target Data Ops,
        // i.e. if no bits for map_type is supplied then alloc/release is
        // implicitly assumed based on the target directive. Default value for
        // Target Data and Enter Data is alloc and for Exit Data it is release.
        break;
      case Fortran::parser::OmpMapType::Type::Delete:
        mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_DELETE;
      }

      if (std::get<std::optional<Fortran::parser::OmpMapType::Always>>(
              oMapType->t))
        mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS;
    } else {
      mapTypeBits |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO |
                     llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
    }

    // TODO: Add support MapTypeModifiers close, mapper, present, iterator

    mlir::IntegerAttr mapTypeAttr = firOpBuilder.getIntegerAttr(
        firOpBuilder.getI64Type(),
        static_cast<
            std::underlying_type_t<llvm::omp::OpenMPOffloadMappingFlags>>(
            mapTypeBits));

    llvm::SmallVector<mlir::Value> mapOperand;
    /// Check for unsupported map operand types.
    for (const Fortran::parser::OmpObject &ompObject :
         std::get<Fortran::parser::OmpObjectList>(mapClause->v.t).v) {
      if (Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(ompObject) ||
          Fortran::parser::Unwrap<Fortran::parser::StructureComponent>(
              ompObject))
        TODO(location,
             "OMPD_target_data for Array Expressions or Structure Components");
    }
    genObjectList(std::get<Fortran::parser::OmpObjectList>(mapClause->v.t),
                  converter, mapOperand);

    for (mlir::Value mapOp : mapOperand) {
      checkType(mapOp.getLoc(), mapOp.getType());
      mapOperands.push_back(mapOp);
      mapTypes.push_back(mapTypeAttr);
    }
  };

  auto addUseDeviceClause = [&](const auto &useDeviceClause, auto &operands) {
    genObjectList(useDeviceClause, converter, operands);
    for (auto &operand : operands) {
      checkType(operand.getLoc(), operand.getType());
      useDeviceTypes.push_back(operand.getType());
      useDeviceLocs.push_back(operand.getLoc());
    }
    for (const Fortran::parser::OmpObject &ompObject : useDeviceClause.v) {
      Fortran::semantics::Symbol *sym = getOmpObjectSymbol(ompObject);
      useDeviceSymbols.push_back(sym);
    }
  };

  for (const Fortran::parser::OmpClause &clause : opClauseList.v) {
    mlir::Location clauseLocation = converter.genLocation(clause.source);
    if (const auto &ifClause =
            std::get_if<Fortran::parser::OmpClause::If>(&clause.u)) {
      ifClauseOperand =
          getIfClauseOperand(converter, stmtCtx, ifClause, clauseLocation);
    } else if (const auto &deviceClause =
                   std::get_if<Fortran::parser::OmpClause::Device>(&clause.u)) {
      if (auto deviceModifier = std::get<
              std::optional<Fortran::parser::OmpDeviceClause::DeviceModifier>>(
              deviceClause->v.t)) {
        if (deviceModifier ==
            Fortran::parser::OmpDeviceClause::DeviceModifier::Ancestor) {
          TODO(clauseLocation, "OMPD_target Device Modifier Ancestor");
        }
      }
      if (const auto *deviceExpr = Fortran::semantics::GetExpr(
              std::get<Fortran::parser::ScalarIntExpr>(deviceClause->v.t))) {
        deviceOperand =
            fir::getBase(converter.genExprValue(*deviceExpr, stmtCtx));
      }
    } else if (const auto &threadLmtClause =
                   std::get_if<Fortran::parser::OmpClause::ThreadLimit>(
                       &clause.u)) {
      threadLmtOperand = fir::getBase(converter.genExprValue(
          *Fortran::semantics::GetExpr(threadLmtClause->v), stmtCtx));
    } else if (std::get_if<Fortran::parser::OmpClause::Nowait>(&clause.u)) {
      nowaitAttr = firOpBuilder.getUnitAttr();
    } else if (const auto &devPtrClause =
                   std::get_if<Fortran::parser::OmpClause::UseDevicePtr>(
                       &clause.u)) {
      addUseDeviceClause(devPtrClause->v, devicePtrOperands);
    } else if (const auto &devAddrClause =
                   std::get_if<Fortran::parser::OmpClause::UseDeviceAddr>(
                       &clause.u)) {
      addUseDeviceClause(devAddrClause->v, deviceAddrOperands);
    } else if (const auto &mapClause =
                   std::get_if<Fortran::parser::OmpClause::Map>(&clause.u)) {
      addMapClause(mapClause, clauseLocation);
    } else {
      TODO(clauseLocation, "OMPD_target unhandled clause");
    }
  }

  llvm::SmallVector<mlir::Attribute> mapTypesAttr(mapTypes.begin(),
                                                  mapTypes.end());
  mlir::ArrayAttr mapTypesArrayAttr =
      ArrayAttr::get(firOpBuilder.getContext(), mapTypesAttr);

  if (directive == llvm::omp::Directive::OMPD_target) {
    auto targetOp = firOpBuilder.create<omp::TargetOp>(
        currentLocation, ifClauseOperand, deviceOperand, threadLmtOperand,
        nowaitAttr, mapOperands, mapTypesArrayAttr);
    createBodyOfOp(targetOp, converter, currentLocation, *eval, &opClauseList);
  } else if (directive == llvm::omp::Directive::OMPD_target_data) {
    auto dataOp = firOpBuilder.create<omp::DataOp>(
        currentLocation, ifClauseOperand, deviceOperand, devicePtrOperands,
        deviceAddrOperands, mapOperands, mapTypesArrayAttr);
    createBodyOfTargetOp(converter, dataOp, useDeviceTypes, useDeviceLocs,
                         useDeviceSymbols, currentLocation);
  } else if (directive == llvm::omp::Directive::OMPD_target_enter_data) {
    firOpBuilder.create<omp::EnterDataOp>(currentLocation, ifClauseOperand,
                                          deviceOperand, nowaitAttr,
                                          mapOperands, mapTypesArrayAttr);
  } else if (directive == llvm::omp::Directive::OMPD_target_exit_data) {
    firOpBuilder.create<omp::ExitDataOp>(currentLocation, ifClauseOperand,
                                         deviceOperand, nowaitAttr, mapOperands,
                                         mapTypesArrayAttr);
  } else {
    TODO(currentLocation, "OMPD_target directive unknown");
  }
}

static void genOMP(Fortran::lower::AbstractConverter &converter,
                   Fortran::lower::pft::Evaluation &eval,
                   const Fortran::parser::OpenMPSimpleStandaloneConstruct
                       &simpleStandaloneConstruct) {
  const auto &directive =
      std::get<Fortran::parser::OmpSimpleStandaloneDirective>(
          simpleStandaloneConstruct.t);
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  const Fortran::parser::OmpClauseList &opClauseList =
      std::get<Fortran::parser::OmpClauseList>(simpleStandaloneConstruct.t);
  mlir::Location currentLocation = converter.genLocation(directive.source);

  switch (directive.v) {
  default:
    break;
  case llvm::omp::Directive::OMPD_barrier:
    firOpBuilder.create<omp::BarrierOp>(currentLocation);
    break;
  case llvm::omp::Directive::OMPD_taskwait:
    firOpBuilder.create<omp::TaskwaitOp>(currentLocation);
    break;
  case llvm::omp::Directive::OMPD_taskyield:
    firOpBuilder.create<omp::TaskyieldOp>(currentLocation);
    break;
  case llvm::omp::Directive::OMPD_target_data:
  case llvm::omp::Directive::OMPD_target_enter_data:
  case llvm::omp::Directive::OMPD_target_exit_data:
    createTargetOp(converter, opClauseList, directive.v, currentLocation);
    break;
  case llvm::omp::Directive::OMPD_target_update:
    TODO(currentLocation, "OMPD_target_update");
  case llvm::omp::Directive::OMPD_ordered:
    TODO(currentLocation, "OMPD_ordered");
  }
}

static void
genAllocateClause(Fortran::lower::AbstractConverter &converter,
                  const Fortran::parser::OmpAllocateClause &ompAllocateClause,
                  SmallVector<Value> &allocatorOperands,
                  SmallVector<Value> &allocateOperands) {
  auto &firOpBuilder = converter.getFirOpBuilder();
  auto currentLocation = converter.getCurrentLocation();
  Fortran::lower::StatementContext stmtCtx;

  mlir::Value allocatorOperand;
  const Fortran::parser::OmpObjectList &ompObjectList =
      std::get<Fortran::parser::OmpObjectList>(ompAllocateClause.t);
  const auto &allocateModifier = std::get<
      std::optional<Fortran::parser::OmpAllocateClause::AllocateModifier>>(
      ompAllocateClause.t);

  // If the allocate modifier is present, check if we only use the allocator
  // submodifier.  ALIGN in this context is unimplemented
  const bool onlyAllocator =
      allocateModifier &&
      std::holds_alternative<
          Fortran::parser::OmpAllocateClause::AllocateModifier::Allocator>(
          allocateModifier->u);

  if (allocateModifier && !onlyAllocator) {
    TODO(converter.getCurrentLocation(), "OmpAllocateClause ALIGN modifier");
  }

  // Check if allocate clause has allocator specified. If so, add it
  // to list of allocators, otherwise, add default allocator to
  // list of allocators.
  if (onlyAllocator) {
    const auto &allocatorValue = std::get<
        Fortran::parser::OmpAllocateClause::AllocateModifier::Allocator>(
        allocateModifier->u);
    allocatorOperand = fir::getBase(converter.genExprValue(
        *Fortran::semantics::GetExpr(allocatorValue.v), stmtCtx));
    allocatorOperands.insert(allocatorOperands.end(), ompObjectList.v.size(),
                             allocatorOperand);
  } else {
    allocatorOperand = firOpBuilder.createIntegerConstant(
        currentLocation, firOpBuilder.getI32Type(), 1);
    allocatorOperands.insert(allocatorOperands.end(), ompObjectList.v.size(),
                             allocatorOperand);
  }
  genObjectList(ompObjectList, converter, allocateOperands);
}

static void
genOMP(Fortran::lower::AbstractConverter &converter,
       Fortran::lower::pft::Evaluation &eval,
       const Fortran::parser::OpenMPStandaloneConstruct &standaloneConstruct) {
  std::visit(
      Fortran::common::visitors{
          [&](const Fortran::parser::OpenMPSimpleStandaloneConstruct
                  &simpleStandaloneConstruct) {
            genOMP(converter, eval, simpleStandaloneConstruct);
          },
          [&](const Fortran::parser::OpenMPFlushConstruct &flushConstruct) {
            SmallVector<Value, 4> operandRange;
            if (const auto &ompObjectList =
                    std::get<std::optional<Fortran::parser::OmpObjectList>>(
                        flushConstruct.t))
              genObjectList(*ompObjectList, converter, operandRange);
            const auto &memOrderClause = std::get<std::optional<
                std::list<Fortran::parser::OmpMemoryOrderClause>>>(
                flushConstruct.t);
            if (memOrderClause.has_value() && memOrderClause->size() > 0)
              TODO(converter.getCurrentLocation(),
                   "Handle OmpMemoryOrderClause");
            converter.getFirOpBuilder().create<mlir::omp::FlushOp>(
                converter.getCurrentLocation(), operandRange);
          },
          [&](const Fortran::parser::OpenMPCancelConstruct &cancelConstruct) {
            TODO(converter.getCurrentLocation(), "OpenMPCancelConstruct");
          },
          [&](const Fortran::parser::OpenMPCancellationPointConstruct
                  &cancellationPointConstruct) {
            TODO(converter.getCurrentLocation(), "OpenMPCancelConstruct");
          },
      },
      standaloneConstruct.u);
}

static omp::ClauseProcBindKindAttr genProcBindKindAttr(
    fir::FirOpBuilder &firOpBuilder,
    const Fortran::parser::OmpClause::ProcBind *procBindClause) {
  omp::ClauseProcBindKind pbKind;
  switch (procBindClause->v.v) {
  case Fortran::parser::OmpProcBindClause::Type::Master:
    pbKind = omp::ClauseProcBindKind::Master;
    break;
  case Fortran::parser::OmpProcBindClause::Type::Close:
    pbKind = omp::ClauseProcBindKind::Close;
    break;
  case Fortran::parser::OmpProcBindClause::Type::Spread:
    pbKind = omp::ClauseProcBindKind::Spread;
    break;
  case Fortran::parser::OmpProcBindClause::Type::Primary:
    pbKind = omp::ClauseProcBindKind::Primary;
    break;
  }
  return omp::ClauseProcBindKindAttr::get(firOpBuilder.getContext(), pbKind);
}

static omp::ClauseTaskDependAttr
genDependKindAttr(fir::FirOpBuilder &firOpBuilder,
                  const Fortran::parser::OmpClause::Depend *dependClause) {
  omp::ClauseTaskDepend pbKind;
  switch (
      std::get<Fortran::parser::OmpDependenceType>(
          std::get<Fortran::parser::OmpDependClause::InOut>(dependClause->v.u)
              .t)
          .v) {
  case Fortran::parser::OmpDependenceType::Type::In:
    pbKind = omp::ClauseTaskDepend::taskdependin;
    break;
  case Fortran::parser::OmpDependenceType::Type::Out:
    pbKind = omp::ClauseTaskDepend::taskdependout;
    break;
  case Fortran::parser::OmpDependenceType::Type::Inout:
    pbKind = omp::ClauseTaskDepend::taskdependinout;
    break;
  default:
    llvm_unreachable("unknown parser task dependence type");
    break;
  }
  return omp::ClauseTaskDependAttr::get(firOpBuilder.getContext(), pbKind);
}

/* When parallel is used in a combined construct, then use this function to
 * create the parallel operation. It handles the parallel specific clauses
 * and leaves the rest for handling at the inner operations.
 * TODO: Refactor clause handling
 */
template <typename Directive>
static void
createCombinedParallelOp(Fortran::lower::AbstractConverter &converter,
                         Fortran::lower::pft::Evaluation &eval,
                         const Directive &directive) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  mlir::Location currentLocation = converter.getCurrentLocation();
  Fortran::lower::StatementContext stmtCtx;
  llvm::ArrayRef<mlir::Type> argTy;
  mlir::Value ifClauseOperand, numThreadsClauseOperand;
  SmallVector<Value> allocatorOperands, allocateOperands;
  mlir::omp::ClauseProcBindKindAttr procBindKindAttr;
  const auto &opClauseList =
      std::get<Fortran::parser::OmpClauseList>(directive.t);
  // TODO: Handle the following clauses
  // 1. default
  // Note: rest of the clauses are handled when the inner operation is created
  for (const Fortran::parser::OmpClause &clause : opClauseList.v) {
    mlir::Location clauseLocation = converter.genLocation(clause.source);
    if (const auto &ifClause =
            std::get_if<Fortran::parser::OmpClause::If>(&clause.u)) {
      ifClauseOperand =
          getIfClauseOperand(converter, stmtCtx, ifClause, clauseLocation);
    } else if (const auto &numThreadsClause =
                   std::get_if<Fortran::parser::OmpClause::NumThreads>(
                       &clause.u)) {
      numThreadsClauseOperand = fir::getBase(converter.genExprValue(
          *Fortran::semantics::GetExpr(numThreadsClause->v), stmtCtx));
    } else if (const auto &procBindClause =
                   std::get_if<Fortran::parser::OmpClause::ProcBind>(
                       &clause.u)) {
      procBindKindAttr = genProcBindKindAttr(firOpBuilder, procBindClause);
    }
  }
  // Create and insert the operation.
  auto parallelOp = firOpBuilder.create<mlir::omp::ParallelOp>(
      currentLocation, argTy, ifClauseOperand, numThreadsClauseOperand,
      allocateOperands, allocatorOperands, /*reduction_vars=*/ValueRange(),
      /*reductions=*/nullptr, procBindKindAttr);

  createBodyOfOp<omp::ParallelOp>(parallelOp, converter, currentLocation, eval,
                                  &opClauseList, /*iv=*/{},
                                  /*isCombined=*/true);
}

/// This function returns the identity value of the operator \p reductionOpName.
/// For example:
///    0 + x = x,
///    1 * x = x
static int getOperationIdentity(llvm::StringRef reductionOpName,
                                mlir::Location loc) {
  if (reductionOpName.contains("add") || reductionOpName.contains("or") ||
      reductionOpName.contains("neqv"))
    return 0;
  if (reductionOpName.contains("multiply") || reductionOpName.contains("and") ||
      reductionOpName.contains("eqv"))
    return 1;
  TODO(loc, "Reduction of some intrinsic operators is not supported");
}

static Value getReductionInitValue(mlir::Location loc, mlir::Type type,
                                   llvm::StringRef reductionOpName,
                                   fir::FirOpBuilder &builder) {
  assert((fir::isa_integer(type) || fir::isa_real(type) ||
          type.isa<fir::LogicalType>()) &&
         "only integer, logical and real types are currently supported");
  if (reductionOpName.contains("max")) {
    if (auto ty = type.dyn_cast<mlir::FloatType>()) {
      const llvm::fltSemantics &sem = ty.getFloatSemantics();
      return builder.createRealConstant(
          loc, type, llvm::APFloat::getLargest(sem, /*Negative=*/true));
    }
    unsigned bits = type.getIntOrFloatBitWidth();
    int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
    return builder.createIntegerConstant(loc, type, minInt);
  } else if (reductionOpName.contains("min")) {
    if (auto ty = type.dyn_cast<mlir::FloatType>()) {
      const llvm::fltSemantics &sem = ty.getFloatSemantics();
      return builder.createRealConstant(
          loc, type, llvm::APFloat::getSmallest(sem, /*Negative=*/true));
    }
    unsigned bits = type.getIntOrFloatBitWidth();
    int64_t maxInt = llvm::APInt::getSignedMaxValue(bits).getSExtValue();
    return builder.createIntegerConstant(loc, type, maxInt);
  } else if (reductionOpName.contains("ior")) {
    unsigned bits = type.getIntOrFloatBitWidth();
    int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue();
    return builder.createIntegerConstant(loc, type, zeroInt);
  } else if (reductionOpName.contains("ieor")) {
    unsigned bits = type.getIntOrFloatBitWidth();
    int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue();
    return builder.createIntegerConstant(loc, type, zeroInt);
  } else if (reductionOpName.contains("iand")) {
    unsigned bits = type.getIntOrFloatBitWidth();
    int64_t allOnInt = llvm::APInt::getAllOnes(bits).getSExtValue();
    return builder.createIntegerConstant(loc, type, allOnInt);
  } else {
    if (type.isa<FloatType>())
      return builder.create<mlir::arith::ConstantOp>(
          loc, type,
          builder.getFloatAttr(
              type, (double)getOperationIdentity(reductionOpName, loc)));

    if (type.isa<fir::LogicalType>()) {
      Value intConst = builder.create<mlir::arith::ConstantOp>(
          loc, builder.getI1Type(),
          builder.getIntegerAttr(builder.getI1Type(),
                                 getOperationIdentity(reductionOpName, loc)));
      return builder.createConvert(loc, type, intConst);
    }

    return builder.create<mlir::arith::ConstantOp>(
        loc, type,
        builder.getIntegerAttr(type,
                               getOperationIdentity(reductionOpName, loc)));
  }
}

template <typename FloatOp, typename IntegerOp>
static Value getReductionOperation(fir::FirOpBuilder &builder, mlir::Type type,
                                   mlir::Location loc, mlir::Value op1,
                                   mlir::Value op2) {
  assert(type.isIntOrIndexOrFloat() &&
         "only integer and float types are currently supported");
  if (type.isIntOrIndex())
    return builder.create<IntegerOp>(loc, op1, op2);
  return builder.create<FloatOp>(loc, op1, op2);
}

static omp::ReductionDeclareOp
createMinimalReductionDecl(fir::FirOpBuilder &builder,
                           llvm::StringRef reductionOpName, mlir::Type type,
                           mlir::Location loc) {
  mlir::ModuleOp module = builder.getModule();
  mlir::OpBuilder modBuilder(module.getBodyRegion());

  mlir::omp::ReductionDeclareOp decl =
      modBuilder.create<omp::ReductionDeclareOp>(loc, reductionOpName, type);
  builder.createBlock(&decl.getInitializerRegion(),
                      decl.getInitializerRegion().end(), {type}, {loc});
  builder.setInsertionPointToEnd(&decl.getInitializerRegion().back());
  Value init = getReductionInitValue(loc, type, reductionOpName, builder);
  builder.create<omp::YieldOp>(loc, init);

  builder.createBlock(&decl.getReductionRegion(),
                      decl.getReductionRegion().end(), {type, type},
                      {loc, loc});

  return decl;
}

/// Creates an OpenMP reduction declaration and inserts it into the provided
/// symbol table. The declaration has a constant initializer with the neutral
/// value `initValue`, and the reduction combiner carried over from `reduce`.
/// TODO: Generalize this for non-integer types, add atomic region.
static omp::ReductionDeclareOp
createReductionDecl(fir::FirOpBuilder &builder, llvm::StringRef reductionOpName,
                    const Fortran::parser::ProcedureDesignator &procDesignator,
                    mlir::Type type, mlir::Location loc) {
  OpBuilder::InsertionGuard guard(builder);
  mlir::ModuleOp module = builder.getModule();

  auto decl =
      module.lookupSymbol<mlir::omp::ReductionDeclareOp>(reductionOpName);
  if (decl)
    return decl;

  decl = createMinimalReductionDecl(builder, reductionOpName, type, loc);
  builder.setInsertionPointToEnd(&decl.getReductionRegion().back());
  mlir::Value op1 = decl.getReductionRegion().front().getArgument(0);
  mlir::Value op2 = decl.getReductionRegion().front().getArgument(1);

  Value reductionOp;
  if (const auto *name{
          Fortran::parser::Unwrap<Fortran::parser::Name>(procDesignator)}) {
    if (name->source == "max") {
      reductionOp =
          getReductionOperation<mlir::arith::MaxFOp, mlir::arith::MaxSIOp>(
              builder, type, loc, op1, op2);
    } else if (name->source == "min") {
      reductionOp =
          getReductionOperation<mlir::arith::MinFOp, mlir::arith::MinSIOp>(
              builder, type, loc, op1, op2);
    } else if (name->source == "ior") {
      assert((type.isIntOrIndex()) && "only integer is expected");
      reductionOp = builder.create<mlir::arith::OrIOp>(loc, op1, op2);
    } else if (name->source == "ieor") {
      assert((type.isIntOrIndex()) && "only integer is expected");
      reductionOp = builder.create<mlir::arith::XOrIOp>(loc, op1, op2);
    } else if (name->source == "iand") {
      assert((type.isIntOrIndex()) && "only integer is expected");
      reductionOp = builder.create<mlir::arith::AndIOp>(loc, op1, op2);
    } else {
      TODO(loc, "Reduction of some intrinsic operators is not supported");
    }
  }

  builder.create<omp::YieldOp>(loc, reductionOp);
  return decl;
}

/// Creates an OpenMP reduction declaration and inserts it into the provided
/// symbol table. The declaration has a constant initializer with the neutral
/// value `initValue`, and the reduction combiner carried over from `reduce`.
/// TODO: Generalize this for non-integer types, add atomic region.
static omp::ReductionDeclareOp createReductionDecl(
    fir::FirOpBuilder &builder, llvm::StringRef reductionOpName,
    Fortran::parser::DefinedOperator::IntrinsicOperator intrinsicOp,
    mlir::Type type, mlir::Location loc) {
  OpBuilder::InsertionGuard guard(builder);
  mlir::ModuleOp module = builder.getModule();

  auto decl =
      module.lookupSymbol<mlir::omp::ReductionDeclareOp>(reductionOpName);
  if (decl)
    return decl;

  decl = createMinimalReductionDecl(builder, reductionOpName, type, loc);
  builder.setInsertionPointToEnd(&decl.getReductionRegion().back());
  mlir::Value op1 = decl.getReductionRegion().front().getArgument(0);
  mlir::Value op2 = decl.getReductionRegion().front().getArgument(1);

  Value reductionOp;
  switch (intrinsicOp) {
  case Fortran::parser::DefinedOperator::IntrinsicOperator::Add:
    reductionOp =
        getReductionOperation<mlir::arith::AddFOp, mlir::arith::AddIOp>(
            builder, type, loc, op1, op2);
    break;
  case Fortran::parser::DefinedOperator::IntrinsicOperator::Multiply:
    reductionOp =
        getReductionOperation<mlir::arith::MulFOp, mlir::arith::MulIOp>(
            builder, type, loc, op1, op2);
    break;
  case Fortran::parser::DefinedOperator::IntrinsicOperator::AND: {
    Value op1I1 = builder.createConvert(loc, builder.getI1Type(), op1);
    Value op2I1 = builder.createConvert(loc, builder.getI1Type(), op2);

    Value andiOp = builder.create<mlir::arith::AndIOp>(loc, op1I1, op2I1);

    reductionOp = builder.createConvert(loc, type, andiOp);
    break;
  }
  case Fortran::parser::DefinedOperator::IntrinsicOperator::OR: {
    Value op1I1 = builder.createConvert(loc, builder.getI1Type(), op1);
    Value op2I1 = builder.createConvert(loc, builder.getI1Type(), op2);

    Value oriOp = builder.create<mlir::arith::OrIOp>(loc, op1I1, op2I1);

    reductionOp = builder.createConvert(loc, type, oriOp);
    break;
  }
  case Fortran::parser::DefinedOperator::IntrinsicOperator::EQV: {
    Value op1I1 = builder.createConvert(loc, builder.getI1Type(), op1);
    Value op2I1 = builder.createConvert(loc, builder.getI1Type(), op2);

    Value cmpiOp = builder.create<mlir::arith::CmpIOp>(
        loc, arith::CmpIPredicate::eq, op1I1, op2I1);

    reductionOp = builder.createConvert(loc, type, cmpiOp);
    break;
  }
  case Fortran::parser::DefinedOperator::IntrinsicOperator::NEQV: {
    Value op1I1 = builder.createConvert(loc, builder.getI1Type(), op1);
    Value op2I1 = builder.createConvert(loc, builder.getI1Type(), op2);

    Value cmpiOp = builder.create<mlir::arith::CmpIOp>(
        loc, arith::CmpIPredicate::ne, op1I1, op2I1);

    reductionOp = builder.createConvert(loc, type, cmpiOp);
    break;
  }
  default:
    TODO(loc, "Reduction of some intrinsic operators is not supported");
  }

  builder.create<omp::YieldOp>(loc, reductionOp);
  return decl;
}

static mlir::omp::ScheduleModifier
translateModifier(const Fortran::parser::OmpScheduleModifierType &m) {
  switch (m.v) {
  case Fortran::parser::OmpScheduleModifierType::ModType::Monotonic:
    return mlir::omp::ScheduleModifier::monotonic;
  case Fortran::parser::OmpScheduleModifierType::ModType::Nonmonotonic:
    return mlir::omp::ScheduleModifier::nonmonotonic;
  case Fortran::parser::OmpScheduleModifierType::ModType::Simd:
    return mlir::omp::ScheduleModifier::simd;
  }
  return mlir::omp::ScheduleModifier::none;
}

static mlir::omp::ScheduleModifier
getScheduleModifier(const Fortran::parser::OmpScheduleClause &x) {
  const auto &modifier =
      std::get<std::optional<Fortran::parser::OmpScheduleModifier>>(x.t);
  // The input may have the modifier any order, so we look for one that isn't
  // SIMD. If modifier is not set at all, fall down to the bottom and return
  // "none".
  if (modifier) {
    const auto &modType1 =
        std::get<Fortran::parser::OmpScheduleModifier::Modifier1>(modifier->t);
    if (modType1.v.v ==
        Fortran::parser::OmpScheduleModifierType::ModType::Simd) {
      const auto &modType2 = std::get<
          std::optional<Fortran::parser::OmpScheduleModifier::Modifier2>>(
          modifier->t);
      if (modType2 &&
          modType2->v.v !=
              Fortran::parser::OmpScheduleModifierType::ModType::Simd)
        return translateModifier(modType2->v);

      return mlir::omp::ScheduleModifier::none;
    }

    return translateModifier(modType1.v);
  }
  return mlir::omp::ScheduleModifier::none;
}

static mlir::omp::ScheduleModifier
getSIMDModifier(const Fortran::parser::OmpScheduleClause &x) {
  const auto &modifier =
      std::get<std::optional<Fortran::parser::OmpScheduleModifier>>(x.t);
  // Either of the two possible modifiers in the input can be the SIMD modifier,
  // so look in either one, and return simd if we find one. Not found = return
  // "none".
  if (modifier) {
    const auto &modType1 =
        std::get<Fortran::parser::OmpScheduleModifier::Modifier1>(modifier->t);
    if (modType1.v.v == Fortran::parser::OmpScheduleModifierType::ModType::Simd)
      return mlir::omp::ScheduleModifier::simd;

    const auto &modType2 = std::get<
        std::optional<Fortran::parser::OmpScheduleModifier::Modifier2>>(
        modifier->t);
    if (modType2 && modType2->v.v ==
                        Fortran::parser::OmpScheduleModifierType::ModType::Simd)
      return mlir::omp::ScheduleModifier::simd;
  }
  return mlir::omp::ScheduleModifier::none;
}

static std::string getReductionName(llvm::StringRef name, mlir::Type ty) {
  return (llvm::Twine(name) +
          (ty.isIntOrIndex() ? llvm::Twine("_i_") : llvm::Twine("_f_")) +
          llvm::Twine(ty.getIntOrFloatBitWidth()))
      .str();
}

static std::string getReductionName(
    Fortran::parser::DefinedOperator::IntrinsicOperator intrinsicOp,
    mlir::Type ty) {
  std::string reductionName;

  switch (intrinsicOp) {
  case Fortran::parser::DefinedOperator::IntrinsicOperator::Add:
    reductionName = "add_reduction";
    break;
  case Fortran::parser::DefinedOperator::IntrinsicOperator::Multiply:
    reductionName = "multiply_reduction";
    break;
  case Fortran::parser::DefinedOperator::IntrinsicOperator::AND:
    return "and_reduction";
  case Fortran::parser::DefinedOperator::IntrinsicOperator::EQV:
    return "eqv_reduction";
  case Fortran::parser::DefinedOperator::IntrinsicOperator::OR:
    return "or_reduction";
  case Fortran::parser::DefinedOperator::IntrinsicOperator::NEQV:
    return "neqv_reduction";
  default:
    reductionName = "other_reduction";
    break;
  }

  return getReductionName(reductionName, ty);
}

/// Creates a reduction declaration and associates it with an
/// OpenMP block directive
static void
addReductionDecl(mlir::Location currentLocation,
                 Fortran::lower::AbstractConverter &converter,
                 const Fortran::parser::OmpReductionClause &reduction,
                 SmallVector<Value> &reductionVars,
                 SmallVector<Attribute> &reductionDeclSymbols) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  omp::ReductionDeclareOp decl;
  const auto &redOperator{
      std::get<Fortran::parser::OmpReductionOperator>(reduction.t)};
  const auto &objectList{std::get<Fortran::parser::OmpObjectList>(reduction.t)};
  if (const auto &redDefinedOp =
          std::get_if<Fortran::parser::DefinedOperator>(&redOperator.u)) {
    const auto &intrinsicOp{
        std::get<Fortran::parser::DefinedOperator::IntrinsicOperator>(
            redDefinedOp->u)};
    switch (intrinsicOp) {
    case Fortran::parser::DefinedOperator::IntrinsicOperator::Add:
    case Fortran::parser::DefinedOperator::IntrinsicOperator::Multiply:
    case Fortran::parser::DefinedOperator::IntrinsicOperator::AND:
    case Fortran::parser::DefinedOperator::IntrinsicOperator::EQV:
    case Fortran::parser::DefinedOperator::IntrinsicOperator::OR:
    case Fortran::parser::DefinedOperator::IntrinsicOperator::NEQV:
      break;

    default:
      TODO(currentLocation,
           "Reduction of some intrinsic operators is not supported");
      break;
    }
    for (const auto &ompObject : objectList.v) {
      if (const auto *name{
              Fortran::parser::Unwrap<Fortran::parser::Name>(ompObject)}) {
        if (const auto *symbol{name->symbol}) {
          mlir::Value symVal = converter.getSymbolAddress(*symbol);
          mlir::Type redType =
              symVal.getType().cast<fir::ReferenceType>().getEleTy();
          reductionVars.push_back(symVal);
          if (redType.isa<fir::LogicalType>())
            decl = createReductionDecl(
                firOpBuilder,
                getReductionName(intrinsicOp, firOpBuilder.getI1Type()),
                intrinsicOp, redType, currentLocation);
          else if (redType.isIntOrIndexOrFloat()) {
            decl = createReductionDecl(firOpBuilder,
                                       getReductionName(intrinsicOp, redType),
                                       intrinsicOp, redType, currentLocation);
          } else {
            TODO(currentLocation, "Reduction of some types is not supported");
          }
          reductionDeclSymbols.push_back(
              SymbolRefAttr::get(firOpBuilder.getContext(), decl.getSymName()));
        }
      }
    }
  } else if (auto reductionIntrinsic =
                 std::get_if<Fortran::parser::ProcedureDesignator>(
                     &redOperator.u)) {
    if (const auto *name{Fortran::parser::Unwrap<Fortran::parser::Name>(
            reductionIntrinsic)}) {
      if ((name->source != "max") && (name->source != "min") &&
          (name->source != "ior") && (name->source != "ieor") &&
          (name->source != "iand")) {
        TODO(currentLocation,
             "Reduction of intrinsic procedures is not supported");
      }
      std::string intrinsicOp = name->ToString();
      for (const auto &ompObject : objectList.v) {
        if (const auto *name{
                Fortran::parser::Unwrap<Fortran::parser::Name>(ompObject)}) {
          if (const auto *symbol{name->symbol}) {
            mlir::Value symVal = converter.getSymbolAddress(*symbol);
            mlir::Type redType =
                symVal.getType().cast<fir::ReferenceType>().getEleTy();
            reductionVars.push_back(symVal);
            assert(redType.isIntOrIndexOrFloat() &&
                   "Unsupported reduction type");
            decl = createReductionDecl(
                firOpBuilder, getReductionName(intrinsicOp, redType),
                *reductionIntrinsic, redType, currentLocation);
            reductionDeclSymbols.push_back(SymbolRefAttr::get(
                firOpBuilder.getContext(), decl.getSymName()));
          }
        }
      }
    }
  }
}

static void genOMP(Fortran::lower::AbstractConverter &converter,
                   Fortran::lower::pft::Evaluation &eval,
                   const Fortran::parser::OpenMPLoopConstruct &loopConstruct) {

  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  llvm::SmallVector<mlir::Value> lowerBound, upperBound, step, linearVars,
      linearStepVars, reductionVars, alignedVars, nontemporalVars;
  mlir::Value scheduleChunkClauseOperand, ifClauseOperand;
  mlir::Attribute scheduleClauseOperand, noWaitClauseOperand,
      orderedClauseOperand, orderClauseOperand;
  mlir::IntegerAttr simdlenClauseOperand, safelenClauseOperand;
  SmallVector<Attribute> reductionDeclSymbols;
  Fortran::lower::StatementContext stmtCtx;
  const auto &loopOpClauseList = std::get<Fortran::parser::OmpClauseList>(
      std::get<Fortran::parser::OmpBeginLoopDirective>(loopConstruct.t).t);

  const auto &beginLoopDirective =
      std::get<Fortran::parser::OmpBeginLoopDirective>(loopConstruct.t);
  mlir::Location currentLocation =
      converter.genLocation(beginLoopDirective.source);
  const auto ompDirective =
      std::get<Fortran::parser::OmpLoopDirective>(beginLoopDirective.t).v;

  if (llvm::omp::OMPD_parallel_do == ompDirective) {
    createCombinedParallelOp<Fortran::parser::OmpBeginLoopDirective>(
        converter, eval,
        std::get<Fortran::parser::OmpBeginLoopDirective>(loopConstruct.t));
  } else if (llvm::omp::OMPD_do != ompDirective &&
             llvm::omp::OMPD_simd != ompDirective) {
    TODO(currentLocation, "Construct enclosing do loop");
  }

  DataSharingProcessor dsp(converter, loopOpClauseList, eval);
  dsp.processStep1();

  // Collect the loops to collapse.
  auto *doConstructEval = &eval.getFirstNestedEvaluation();
  if (doConstructEval->getIf<Fortran::parser::DoConstruct>()
          ->IsDoConcurrent()) {
    TODO(currentLocation, "Do Concurrent in Worksharing loop construct");
  }

  std::int64_t collapseValue =
      Fortran::lower::getCollapseValue(loopOpClauseList);
  std::size_t loopVarTypeSize = 0;
  SmallVector<const Fortran::semantics::Symbol *> iv;
  do {
    auto *doLoop = &doConstructEval->getFirstNestedEvaluation();
    auto *doStmt = doLoop->getIf<Fortran::parser::NonLabelDoStmt>();
    assert(doStmt && "Expected do loop to be in the nested evaluation");
    const auto &loopControl =
        std::get<std::optional<Fortran::parser::LoopControl>>(doStmt->t);
    const Fortran::parser::LoopControl::Bounds *bounds =
        std::get_if<Fortran::parser::LoopControl::Bounds>(&loopControl->u);
    assert(bounds && "Expected bounds for worksharing do loop");
    Fortran::lower::StatementContext stmtCtx;
    lowerBound.push_back(fir::getBase(converter.genExprValue(
        *Fortran::semantics::GetExpr(bounds->lower), stmtCtx)));
    upperBound.push_back(fir::getBase(converter.genExprValue(
        *Fortran::semantics::GetExpr(bounds->upper), stmtCtx)));
    if (bounds->step) {
      step.push_back(fir::getBase(converter.genExprValue(
          *Fortran::semantics::GetExpr(bounds->step), stmtCtx)));
    } else { // If `step` is not present, assume it as `1`.
      step.push_back(firOpBuilder.createIntegerConstant(
          currentLocation, firOpBuilder.getIntegerType(32), 1));
    }
    iv.push_back(bounds->name.thing.symbol);
    loopVarTypeSize = std::max(loopVarTypeSize,
                               bounds->name.thing.symbol->GetUltimate().size());

    collapseValue--;
    doConstructEval =
        &*std::next(doConstructEval->getNestedEvaluations().begin());
  } while (collapseValue > 0);

  for (const auto &clause : loopOpClauseList.v) {
    mlir::Location clauseLocation = converter.genLocation(clause.source);
    if (const auto &scheduleClause =
            std::get_if<Fortran::parser::OmpClause::Schedule>(&clause.u)) {
      if (const auto &chunkExpr =
              std::get<std::optional<Fortran::parser::ScalarIntExpr>>(
                  scheduleClause->v.t)) {
        if (const auto *expr = Fortran::semantics::GetExpr(*chunkExpr)) {
          scheduleChunkClauseOperand =
              fir::getBase(converter.genExprValue(*expr, stmtCtx));
        }
      }
    } else if (const auto &ifClause =
                   std::get_if<Fortran::parser::OmpClause::If>(&clause.u)) {
      ifClauseOperand =
          getIfClauseOperand(converter, stmtCtx, ifClause, clauseLocation);
    } else if (const auto &reductionClause =
                   std::get_if<Fortran::parser::OmpClause::Reduction>(
                       &clause.u)) {
      addReductionDecl(currentLocation, converter, reductionClause->v,
                       reductionVars, reductionDeclSymbols);
    } else if (const auto &simdlenClause =
                   std::get_if<Fortran::parser::OmpClause::Simdlen>(
                       &clause.u)) {
      const auto *expr = Fortran::semantics::GetExpr(simdlenClause->v);
      const std::optional<std::int64_t> simdlenVal =
          Fortran::evaluate::ToInt64(*expr);
      simdlenClauseOperand = firOpBuilder.getI64IntegerAttr(*simdlenVal);
    } else if (const auto &safelenClause =
                   std::get_if<Fortran::parser::OmpClause::Safelen>(
                       &clause.u)) {
      const auto *expr = Fortran::semantics::GetExpr(safelenClause->v);
      const std::optional<std::int64_t> safelenVal =
          Fortran::evaluate::ToInt64(*expr);
      safelenClauseOperand = firOpBuilder.getI64IntegerAttr(*safelenVal);
    }
  }

  // The types of lower bound, upper bound, and step are converted into the
  // type of the loop variable if necessary.
  mlir::Type loopVarType = getLoopVarType(converter, loopVarTypeSize);
  for (unsigned it = 0; it < (unsigned)lowerBound.size(); it++) {
    lowerBound[it] = firOpBuilder.createConvert(currentLocation, loopVarType,
                                                lowerBound[it]);
    upperBound[it] = firOpBuilder.createConvert(currentLocation, loopVarType,
                                                upperBound[it]);
    step[it] =
        firOpBuilder.createConvert(currentLocation, loopVarType, step[it]);
  }

  // 2.9.3.1 SIMD construct
  // TODO: Support all the clauses
  if (llvm::omp::OMPD_simd == ompDirective) {
    TypeRange resultType;
    auto simdLoopOp = firOpBuilder.create<mlir::omp::SimdLoopOp>(
        currentLocation, resultType, lowerBound, upperBound, step, alignedVars,
        nullptr, ifClauseOperand, nontemporalVars,
        orderClauseOperand.dyn_cast_or_null<omp::ClauseOrderKindAttr>(),
        simdlenClauseOperand, safelenClauseOperand,
        /*inclusive=*/firOpBuilder.getUnitAttr());
    createBodyOfOp<omp::SimdLoopOp>(simdLoopOp, converter, currentLocation,
                                    eval, &loopOpClauseList, iv,
                                    /*outer=*/false, &dsp);
    return;
  }

  // FIXME: Add support for following clauses:
  // 1. linear
  // 2. order
  auto wsLoopOp = firOpBuilder.create<mlir::omp::WsLoopOp>(
      currentLocation, lowerBound, upperBound, step, linearVars, linearStepVars,
      reductionVars,
      reductionDeclSymbols.empty()
          ? nullptr
          : mlir::ArrayAttr::get(firOpBuilder.getContext(),
                                 reductionDeclSymbols),
      scheduleClauseOperand.dyn_cast_or_null<omp::ClauseScheduleKindAttr>(),
      scheduleChunkClauseOperand, /*schedule_modifiers=*/nullptr,
      /*simd_modifier=*/nullptr,
      noWaitClauseOperand.dyn_cast_or_null<UnitAttr>(),
      orderedClauseOperand.dyn_cast_or_null<IntegerAttr>(),
      orderClauseOperand.dyn_cast_or_null<omp::ClauseOrderKindAttr>(),
      /*inclusive=*/firOpBuilder.getUnitAttr());

  // Handle attribute based clauses.
  for (const Fortran::parser::OmpClause &clause : loopOpClauseList.v) {
    if (const auto &orderedClause =
            std::get_if<Fortran::parser::OmpClause::Ordered>(&clause.u)) {
      if (orderedClause->v.has_value()) {
        const auto *expr = Fortran::semantics::GetExpr(orderedClause->v);
        const std::optional<std::int64_t> orderedClauseValue =
            Fortran::evaluate::ToInt64(*expr);
        wsLoopOp.setOrderedValAttr(
            firOpBuilder.getI64IntegerAttr(*orderedClauseValue));
      } else {
        wsLoopOp.setOrderedValAttr(firOpBuilder.getI64IntegerAttr(0));
      }
    } else if (const auto &scheduleClause =
                   std::get_if<Fortran::parser::OmpClause::Schedule>(
                       &clause.u)) {
      mlir::MLIRContext *context = firOpBuilder.getContext();
      const auto &scheduleType = scheduleClause->v;
      const auto &scheduleKind =
          std::get<Fortran::parser::OmpScheduleClause::ScheduleType>(
              scheduleType.t);
      switch (scheduleKind) {
      case Fortran::parser::OmpScheduleClause::ScheduleType::Static:
        wsLoopOp.setScheduleValAttr(omp::ClauseScheduleKindAttr::get(
            context, omp::ClauseScheduleKind::Static));
        break;
      case Fortran::parser::OmpScheduleClause::ScheduleType::Dynamic:
        wsLoopOp.setScheduleValAttr(omp::ClauseScheduleKindAttr::get(
            context, omp::ClauseScheduleKind::Dynamic));
        break;
      case Fortran::parser::OmpScheduleClause::ScheduleType::Guided:
        wsLoopOp.setScheduleValAttr(omp::ClauseScheduleKindAttr::get(
            context, omp::ClauseScheduleKind::Guided));
        break;
      case Fortran::parser::OmpScheduleClause::ScheduleType::Auto:
        wsLoopOp.setScheduleValAttr(omp::ClauseScheduleKindAttr::get(
            context, omp::ClauseScheduleKind::Auto));
        break;
      case Fortran::parser::OmpScheduleClause::ScheduleType::Runtime:
        wsLoopOp.setScheduleValAttr(omp::ClauseScheduleKindAttr::get(
            context, omp::ClauseScheduleKind::Runtime));
        break;
      }
      mlir::omp::ScheduleModifier scheduleModifier =
          getScheduleModifier(scheduleClause->v);
      if (scheduleModifier != mlir::omp::ScheduleModifier::none)
        wsLoopOp.setScheduleModifierAttr(
            omp::ScheduleModifierAttr::get(context, scheduleModifier));
      if (getSIMDModifier(scheduleClause->v) !=
          mlir::omp::ScheduleModifier::none)
        wsLoopOp.setSimdModifierAttr(firOpBuilder.getUnitAttr());
    }
  }
  // In FORTRAN `nowait` clause occur at the end of `omp do` directive.
  // i.e
  // !$omp do
  // <...>
  // !$omp end do nowait
  if (const auto &endClauseList =
          std::get<std::optional<Fortran::parser::OmpEndLoopDirective>>(
              loopConstruct.t)) {
    const auto &clauseList =
        std::get<Fortran::parser::OmpClauseList>((*endClauseList).t);
    for (const Fortran::parser::OmpClause &clause : clauseList.v)
      if (std::get_if<Fortran::parser::OmpClause::Nowait>(&clause.u))
        wsLoopOp.setNowaitAttr(firOpBuilder.getUnitAttr());
  }

  createBodyOfOp<omp::WsLoopOp>(wsLoopOp, converter, currentLocation, eval,
                                &loopOpClauseList, iv, /*outer=*/false, &dsp);
}

static void
genOMP(Fortran::lower::AbstractConverter &converter,
       Fortran::lower::pft::Evaluation &eval,
       const Fortran::parser::OpenMPBlockConstruct &blockConstruct) {
  const auto &beginBlockDirective =
      std::get<Fortran::parser::OmpBeginBlockDirective>(blockConstruct.t);
  const auto &blockDirective =
      std::get<Fortran::parser::OmpBlockDirective>(beginBlockDirective.t);
  const auto &endBlockDirective =
      std::get<Fortran::parser::OmpEndBlockDirective>(blockConstruct.t);
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  mlir::Location currentLocation = converter.genLocation(blockDirective.source);

  Fortran::lower::StatementContext stmtCtx;
  llvm::ArrayRef<mlir::Type> argTy;
  mlir::Value ifClauseOperand, numThreadsClauseOperand, finalClauseOperand,
      priorityClauseOperand;
  mlir::omp::ClauseProcBindKindAttr procBindKindAttr;
  SmallVector<Value> allocateOperands, allocatorOperands, dependOperands,
      reductionVars;
  SmallVector<Attribute> dependTypeOperands, reductionDeclSymbols;
  mlir::UnitAttr nowaitAttr, untiedAttr, mergeableAttr;

  const auto &opClauseList =
      std::get<Fortran::parser::OmpClauseList>(beginBlockDirective.t);
  for (const auto &clause : opClauseList.v) {
    mlir::Location clauseLocation = converter.genLocation(clause.source);
    if (const auto &ifClause =
            std::get_if<Fortran::parser::OmpClause::If>(&clause.u)) {
      ifClauseOperand =
          getIfClauseOperand(converter, stmtCtx, ifClause, clauseLocation);
    } else if (const auto &numThreadsClause =
                   std::get_if<Fortran::parser::OmpClause::NumThreads>(
                       &clause.u)) {
      // OMPIRBuilder expects `NUM_THREAD` clause as a `Value`.
      numThreadsClauseOperand = fir::getBase(converter.genExprValue(
          *Fortran::semantics::GetExpr(numThreadsClause->v), stmtCtx));
    } else if (const auto &procBindClause =
                   std::get_if<Fortran::parser::OmpClause::ProcBind>(
                       &clause.u)) {
      procBindKindAttr = genProcBindKindAttr(firOpBuilder, procBindClause);
    } else if (const auto &allocateClause =
                   std::get_if<Fortran::parser::OmpClause::Allocate>(
                       &clause.u)) {
      genAllocateClause(converter, allocateClause->v, allocatorOperands,
                        allocateOperands);
    } else if (std::get_if<Fortran::parser::OmpClause::Private>(&clause.u) ||
               std::get_if<Fortran::parser::OmpClause::Firstprivate>(
                   &clause.u) ||
               std::get_if<Fortran::parser::OmpClause::Copyin>(&clause.u)) {
      // Privatisation and copyin clauses are handled elsewhere.
      continue;
    } else if (std::get_if<Fortran::parser::OmpClause::Shared>(&clause.u)) {
      // Shared is the default behavior in the IR, so no handling is required.
      continue;
    } else if (const auto &defaultClause =
                   std::get_if<Fortran::parser::OmpClause::Default>(
                       &clause.u)) {
      if ((defaultClause->v.v ==
           Fortran::parser::OmpDefaultClause::Type::Shared) ||
          (defaultClause->v.v ==
           Fortran::parser::OmpDefaultClause::Type::None)) {
        // Default clause with shared or none do not require any handling since
        // Shared is the default behavior in the IR and None is only required
        // for semantic checks.
        continue;
      }
    } else if (std::get_if<Fortran::parser::OmpClause::Threads>(&clause.u)) {
      // Nothing needs to be done for threads clause.
      continue;
    } else if (std::get_if<Fortran::parser::OmpClause::Map>(&clause.u)) {
      // Map clause is exclusive to Target Data directives. It is handled
      // as part of the TargetOp creation.
      continue;
    } else if (std::get_if<Fortran::parser::OmpClause::UseDevicePtr>(
                   &clause.u)) {
      // UseDevicePtr clause is exclusive to Target Data directives. It is
      // handled as part of the TargetOp creation.
      continue;
    } else if (std::get_if<Fortran::parser::OmpClause::UseDeviceAddr>(
                   &clause.u)) {
      // UseDeviceAddr clause is exclusive to Target Data directives. It is
      // handled as part of the TargetOp creation.
      continue;
    } else if (std::get_if<Fortran::parser::OmpClause::ThreadLimit>(
                   &clause.u)) {
      // Handled as part of TargetOp creation.
      continue;
    } else if (const auto &finalClause =
                   std::get_if<Fortran::parser::OmpClause::Final>(&clause.u)) {
      mlir::Value finalVal = fir::getBase(converter.genExprValue(
          *Fortran::semantics::GetExpr(finalClause->v), stmtCtx));
      finalClauseOperand = firOpBuilder.createConvert(
          currentLocation, firOpBuilder.getI1Type(), finalVal);
    } else if (std::get_if<Fortran::parser::OmpClause::Untied>(&clause.u)) {
      untiedAttr = firOpBuilder.getUnitAttr();
    } else if (std::get_if<Fortran::parser::OmpClause::Mergeable>(&clause.u)) {
      mergeableAttr = firOpBuilder.getUnitAttr();
    } else if (const auto &priorityClause =
                   std::get_if<Fortran::parser::OmpClause::Priority>(
                       &clause.u)) {
      priorityClauseOperand = fir::getBase(converter.genExprValue(
          *Fortran::semantics::GetExpr(priorityClause->v), stmtCtx));
    } else if (const auto &reductionClause =
                   std::get_if<Fortran::parser::OmpClause::Reduction>(
                       &clause.u)) {
      addReductionDecl(currentLocation, converter, reductionClause->v,
                       reductionVars, reductionDeclSymbols);
    } else if (const auto &dependClause =
                   std::get_if<Fortran::parser::OmpClause::Depend>(&clause.u)) {
      const std::list<Fortran::parser::Designator> &depVal =
          std::get<std::list<Fortran::parser::Designator>>(
              std::get<Fortran::parser::OmpDependClause::InOut>(
                  dependClause->v.u)
                  .t);
      omp::ClauseTaskDependAttr dependTypeOperand =
          genDependKindAttr(firOpBuilder, dependClause);
      dependTypeOperands.insert(dependTypeOperands.end(), depVal.size(),
                                dependTypeOperand);
      for (const Fortran::parser::Designator &ompObject : depVal) {
        Fortran::semantics::Symbol *sym = nullptr;
        std::visit(
            Fortran::common::visitors{
                [&](const Fortran::parser::DataRef &designator) {
                  if (const Fortran::parser::Name *name =
                          std::get_if<Fortran::parser::Name>(&designator.u)) {
                    sym = name->symbol;
                  } else if (std::get_if<Fortran::common::Indirection<
                                 Fortran::parser::ArrayElement>>(
                                 &designator.u)) {
                    TODO(converter.getCurrentLocation(),
                         "array sections not supported for task depend");
                  }
                },
                [&](const Fortran::parser::Substring &designator) {
                  TODO(converter.getCurrentLocation(),
                       "substring not supported for task depend");
                }},
            (ompObject).u);
        const mlir::Value variable = converter.getSymbolAddress(*sym);
        dependOperands.push_back(((variable)));
      }
    } else {
      TODO(converter.getCurrentLocation(), "OpenMP Block construct clause");
    }
  }

  for (const auto &clause :
       std::get<Fortran::parser::OmpClauseList>(endBlockDirective.t).v) {
    if (std::get_if<Fortran::parser::OmpClause::Nowait>(&clause.u))
      nowaitAttr = firOpBuilder.getUnitAttr();
  }

  if (blockDirective.v == llvm::omp::OMPD_parallel) {
    // Create and insert the operation.
    auto parallelOp = firOpBuilder.create<mlir::omp::ParallelOp>(
        currentLocation, argTy, ifClauseOperand, numThreadsClauseOperand,
        allocateOperands, allocatorOperands, reductionVars,
        reductionDeclSymbols.empty()
            ? nullptr
            : mlir::ArrayAttr::get(firOpBuilder.getContext(),
                                   reductionDeclSymbols),
        procBindKindAttr);
    createBodyOfOp<omp::ParallelOp>(parallelOp, converter, currentLocation,
                                    eval, &opClauseList);
  } else if (blockDirective.v == llvm::omp::OMPD_master) {
    auto masterOp =
        firOpBuilder.create<mlir::omp::MasterOp>(currentLocation, argTy);
    createBodyOfOp<omp::MasterOp>(masterOp, converter, currentLocation, eval);
  } else if (blockDirective.v == llvm::omp::OMPD_single) {
    auto singleOp = firOpBuilder.create<mlir::omp::SingleOp>(
        currentLocation, allocateOperands, allocatorOperands, nowaitAttr);
    createBodyOfOp<omp::SingleOp>(singleOp, converter, currentLocation, eval,
                                  &opClauseList);
  } else if (blockDirective.v == llvm::omp::OMPD_ordered) {
    auto orderedOp = firOpBuilder.create<mlir::omp::OrderedRegionOp>(
        currentLocation, /*simd=*/false);
    createBodyOfOp<omp::OrderedRegionOp>(orderedOp, converter, currentLocation,
                                         eval);
  } else if (blockDirective.v == llvm::omp::OMPD_task) {
    auto taskOp = firOpBuilder.create<mlir::omp::TaskOp>(
        currentLocation, ifClauseOperand, finalClauseOperand, untiedAttr,
        mergeableAttr, /*in_reduction_vars=*/ValueRange(),
        /*in_reductions=*/nullptr, priorityClauseOperand,
        dependTypeOperands.empty()
            ? nullptr
            : mlir::ArrayAttr::get(firOpBuilder.getContext(),
                                   dependTypeOperands),
        dependOperands, allocateOperands, allocatorOperands);
    createBodyOfOp(taskOp, converter, currentLocation, eval, &opClauseList);
  } else if (blockDirective.v == llvm::omp::OMPD_taskgroup) {
    // TODO: Add task_reduction support
    auto taskGroupOp = firOpBuilder.create<mlir::omp::TaskGroupOp>(
        currentLocation, /*task_reduction_vars=*/ValueRange(),
        /*task_reductions=*/nullptr, allocateOperands, allocatorOperands);
    createBodyOfOp(taskGroupOp, converter, currentLocation, eval,
                   &opClauseList);
  } else if (blockDirective.v == llvm::omp::OMPD_target) {
    createTargetOp(converter, opClauseList, blockDirective.v, currentLocation,
                   &eval);
  } else if (blockDirective.v == llvm::omp::OMPD_target_data) {
    createTargetOp(converter, opClauseList, blockDirective.v, currentLocation,
                   &eval);
  } else {
    TODO(currentLocation, "Unhandled block directive");
  }
}

static void
genOMP(Fortran::lower::AbstractConverter &converter,
       Fortran::lower::pft::Evaluation &eval,
       const Fortran::parser::OpenMPCriticalConstruct &criticalConstruct) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  mlir::Location currentLocation = converter.getCurrentLocation();
  std::string name;
  const Fortran::parser::OmpCriticalDirective &cd =
      std::get<Fortran::parser::OmpCriticalDirective>(criticalConstruct.t);
  if (std::get<std::optional<Fortran::parser::Name>>(cd.t).has_value()) {
    name =
        std::get<std::optional<Fortran::parser::Name>>(cd.t).value().ToString();
  }

  uint64_t hint = 0;
  const auto &clauseList = std::get<Fortran::parser::OmpClauseList>(cd.t);
  for (const Fortran::parser::OmpClause &clause : clauseList.v)
    if (auto hintClause =
            std::get_if<Fortran::parser::OmpClause::Hint>(&clause.u)) {
      const auto *expr = Fortran::semantics::GetExpr(hintClause->v);
      hint = *Fortran::evaluate::ToInt64(*expr);
      break;
    }

  mlir::omp::CriticalOp criticalOp = [&]() {
    if (name.empty()) {
      return firOpBuilder.create<mlir::omp::CriticalOp>(currentLocation,
                                                        FlatSymbolRefAttr());
    } else {
      mlir::ModuleOp module = firOpBuilder.getModule();
      mlir::OpBuilder modBuilder(module.getBodyRegion());
      auto global = module.lookupSymbol<mlir::omp::CriticalDeclareOp>(name);
      if (!global)
        global = modBuilder.create<mlir::omp::CriticalDeclareOp>(
            currentLocation, name, hint);
      return firOpBuilder.create<mlir::omp::CriticalOp>(
          currentLocation, mlir::FlatSymbolRefAttr::get(
                               firOpBuilder.getContext(), global.getSymName()));
    }
  }();
  createBodyOfOp<omp::CriticalOp>(criticalOp, converter, currentLocation, eval);
}

static void
genOMP(Fortran::lower::AbstractConverter &converter,
       Fortran::lower::pft::Evaluation &eval,
       const Fortran::parser::OpenMPSectionConstruct &sectionConstruct) {

  auto &firOpBuilder = converter.getFirOpBuilder();
  auto currentLocation = converter.getCurrentLocation();
  const Fortran::parser::OpenMPConstruct *parentOmpConstruct =
      eval.parentConstruct->getIf<Fortran::parser::OpenMPConstruct>();
  assert(parentOmpConstruct &&
         "No enclosing parent OpenMPConstruct on SECTION construct");
  const Fortran::parser::OpenMPSectionsConstruct *sectionsConstruct =
      std::get_if<Fortran::parser::OpenMPSectionsConstruct>(
          &parentOmpConstruct->u);
  assert(sectionsConstruct && "SECTION construct must have parent"
                              "SECTIONS construct");
  const Fortran::parser::OmpClauseList &sectionsClauseList =
      std::get<Fortran::parser::OmpClauseList>(
          std::get<Fortran::parser::OmpBeginSectionsDirective>(
              sectionsConstruct->t)
              .t);
  // Currently only private/firstprivate clause is handled, and
  // all privatization is done within `omp.section` operations.
  mlir::omp::SectionOp sectionOp =
      firOpBuilder.create<mlir::omp::SectionOp>(currentLocation);
  createBodyOfOp<omp::SectionOp>(sectionOp, converter, currentLocation, eval,
                                 &sectionsClauseList);
}

static void
genOMP(Fortran::lower::AbstractConverter &converter,
       Fortran::lower::pft::Evaluation &eval,
       const Fortran::parser::OpenMPSectionsConstruct &sectionsConstruct) {
  auto &firOpBuilder = converter.getFirOpBuilder();
  auto currentLocation = converter.getCurrentLocation();
  SmallVector<Value> reductionVars, allocateOperands, allocatorOperands;
  mlir::UnitAttr noWaitClauseOperand;
  const auto &sectionsClauseList = std::get<Fortran::parser::OmpClauseList>(
      std::get<Fortran::parser::OmpBeginSectionsDirective>(sectionsConstruct.t)
          .t);
  for (const Fortran::parser::OmpClause &clause : sectionsClauseList.v) {

    // Reduction Clause
    if (std::get_if<Fortran::parser::OmpClause::Reduction>(&clause.u)) {
      TODO(currentLocation, "OMPC_Reduction");

      // Allocate clause
    } else if (const auto &allocateClause =
                   std::get_if<Fortran::parser::OmpClause::Allocate>(
                       &clause.u)) {
      genAllocateClause(converter, allocateClause->v, allocatorOperands,
                        allocateOperands);
    }
  }
  const auto &endSectionsClauseList =
      std::get<Fortran::parser::OmpEndSectionsDirective>(sectionsConstruct.t);
  const auto &clauseList =
      std::get<Fortran::parser::OmpClauseList>(endSectionsClauseList.t);
  for (const auto &clause : clauseList.v) {
    // Nowait clause
    if (std::get_if<Fortran::parser::OmpClause::Nowait>(&clause.u)) {
      noWaitClauseOperand = firOpBuilder.getUnitAttr();
    }
  }

  llvm::omp::Directive dir =
      std::get<Fortran::parser::OmpSectionsDirective>(
          std::get<Fortran::parser::OmpBeginSectionsDirective>(
              sectionsConstruct.t)
              .t)
          .v;

  // Parallel Sections Construct
  if (dir == llvm::omp::Directive::OMPD_parallel_sections) {
    createCombinedParallelOp<Fortran::parser::OmpBeginSectionsDirective>(
        converter, eval,
        std::get<Fortran::parser::OmpBeginSectionsDirective>(
            sectionsConstruct.t));
    auto sectionsOp = firOpBuilder.create<mlir::omp::SectionsOp>(
        currentLocation, /*reduction_vars*/ ValueRange(),
        /*reductions=*/nullptr, allocateOperands, allocatorOperands,
        /*nowait=*/nullptr);
    createBodyOfOp(sectionsOp, converter, currentLocation, eval);

    // Sections Construct
  } else if (dir == llvm::omp::Directive::OMPD_sections) {
    auto sectionsOp = firOpBuilder.create<mlir::omp::SectionsOp>(
        currentLocation, reductionVars, /*reductions = */ nullptr,
        allocateOperands, allocatorOperands, noWaitClauseOperand);
    createBodyOfOp<omp::SectionsOp>(sectionsOp, converter, currentLocation,
                                    eval);
  }
}

static bool checkForSingleVariableOnRHS(
    const Fortran::parser::AssignmentStmt &assignmentStmt) {
  // Check if the assignment statement has a single variable on the RHS
  const Fortran::parser::Expr &expr{
      std::get<Fortran::parser::Expr>(assignmentStmt.t)};
  const Fortran::common::Indirection<Fortran::parser::Designator> *designator =
      std::get_if<Fortran::common::Indirection<Fortran::parser::Designator>>(
          &expr.u);
  const Fortran::parser::Name *name =
      designator
          ? Fortran::semantics::getDesignatorNameIfDataRef(designator->value())
          : nullptr;
  return name != nullptr;
}

static bool
checkForSymbolMatch(const Fortran::parser::AssignmentStmt &assignmentStmt) {
  // Check if the symbol on the LHS of the assignment statement is present in
  // the RHS expression
  const auto &var{std::get<Fortran::parser::Variable>(assignmentStmt.t)};
  const auto &expr{std::get<Fortran::parser::Expr>(assignmentStmt.t)};
  const auto *e{Fortran::semantics::GetExpr(expr)};
  const auto *v{Fortran::semantics::GetExpr(var)};
  const Fortran::semantics::Symbol &varSymbol =
      Fortran::evaluate::GetSymbolVector(*v).front();
  for (const Fortran::semantics::Symbol &symbol :
       Fortran::evaluate::GetSymbolVector(*e))
    if (varSymbol == symbol)
      return true;
  return false;
}

static void genOmpAtomicHintAndMemoryOrderClauses(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::parser::OmpAtomicClauseList &clauseList,
    mlir::IntegerAttr &hint,
    mlir::omp::ClauseMemoryOrderKindAttr &memoryOrder) {
  auto &firOpBuilder = converter.getFirOpBuilder();
  for (const auto &clause : clauseList.v) {
    if (auto ompClause = std::get_if<Fortran::parser::OmpClause>(&clause.u)) {
      if (auto hintClause =
              std::get_if<Fortran::parser::OmpClause::Hint>(&ompClause->u)) {
        const auto *expr = Fortran::semantics::GetExpr(hintClause->v);
        uint64_t hintExprValue = *Fortran::evaluate::ToInt64(*expr);
        hint = firOpBuilder.getI64IntegerAttr(hintExprValue);
      }
    } else if (auto ompMemoryOrderClause =
                   std::get_if<Fortran::parser::OmpMemoryOrderClause>(
                       &clause.u)) {
      if (std::get_if<Fortran::parser::OmpClause::Acquire>(
              &ompMemoryOrderClause->v.u)) {
        memoryOrder = mlir::omp::ClauseMemoryOrderKindAttr::get(
            firOpBuilder.getContext(), omp::ClauseMemoryOrderKind::Acquire);
      } else if (std::get_if<Fortran::parser::OmpClause::Relaxed>(
                     &ompMemoryOrderClause->v.u)) {
        memoryOrder = mlir::omp::ClauseMemoryOrderKindAttr::get(
            firOpBuilder.getContext(), omp::ClauseMemoryOrderKind::Relaxed);
      } else if (std::get_if<Fortran::parser::OmpClause::SeqCst>(
                     &ompMemoryOrderClause->v.u)) {
        memoryOrder = mlir::omp::ClauseMemoryOrderKindAttr::get(
            firOpBuilder.getContext(), omp::ClauseMemoryOrderKind::Seq_cst);
      } else if (std::get_if<Fortran::parser::OmpClause::Release>(
                     &ompMemoryOrderClause->v.u)) {
        memoryOrder = mlir::omp::ClauseMemoryOrderKindAttr::get(
            firOpBuilder.getContext(), omp::ClauseMemoryOrderKind::Release);
      }
    }
  }
}

static void genOmpAtomicCaptureStatement(
    Fortran::lower::AbstractConverter &converter,
    Fortran::lower::pft::Evaluation &eval, mlir::Value from_address,
    mlir::Value to_address,
    const Fortran::parser::OmpAtomicClauseList *leftHandClauseList,
    const Fortran::parser::OmpAtomicClauseList *rightHandClauseList,
    mlir::Type elementType) {
  // Generate `omp.atomic.read` operation for atomic assigment statements
  auto &firOpBuilder = converter.getFirOpBuilder();
  auto currentLocation = converter.getCurrentLocation();

  // If no hint clause is specified, the effect is as if
  // hint(omp_sync_hint_none) had been specified.
  mlir::IntegerAttr hint = nullptr;

  mlir::omp::ClauseMemoryOrderKindAttr memory_order = nullptr;
  if (leftHandClauseList)
    genOmpAtomicHintAndMemoryOrderClauses(converter, *leftHandClauseList, hint,
                                          memory_order);
  if (rightHandClauseList)
    genOmpAtomicHintAndMemoryOrderClauses(converter, *rightHandClauseList, hint,
                                          memory_order);
  firOpBuilder.create<mlir::omp::AtomicReadOp>(
      currentLocation, from_address, to_address,
      mlir::TypeAttr::get(elementType), hint, memory_order);
}

static void genOmpAtomicWriteStatement(
    Fortran::lower::AbstractConverter &converter,
    Fortran::lower::pft::Evaluation &eval, mlir::Value lhs_addr,
    mlir::Value rhs_expr,
    const Fortran::parser::OmpAtomicClauseList *leftHandClauseList,
    const Fortran::parser::OmpAtomicClauseList *rightHandClauseList,
    mlir::Value *evaluatedExprValue = nullptr) {
  // Generate `omp.atomic.write` operation for atomic assignment statements
  auto &firOpBuilder = converter.getFirOpBuilder();
  auto currentLocation = converter.getCurrentLocation();
  // If no hint clause is specified, the effect is as if
  // hint(omp_sync_hint_none) had been specified.
  mlir::IntegerAttr hint = nullptr;
  mlir::omp::ClauseMemoryOrderKindAttr memory_order = nullptr;
  if (leftHandClauseList)
    genOmpAtomicHintAndMemoryOrderClauses(converter, *leftHandClauseList, hint,
                                          memory_order);
  if (rightHandClauseList)
    genOmpAtomicHintAndMemoryOrderClauses(converter, *rightHandClauseList, hint,
                                          memory_order);
  firOpBuilder.create<mlir::omp::AtomicWriteOp>(currentLocation, lhs_addr,
                                                rhs_expr, hint, memory_order);
}

static void genOmpAtomicUpdateStatement(
    Fortran::lower::AbstractConverter &converter,
    Fortran::lower::pft::Evaluation &eval, mlir::Value lhs_addr,
    mlir::Type varType, const Fortran::parser::Variable &assignmentStmtVariable,
    const Fortran::parser::Expr &assignmentStmtExpr,
    const Fortran::parser::OmpAtomicClauseList *leftHandClauseList,
    const Fortran::parser::OmpAtomicClauseList *rightHandClauseList) {
  // Generate `omp.atomic.update` operation for atomic assignment statements
  auto &firOpBuilder = converter.getFirOpBuilder();
  auto currentLocation = converter.getCurrentLocation();

  // If no hint clause is specified, the effect is as if
  // hint(omp_sync_hint_none) had been specified.
  mlir::IntegerAttr hint = nullptr;
  mlir::omp::ClauseMemoryOrderKindAttr memoryOrder = nullptr;
  if (leftHandClauseList)
    genOmpAtomicHintAndMemoryOrderClauses(converter, *leftHandClauseList, hint,
                                          memoryOrder);
  if (rightHandClauseList)
    genOmpAtomicHintAndMemoryOrderClauses(converter, *rightHandClauseList, hint,
                                          memoryOrder);
  auto atomicUpdateOp = firOpBuilder.create<mlir::omp::AtomicUpdateOp>(
      currentLocation, lhs_addr, hint, memoryOrder);

  //// Generate body of Atomic Update operation
  // If an argument for the region is provided then create the block with that
  // argument. Also update the symbol's address with the argument mlir value.
  SmallVector<Type> varTys = {varType};
  SmallVector<Location> locs = {currentLocation};
  firOpBuilder.createBlock(&atomicUpdateOp.getRegion(), {}, varTys, locs);
  mlir::Value val =
      fir::getBase(atomicUpdateOp.getRegion().front().getArgument(0));
  auto varDesignator =
      std::get_if<Fortran::common::Indirection<Fortran::parser::Designator>>(
          &assignmentStmtVariable.u);
  assert(varDesignator && "Variable designator for atomic update assignment "
                          "statement does not exist");
  const auto *name =
      Fortran::semantics::getDesignatorNameIfDataRef(varDesignator->value());
  if (!name)
    TODO(converter.getCurrentLocation(),
         "Array references as atomic update variable");
  assert(name && name->symbol &&
         "No symbol attached to atomic update variable");
  converter.bindSymbol(*name->symbol, val);
  // Set the insert for the terminator operation to go at the end of the
  // block.
  mlir::Block &block = atomicUpdateOp.getRegion().back();
  firOpBuilder.setInsertionPointToEnd(&block);

  Fortran::lower::StatementContext stmtCtx;
  mlir::Value rhs_expr = fir::getBase(converter.genExprValue(
      *Fortran::semantics::GetExpr(assignmentStmtExpr), stmtCtx));
  mlir::Value convertResult =
      firOpBuilder.createConvert(currentLocation, varType, rhs_expr);
  // Insert the terminator: YieldOp.
  firOpBuilder.create<mlir::omp::YieldOp>(currentLocation, convertResult);
  // Reset the insert point to before the terminator.
  firOpBuilder.setInsertionPointToStart(&block);
}

static void
genOmpAtomicWrite(Fortran::lower::AbstractConverter &converter,
                  Fortran::lower::pft::Evaluation &eval,
                  const Fortran::parser::OmpAtomicWrite &atomicWrite) {
  // Get the value and address of atomic write operands.
  const Fortran::parser::OmpAtomicClauseList &rightHandClauseList =
      std::get<2>(atomicWrite.t);
  const Fortran::parser::OmpAtomicClauseList &leftHandClauseList =
      std::get<0>(atomicWrite.t);
  const Fortran::parser::AssignmentStmt &stmt =
      std::get<3>(atomicWrite.t).statement;
  const Fortran::evaluate::Assignment &assign = *stmt.typedAssignment->v;
  Fortran::lower::StatementContext stmtCtx;
  // Get the value and address of atomic write operands.
  mlir::Value rhs_expr =
      fir::getBase(converter.genExprValue(assign.rhs, stmtCtx));

  mlir::Value lhs_addr =
      fir::getBase(converter.genExprAddr(assign.lhs, stmtCtx));
  genOmpAtomicWriteStatement(converter, eval, lhs_addr, rhs_expr,
                             &leftHandClauseList, &rightHandClauseList);
}

static void genOmpAtomicRead(Fortran::lower::AbstractConverter &converter,
                             Fortran::lower::pft::Evaluation &eval,
                             const Fortran::parser::OmpAtomicRead &atomicRead) {
  // Get the address of atomic read operands.
  const Fortran::parser::OmpAtomicClauseList &rightHandClauseList =
      std::get<2>(atomicRead.t);
  const Fortran::parser::OmpAtomicClauseList &leftHandClauseList =
      std::get<0>(atomicRead.t);
  const auto &assignmentStmtExpr =
      std::get<Fortran::parser::Expr>(std::get<3>(atomicRead.t).statement.t);
  const auto &assignmentStmtVariable = std::get<Fortran::parser::Variable>(
      std::get<3>(atomicRead.t).statement.t);

  Fortran::lower::StatementContext stmtCtx;
  const Fortran::semantics::SomeExpr &fromExpr =
      *Fortran::semantics::GetExpr(assignmentStmtExpr);
  mlir::Type elementType = converter.genType(fromExpr);
  mlir::Value fromAddress =
      fir::getBase(converter.genExprAddr(fromExpr, stmtCtx));
  mlir::Value toAddress = fir::getBase(converter.genExprAddr(
      *Fortran::semantics::GetExpr(assignmentStmtVariable), stmtCtx));
  genOmpAtomicCaptureStatement(converter, eval, fromAddress, toAddress,
                               &leftHandClauseList, &rightHandClauseList,
                               elementType);
}

static void
genOmpAtomicUpdate(Fortran::lower::AbstractConverter &converter,
                   Fortran::lower::pft::Evaluation &eval,
                   const Fortran::parser::OmpAtomicUpdate &atomicUpdate) {
  const Fortran::parser::OmpAtomicClauseList &rightHandClauseList =
      std::get<2>(atomicUpdate.t);
  const Fortran::parser::OmpAtomicClauseList &leftHandClauseList =
      std::get<0>(atomicUpdate.t);
  const auto &assignmentStmtExpr =
      std::get<Fortran::parser::Expr>(std::get<3>(atomicUpdate.t).statement.t);
  const auto &assignmentStmtVariable = std::get<Fortran::parser::Variable>(
      std::get<3>(atomicUpdate.t).statement.t);

  Fortran::lower::StatementContext stmtCtx;
  mlir::Value lhs_addr = fir::getBase(converter.genExprAddr(
      *Fortran::semantics::GetExpr(assignmentStmtVariable), stmtCtx));
  mlir::Type varType =
      fir::getBase(
          converter.genExprValue(
              *Fortran::semantics::GetExpr(assignmentStmtVariable), stmtCtx))
          .getType();
  genOmpAtomicUpdateStatement(converter, eval, lhs_addr, varType,
                              assignmentStmtVariable, assignmentStmtExpr,
                              &leftHandClauseList, &rightHandClauseList);
}

static void genOmpAtomic(Fortran::lower::AbstractConverter &converter,
                         Fortran::lower::pft::Evaluation &eval,
                         const Fortran::parser::OmpAtomic &atomicConstruct) {
  const Fortran::parser::OmpAtomicClauseList &atomicClauseList =
      std::get<Fortran::parser::OmpAtomicClauseList>(atomicConstruct.t);
  const auto &assignmentStmtExpr = std::get<Fortran::parser::Expr>(
      std::get<Fortran::parser::Statement<Fortran::parser::AssignmentStmt>>(
          atomicConstruct.t)
          .statement.t);
  const auto &assignmentStmtVariable = std::get<Fortran::parser::Variable>(
      std::get<Fortran::parser::Statement<Fortran::parser::AssignmentStmt>>(
          atomicConstruct.t)
          .statement.t);
  Fortran::lower::StatementContext stmtCtx;
  mlir::Value lhs_addr = fir::getBase(converter.genExprAddr(
      *Fortran::semantics::GetExpr(assignmentStmtVariable), stmtCtx));
  mlir::Type varType =
      fir::getBase(
          converter.genExprValue(
              *Fortran::semantics::GetExpr(assignmentStmtVariable), stmtCtx))
          .getType();
  // If atomic-clause is not present on the construct, the behaviour is as if
  // the update clause is specified
  genOmpAtomicUpdateStatement(converter, eval, lhs_addr, varType,
                              assignmentStmtVariable, assignmentStmtExpr,
                              &atomicClauseList, nullptr);
}

static void
genOmpAtomicCapture(Fortran::lower::AbstractConverter &converter,
                    Fortran::lower::pft::Evaluation &eval,
                    const Fortran::parser::OmpAtomicCapture &atomicCapture) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  mlir::Location currentLocation = converter.getCurrentLocation();

  mlir::IntegerAttr hint = nullptr;
  mlir::omp::ClauseMemoryOrderKindAttr memory_order = nullptr;
  const Fortran::parser::OmpAtomicClauseList &rightHandClauseList =
      std::get<2>(atomicCapture.t);
  const Fortran::parser::OmpAtomicClauseList &leftHandClauseList =
      std::get<0>(atomicCapture.t);
  genOmpAtomicHintAndMemoryOrderClauses(converter, leftHandClauseList, hint,
                                        memory_order);
  genOmpAtomicHintAndMemoryOrderClauses(converter, rightHandClauseList, hint,
                                        memory_order);

  const Fortran::parser::AssignmentStmt &stmt1 =
      std::get<3>(atomicCapture.t).v.statement;
  const auto &stmt1Var{std::get<Fortran::parser::Variable>(stmt1.t)};
  const auto &stmt1Expr{std::get<Fortran::parser::Expr>(stmt1.t)};
  const Fortran::parser::AssignmentStmt &stmt2 =
      std::get<4>(atomicCapture.t).v.statement;
  const auto &stmt2Var{std::get<Fortran::parser::Variable>(stmt2.t)};
  const auto &stmt2Expr{std::get<Fortran::parser::Expr>(stmt2.t)};

  // Pre-evaluate expressions to be used in the various operations inside
  // `omp.atomic.capture` since it is not desirable to have anything other than
  // a `omp.atomic.read`, `omp.atomic.write`, or `omp.atomic.update` operation
  // inside `omp.atomic.capture`
  Fortran::lower::StatementContext stmtCtx;
  mlir::Value stmt1LHSArg, stmt1RHSArg, stmt2LHSArg, stmt2RHSArg;
  mlir::Type elementType;
  // LHS evaluations are common to all combinations of `omp.atomic.capture`
  stmt1LHSArg = fir::getBase(
      converter.genExprAddr(*Fortran::semantics::GetExpr(stmt1Var), stmtCtx));
  stmt2LHSArg = fir::getBase(
      converter.genExprAddr(*Fortran::semantics::GetExpr(stmt2Var), stmtCtx));

  // Operation specific RHS evaluations
  if (checkForSingleVariableOnRHS(stmt1)) {
    // Atomic capture construct is of the form [capture-stmt, update-stmt] or
    // of the form [capture-stmt, write-stmt]
    stmt1RHSArg = fir::getBase(converter.genExprAddr(
        *Fortran::semantics::GetExpr(stmt1Expr), stmtCtx));
    stmt2RHSArg = fir::getBase(converter.genExprValue(
        *Fortran::semantics::GetExpr(stmt2Expr), stmtCtx));

  } else {
    // Atomic capture construct is of the form [update-stmt, capture-stmt]
    stmt1RHSArg = fir::getBase(converter.genExprValue(
        *Fortran::semantics::GetExpr(stmt1Expr), stmtCtx));
    stmt2RHSArg = fir::getBase(converter.genExprAddr(
        *Fortran::semantics::GetExpr(stmt2Expr), stmtCtx));
  }
  // Type information used in generation of `omp.atomic.update` operation
  mlir::Type stmt1VarType =
      fir::getBase(converter.genExprValue(
                       *Fortran::semantics::GetExpr(stmt1Var), stmtCtx))
          .getType();
  mlir::Type stmt2VarType =
      fir::getBase(converter.genExprValue(
                       *Fortran::semantics::GetExpr(stmt2Var), stmtCtx))
          .getType();

  auto atomicCaptureOp = firOpBuilder.create<mlir::omp::AtomicCaptureOp>(
      currentLocation, hint, memory_order);
  firOpBuilder.createBlock(&atomicCaptureOp.getRegion());
  mlir::Block &block = atomicCaptureOp.getRegion().back();
  firOpBuilder.setInsertionPointToStart(&block);
  if (checkForSingleVariableOnRHS(stmt1)) {
    if (checkForSymbolMatch(stmt2)) {
      // Atomic capture construct is of the form [capture-stmt, update-stmt]
      const Fortran::semantics::SomeExpr &fromExpr =
          *Fortran::semantics::GetExpr(stmt1Expr);
      elementType = converter.genType(fromExpr);
      genOmpAtomicCaptureStatement(converter, eval, stmt1RHSArg, stmt1LHSArg,
                                   /*leftHandClauseList=*/nullptr,
                                   /*rightHandClauseList=*/nullptr,
                                   elementType);
      genOmpAtomicUpdateStatement(converter, eval, stmt1RHSArg, stmt2VarType,
                                  stmt2Var, stmt2Expr,
                                  /*leftHandClauseList=*/nullptr,
                                  /*rightHandClauseList=*/nullptr);
    } else {
      // Atomic capture construct is of the form [capture-stmt, write-stmt]
      const Fortran::semantics::SomeExpr &fromExpr =
          *Fortran::semantics::GetExpr(stmt1Expr);
      elementType = converter.genType(fromExpr);
      genOmpAtomicCaptureStatement(converter, eval, stmt1RHSArg, stmt1LHSArg,
                                   /*leftHandClauseList=*/nullptr,
                                   /*rightHandClauseList=*/nullptr,
                                   elementType);
      genOmpAtomicWriteStatement(converter, eval, stmt1RHSArg, stmt2RHSArg,
                                 /*leftHandClauseList=*/nullptr,
                                 /*rightHandClauseList=*/nullptr);
    }
  } else {
    // Atomic capture construct is of the form [update-stmt, capture-stmt]
    firOpBuilder.setInsertionPointToEnd(&block);
    const Fortran::semantics::SomeExpr &fromExpr =
        *Fortran::semantics::GetExpr(stmt2Expr);
    elementType = converter.genType(fromExpr);
    genOmpAtomicCaptureStatement(converter, eval, stmt1LHSArg, stmt2LHSArg,
                                 /*leftHandClauseList=*/nullptr,
                                 /*rightHandClauseList=*/nullptr, elementType);
    firOpBuilder.setInsertionPointToStart(&block);
    genOmpAtomicUpdateStatement(converter, eval, stmt1LHSArg, stmt1VarType,
                                stmt1Var, stmt1Expr,
                                /*leftHandClauseList=*/nullptr,
                                /*rightHandClauseList=*/nullptr);
  }
  firOpBuilder.setInsertionPointToEnd(&block);
  firOpBuilder.create<mlir::omp::TerminatorOp>(currentLocation);
  firOpBuilder.setInsertionPointToStart(&block);
}

static void
genOMP(Fortran::lower::AbstractConverter &converter,
       Fortran::lower::pft::Evaluation &eval,
       const Fortran::parser::OpenMPAtomicConstruct &atomicConstruct) {
  std::visit(Fortran::common::visitors{
                 [&](const Fortran::parser::OmpAtomicRead &atomicRead) {
                   genOmpAtomicRead(converter, eval, atomicRead);
                 },
                 [&](const Fortran::parser::OmpAtomicWrite &atomicWrite) {
                   genOmpAtomicWrite(converter, eval, atomicWrite);
                 },
                 [&](const Fortran::parser::OmpAtomic &atomicConstruct) {
                   genOmpAtomic(converter, eval, atomicConstruct);
                 },
                 [&](const Fortran::parser::OmpAtomicUpdate &atomicUpdate) {
                   genOmpAtomicUpdate(converter, eval, atomicUpdate);
                 },
                 [&](const Fortran::parser::OmpAtomicCapture &atomicCapture) {
                   genOmpAtomicCapture(converter, eval, atomicCapture);
                 },
             },
             atomicConstruct.u);
}

void Fortran::lower::genOpenMPConstruct(
    Fortran::lower::AbstractConverter &converter,
    Fortran::lower::pft::Evaluation &eval,
    const Fortran::parser::OpenMPConstruct &ompConstruct) {

  std::visit(
      common::visitors{
          [&](const Fortran::parser::OpenMPStandaloneConstruct
                  &standaloneConstruct) {
            genOMP(converter, eval, standaloneConstruct);
          },
          [&](const Fortran::parser::OpenMPSectionsConstruct
                  &sectionsConstruct) {
            genOMP(converter, eval, sectionsConstruct);
          },
          [&](const Fortran::parser::OpenMPSectionConstruct &sectionConstruct) {
            genOMP(converter, eval, sectionConstruct);
          },
          [&](const Fortran::parser::OpenMPLoopConstruct &loopConstruct) {
            genOMP(converter, eval, loopConstruct);
          },
          [&](const Fortran::parser::OpenMPDeclarativeAllocate
                  &execAllocConstruct) {
            TODO(converter.getCurrentLocation(), "OpenMPDeclarativeAllocate");
          },
          [&](const Fortran::parser::OpenMPExecutableAllocate
                  &execAllocConstruct) {
            TODO(converter.getCurrentLocation(), "OpenMPExecutableAllocate");
          },
          [&](const Fortran::parser::OpenMPAllocatorsConstruct
                  &allocsConstruct) {
            TODO(converter.getCurrentLocation(), "OpenMPAllocatorsConstruct");
          },
          [&](const Fortran::parser::OpenMPBlockConstruct &blockConstruct) {
            genOMP(converter, eval, blockConstruct);
          },
          [&](const Fortran::parser::OpenMPAtomicConstruct &atomicConstruct) {
            genOMP(converter, eval, atomicConstruct);
          },
          [&](const Fortran::parser::OpenMPCriticalConstruct
                  &criticalConstruct) {
            genOMP(converter, eval, criticalConstruct);
          },
      },
      ompConstruct.u);
}

fir::GlobalOp globalInitialization(Fortran::lower::AbstractConverter &converter,
                                   fir::FirOpBuilder &firOpBuilder,
                                   const Fortran::semantics::Symbol &sym,
                                   const Fortran::lower::pft::Variable &var,
                                   mlir::Location currentLocation) {
  mlir::Type ty = converter.genType(sym);
  std::string globalName = converter.mangleName(sym);
  mlir::StringAttr linkage = firOpBuilder.createInternalLinkage();
  fir::GlobalOp global =
      firOpBuilder.createGlobal(currentLocation, ty, globalName, linkage);

  // Create default initialization for non-character scalar.
  if (Fortran::semantics::IsAllocatableOrPointer(sym)) {
    mlir::Type baseAddrType = ty.dyn_cast<fir::BoxType>().getEleTy();
    Fortran::lower::createGlobalInitialization(
        firOpBuilder, global, [&](fir::FirOpBuilder &b) {
          mlir::Value nullAddr =
              b.createNullConstant(currentLocation, baseAddrType);
          mlir::Value box =
              b.create<fir::EmboxOp>(currentLocation, ty, nullAddr);
          b.create<fir::HasValueOp>(currentLocation, box);
        });
  } else {
    Fortran::lower::createGlobalInitialization(
        firOpBuilder, global, [&](fir::FirOpBuilder &b) {
          mlir::Value undef = b.create<fir::UndefOp>(currentLocation, ty);
          b.create<fir::HasValueOp>(currentLocation, undef);
        });
  }

  return global;
}

void Fortran::lower::genThreadprivateOp(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::pft::Variable &var) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
  mlir::Location currentLocation = converter.getCurrentLocation();

  const Fortran::semantics::Symbol &sym = var.getSymbol();
  mlir::Value symThreadprivateValue;
  if (const Fortran::semantics::Symbol *common =
          Fortran::semantics::FindCommonBlockContaining(sym.GetUltimate())) {
    mlir::Value commonValue = converter.getSymbolAddress(*common);
    if (mlir::isa<mlir::omp::ThreadprivateOp>(commonValue.getDefiningOp())) {
      // Generate ThreadprivateOp for a common block instead of its members and
      // only do it once for a common block.
      return;
    }
    // Generate ThreadprivateOp and rebind the common block.
    mlir::Value commonThreadprivateValue =
        firOpBuilder.create<mlir::omp::ThreadprivateOp>(
            currentLocation, commonValue.getType(), commonValue);
    converter.bindSymbol(*common, commonThreadprivateValue);
    // Generate the threadprivate value for the common block member.
    symThreadprivateValue =
        genCommonBlockMember(converter, sym, commonThreadprivateValue);
  } else if (!var.isGlobal()) {
    // Non-global variable which can be in threadprivate directive must be one
    // variable in main program, and it has implicit SAVE attribute. Take it as
    // with SAVE attribute, so to create GlobalOp for it to simplify the
    // translation to LLVM IR.
    fir::GlobalOp global = globalInitialization(converter, firOpBuilder, sym,
                                                var, currentLocation);

    mlir::Value symValue = firOpBuilder.create<fir::AddrOfOp>(
        currentLocation, global.resultType(), global.getSymbol());
    symThreadprivateValue = firOpBuilder.create<mlir::omp::ThreadprivateOp>(
        currentLocation, symValue.getType(), symValue);
  } else {
    mlir::Value symValue = converter.getSymbolAddress(sym);
    mlir::Operation *op = symValue.getDefiningOp();
    // The symbol may be use-associated multiple times, and nothing needs to be
    // done after the original symbol is mapped to the threadprivatized value
    // for the first time. Use the threadprivatized value directly.
    if (mlir::isa<mlir::omp::ThreadprivateOp>(op))
      return;
    symThreadprivateValue = firOpBuilder.create<mlir::omp::ThreadprivateOp>(
        currentLocation, symValue.getType(), symValue);
  }

  fir::ExtendedValue sexv = converter.getSymbolExtendedValue(sym);
  fir::ExtendedValue symThreadprivateExv =
      getExtendedValue(sexv, symThreadprivateValue);
  converter.bindSymbol(sym, symThreadprivateExv);
}

// This function replicates threadprivate's behaviour of generating
// an internal fir.GlobalOp for non-global variables in the main program
// that have the implicit SAVE attribute, to simplifiy LLVM-IR and MLIR
// generation.
void Fortran::lower::genDeclareTargetIntGlobal(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::pft::Variable &var) {
  if (!var.isGlobal()) {
    // A non-global variable which can be in a declare target directive must
    // be a variable in the main program, and it has the implicit SAVE
    // attribute. We create a GlobalOp for it to simplify the translation to
    // LLVM IR.
    globalInitialization(converter, converter.getFirOpBuilder(),
                         var.getSymbol(), var, converter.getCurrentLocation());
  }
}

void handleDeclareTarget(Fortran::lower::AbstractConverter &converter,
                         Fortran::lower::pft::Evaluation &eval,
                         const Fortran::parser::OpenMPDeclareTargetConstruct
                             &declareTargetConstruct) {
  llvm::SmallVector<std::pair<mlir::omp::DeclareTargetCaptureClause,
                              Fortran::semantics::Symbol>,
                    0>
      symbolAndClause;
  mlir::ModuleOp mod = converter.getFirOpBuilder().getModule();

  auto findFuncAndVarSyms = [&](const Fortran::parser::OmpObjectList &objList,
                                mlir::omp::DeclareTargetCaptureClause clause) {
    for (const Fortran::parser::OmpObject &ompObject : objList.v) {
      Fortran::common::visit(
          Fortran::common::visitors{
              [&](const Fortran::parser::Designator &designator) {
                if (const Fortran::parser::Name *name =
                        Fortran::semantics::getDesignatorNameIfDataRef(
                            designator)) {
                  symbolAndClause.push_back(
                      std::make_pair(clause, *name->symbol));
                }
              },
              [&](const Fortran::parser::Name &name) {
                symbolAndClause.push_back(std::make_pair(clause, *name.symbol));
              }},
          ompObject.u);
    }
  };

  // The default capture type
  Fortran::parser::OmpDeviceTypeClause::Type deviceType =
      Fortran::parser::OmpDeviceTypeClause::Type::Any;
  const auto &spec = std::get<Fortran::parser::OmpDeclareTargetSpecifier>(
      declareTargetConstruct.t);
  if (const auto *objectList{
          Fortran::parser::Unwrap<Fortran::parser::OmpObjectList>(spec.u)}) {
    // Case: declare target(func, var1, var2)
    findFuncAndVarSyms(*objectList, mlir::omp::DeclareTargetCaptureClause::to);
  } else if (const auto *clauseList{
                 Fortran::parser::Unwrap<Fortran::parser::OmpClauseList>(
                     spec.u)}) {
    if (clauseList->v.empty()) {
      // Case: declare target, implicit capture of function
      symbolAndClause.push_back(
          std::make_pair(mlir::omp::DeclareTargetCaptureClause::to,
                         eval.getOwningProcedure()->getSubprogramSymbol()));
    }

    for (const Fortran::parser::OmpClause &clause : clauseList->v) {
      if (const auto *toClause =
              std::get_if<Fortran::parser::OmpClause::To>(&clause.u)) {
        // Case: declare target to(func, var1, var2)...
        findFuncAndVarSyms(toClause->v,
                           mlir::omp::DeclareTargetCaptureClause::to);
      } else if (const auto *linkClause =
                     std::get_if<Fortran::parser::OmpClause::Link>(&clause.u)) {
        // Case: declare target link(var1, var2)...
        findFuncAndVarSyms(linkClause->v,
                           mlir::omp::DeclareTargetCaptureClause::link);
      } else if (const auto *deviceClause =
                     std::get_if<Fortran::parser::OmpClause::DeviceType>(
                         &clause.u)) {
        // Case: declare target ... device_type(any | host | nohost)
        deviceType = deviceClause->v.v;
      }
    }
  }

  for (std::pair<mlir::omp::DeclareTargetCaptureClause,
                 Fortran::semantics::Symbol>
           symClause : symbolAndClause) {
    mlir::Operation *op =
        mod.lookupSymbol(converter.mangleName(std::get<1>(symClause)));
    // There's several cases this can currently be triggered and it could be
    // one of the following:
    // 1) Invalid argument passed to a declare target that currently isn't
    // captured by a frontend semantic check
    // 2) The symbol of a valid argument is not correctly updated by one of
    // the prior passes, resulting in missing symbol information
    // 3) It's a variable internal to a module or program, that is legal by
    // Fortran OpenMP standards, but is currently unhandled as they do not
    // appear in the symbol table as they are represented as allocas
    if (!op)
      TODO(converter.getCurrentLocation(),
           "Missing symbol, possible case of currently unsupported use of "
           "a program local variable in declare target or erroneous symbol "
           "information ");

    auto declareTargetOp = dyn_cast<mlir::omp::DeclareTargetInterface>(op);
    if (!declareTargetOp)
      fir::emitFatalError(
          converter.getCurrentLocation(),
          "Attempt to apply declare target on unsupported operation");

    mlir::omp::DeclareTargetDeviceType newDeviceType;
    switch (deviceType) {
    case Fortran::parser::OmpDeviceTypeClause::Type::Nohost:
      newDeviceType = mlir::omp::DeclareTargetDeviceType::nohost;
      break;
    case Fortran::parser::OmpDeviceTypeClause::Type::Host:
      newDeviceType = mlir::omp::DeclareTargetDeviceType::host;
      break;
    case Fortran::parser::OmpDeviceTypeClause::Type::Any:
      newDeviceType = mlir::omp::DeclareTargetDeviceType::any;
      break;
    }

    // The function or global already has a declare target applied to it,
    // very likely through implicit capture (usage in another declare
    // target function/subroutine). It should be marked as any if it has
    // been assigned both host and nohost, else we skip, as there is no
    // change
    if (declareTargetOp.isDeclareTarget()) {
      if (declareTargetOp.getDeclareTargetDeviceType() != newDeviceType)
        declareTargetOp.setDeclareTarget(
            mlir::omp::DeclareTargetDeviceType::any, std::get<0>(symClause));
      continue;
    }

    declareTargetOp.setDeclareTarget(newDeviceType, std::get<0>(symClause));
  }
}

void Fortran::lower::genOpenMPDeclarativeConstruct(
    Fortran::lower::AbstractConverter &converter,
    Fortran::lower::pft::Evaluation &eval,
    const Fortran::parser::OpenMPDeclarativeConstruct &ompDeclConstruct) {

  std::visit(
      common::visitors{
          [&](const Fortran::parser::OpenMPDeclarativeAllocate
                  &declarativeAllocate) {
            TODO(converter.getCurrentLocation(), "OpenMPDeclarativeAllocate");
          },
          [&](const Fortran::parser::OpenMPDeclareReductionConstruct
                  &declareReductionConstruct) {
            TODO(converter.getCurrentLocation(),
                 "OpenMPDeclareReductionConstruct");
          },
          [&](const Fortran::parser::OpenMPDeclareSimdConstruct
                  &declareSimdConstruct) {
            TODO(converter.getCurrentLocation(), "OpenMPDeclareSimdConstruct");
          },
          [&](const Fortran::parser::OpenMPDeclareTargetConstruct
                  &declareTargetConstruct) {
            handleDeclareTarget(converter, eval, declareTargetConstruct);
          },
          [&](const Fortran::parser::OpenMPRequiresConstruct
                  &requiresConstruct) {
            TODO(converter.getCurrentLocation(), "OpenMPRequiresConstruct");
          },
          [&](const Fortran::parser::OpenMPThreadprivate &threadprivate) {
            // The directive is lowered when instantiating the variable to
            // support the case of threadprivate variable declared in module.
          },
      },
      ompDeclConstruct.u);
}

static mlir::Operation *getCompareFromReductionOp(mlir::Operation *reductionOp,
                                                  mlir::Value loadVal) {
  for (auto reductionOperand : reductionOp->getOperands()) {
    if (auto compareOp = reductionOperand.getDefiningOp()) {
      if (compareOp->getOperand(0) == loadVal ||
          compareOp->getOperand(1) == loadVal)
        assert((mlir::isa<mlir::arith::CmpIOp>(compareOp) ||
                mlir::isa<mlir::arith::CmpFOp>(compareOp)) &&
               "Expected comparison not found in reduction intrinsic");
      return compareOp;
    }
  }
  return nullptr;
}

// Generate an OpenMP reduction operation.
// TODO: Currently assumes it is either an integer addition/multiplication
// reduction, or a logical and reduction. Generalize this for various reduction
// operation types.
// TODO: Generate the reduction operation during lowering instead of creating
// and removing operations since this is not a robust approach. Also, removing
// ops in the builder (instead of a rewriter) is probably not the best approach.
void Fortran::lower::genOpenMPReduction(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::parser::OmpClauseList &clauseList) {
  fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();

  for (const auto &clause : clauseList.v) {
    if (const auto &reductionClause =
            std::get_if<Fortran::parser::OmpClause::Reduction>(&clause.u)) {
      const auto &redOperator{std::get<Fortran::parser::OmpReductionOperator>(
          reductionClause->v.t)};
      const auto &objectList{
          std::get<Fortran::parser::OmpObjectList>(reductionClause->v.t)};
      if (auto reductionOp =
              std::get_if<Fortran::parser::DefinedOperator>(&redOperator.u)) {
        const auto &intrinsicOp{
            std::get<Fortran::parser::DefinedOperator::IntrinsicOperator>(
                reductionOp->u)};

        switch (intrinsicOp) {
        case Fortran::parser::DefinedOperator::IntrinsicOperator::Add:
        case Fortran::parser::DefinedOperator::IntrinsicOperator::Multiply:
        case Fortran::parser::DefinedOperator::IntrinsicOperator::AND:
        case Fortran::parser::DefinedOperator::IntrinsicOperator::EQV:
        case Fortran::parser::DefinedOperator::IntrinsicOperator::OR:
        case Fortran::parser::DefinedOperator::IntrinsicOperator::NEQV:
          break;
        default:
          continue;
        }
        for (const auto &ompObject : objectList.v) {
          if (const auto *name{
                  Fortran::parser::Unwrap<Fortran::parser::Name>(ompObject)}) {
            if (const auto *symbol{name->symbol}) {
              mlir::Value reductionVal = converter.getSymbolAddress(*symbol);
              mlir::Type reductionType =
                  reductionVal.getType().cast<fir::ReferenceType>().getEleTy();
              if (!reductionType.isa<fir::LogicalType>()) {
                if (!reductionType.isIntOrIndexOrFloat())
                  continue;
              }
              for (mlir::OpOperand &reductionValUse : reductionVal.getUses()) {
                if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(
                        reductionValUse.getOwner())) {
                  mlir::Value loadVal = loadOp.getRes();
                  if (reductionType.isa<fir::LogicalType>()) {
                    mlir::Operation *reductionOp = findReductionChain(loadVal);
                    fir::ConvertOp convertOp =
                        getConvertFromReductionOp(reductionOp, loadVal);
                    updateReduction(reductionOp, firOpBuilder, loadVal,
                                    reductionVal, &convertOp);
                    removeStoreOp(reductionOp, reductionVal);
                  } else if (auto reductionOp =
                                 findReductionChain(loadVal, &reductionVal)) {
                    updateReduction(reductionOp, firOpBuilder, loadVal,
                                    reductionVal);
                  }
                }
              }
            }
          }
        }
      } else if (auto reductionIntrinsic =
                     std::get_if<Fortran::parser::ProcedureDesignator>(
                         &redOperator.u)) {
        if (const auto *name{Fortran::parser::Unwrap<Fortran::parser::Name>(
                reductionIntrinsic)}) {
          std::string redName = name->ToString();
          if ((name->source != "max") && (name->source != "min") &&
              (name->source != "ior") && (name->source != "ieor") &&
              (name->source != "iand")) {
            continue;
          }
          for (const auto &ompObject : objectList.v) {
            if (const auto *name{Fortran::parser::Unwrap<Fortran::parser::Name>(
                    ompObject)}) {
              if (const auto *symbol{name->symbol}) {
                mlir::Value reductionVal = converter.getSymbolAddress(*symbol);
                for (mlir::OpOperand &reductionValUse :
                     reductionVal.getUses()) {
                  if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(
                          reductionValUse.getOwner())) {
                    mlir::Value loadVal = loadOp.getRes();
                    // Max is lowered as a compare -> select.
                    // Match the pattern here.
                    mlir::Operation *reductionOp =
                        findReductionChain(loadVal, &reductionVal);
                    if (reductionOp == nullptr)
                      continue;

                    if (redName == "max" || redName == "min") {
                      assert(mlir::isa<mlir::arith::SelectOp>(reductionOp) &&
                             "Selection Op not found in reduction intrinsic");
                      mlir::Operation *compareOp =
                          getCompareFromReductionOp(reductionOp, loadVal);
                      updateReduction(compareOp, firOpBuilder, loadVal,
                                      reductionVal);
                    }
                    if (redName == "ior" || redName == "ieor" ||
                        redName == "iand") {

                      updateReduction(reductionOp, firOpBuilder, loadVal,
                                      reductionVal);
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

mlir::Operation *Fortran::lower::findReductionChain(mlir::Value loadVal,
                                                    mlir::Value *reductionVal) {
  for (mlir::OpOperand &loadOperand : loadVal.getUses()) {
    if (auto reductionOp = loadOperand.getOwner()) {
      if (auto convertOp = mlir::dyn_cast<fir::ConvertOp>(reductionOp)) {
        for (mlir::OpOperand &convertOperand : convertOp.getRes().getUses()) {
          if (auto reductionOp = convertOperand.getOwner())
            return reductionOp;
        }
      }
      for (mlir::OpOperand &reductionOperand : reductionOp->getUses()) {
        if (auto store =
                mlir::dyn_cast<fir::StoreOp>(reductionOperand.getOwner())) {
          if (store.getMemref() == *reductionVal) {
            store.erase();
            return reductionOp;
          }
        }
      }
    }
  }
  return nullptr;
}

void Fortran::lower::updateReduction(mlir::Operation *op,
                                     fir::FirOpBuilder &firOpBuilder,
                                     mlir::Value loadVal,
                                     mlir::Value reductionVal,
                                     fir::ConvertOp *convertOp) {
  mlir::OpBuilder::InsertPoint insertPtDel = firOpBuilder.saveInsertionPoint();
  firOpBuilder.setInsertionPoint(op);

  mlir::Value reductionOp;
  if (convertOp)
    reductionOp = convertOp->getOperand();
  else if (op->getOperand(0) == loadVal)
    reductionOp = op->getOperand(1);
  else
    reductionOp = op->getOperand(0);

  firOpBuilder.create<mlir::omp::ReductionOp>(op->getLoc(), reductionOp,
                                              reductionVal);
  firOpBuilder.restoreInsertionPoint(insertPtDel);
}

// for a logical operator 'op' reduction X = X op Y
// This function returns the operation responsible for converting Y from
// fir.logical<4> to i1
fir::ConvertOp
Fortran::lower::getConvertFromReductionOp(mlir::Operation *reductionOp,
                                          mlir::Value loadVal) {
  for (auto reductionOperand : reductionOp->getOperands()) {
    if (auto convertOp =
            mlir::dyn_cast<fir::ConvertOp>(reductionOperand.getDefiningOp())) {
      if (convertOp.getOperand() == loadVal)
        continue;
      return convertOp;
    }
  }
  return nullptr;
}

void Fortran::lower::removeStoreOp(mlir::Operation *reductionOp,
                                   mlir::Value symVal) {
  for (auto reductionOpUse : reductionOp->getUsers()) {
    if (auto convertReduction =
            mlir::dyn_cast<fir::ConvertOp>(reductionOpUse)) {
      for (auto convertReductionUse : convertReduction.getRes().getUsers()) {
        if (auto storeOp = mlir::dyn_cast<fir::StoreOp>(convertReductionUse)) {
          if (storeOp.getMemref() == symVal)
            storeOp.erase();
        }
      }
    }
  }
}