1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
//===-- VectorSubscripts.cpp -- Vector subscripts tools -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/VectorSubscripts.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Semantics/expression.h"
namespace {
/// Helper class to lower a designator containing vector subscripts into a
/// lowered representation that can be worked with.
class VectorSubscriptBoxBuilder {
public:
VectorSubscriptBoxBuilder(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::StatementContext &stmtCtx)
: converter{converter}, stmtCtx{stmtCtx}, loc{loc} {}
Fortran::lower::VectorSubscriptBox gen(const Fortran::lower::SomeExpr &expr) {
elementType = genDesignator(expr);
return Fortran::lower::VectorSubscriptBox(
std::move(loweredBase), std::move(loweredSubscripts),
std::move(componentPath), substringBounds, elementType);
}
private:
using LoweredVectorSubscript =
Fortran::lower::VectorSubscriptBox::LoweredVectorSubscript;
using LoweredTriplet = Fortran::lower::VectorSubscriptBox::LoweredTriplet;
using LoweredSubscript = Fortran::lower::VectorSubscriptBox::LoweredSubscript;
using MaybeSubstring = Fortran::lower::VectorSubscriptBox::MaybeSubstring;
/// genDesignator unwraps a Designator<T> and calls `gen` on what the
/// designator actually contains.
template <typename A>
mlir::Type genDesignator(const A &) {
fir::emitFatalError(loc, "expr must contain a designator");
}
template <typename T>
mlir::Type genDesignator(const Fortran::evaluate::Expr<T> &expr) {
using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
using Designator = Fortran::evaluate::Designator<T>;
if constexpr (Fortran::common::HasMember<Designator, ExprVariant>) {
const auto &designator = std::get<Designator>(expr.u);
return std::visit([&](const auto &x) { return gen(x); }, designator.u);
} else {
return std::visit([&](const auto &x) { return genDesignator(x); },
expr.u);
}
}
// The gen(X) methods visit X to lower its base and subscripts and return the
// type of X elements.
mlir::Type gen(const Fortran::evaluate::DataRef &dataRef) {
return std::visit([&](const auto &ref) -> mlir::Type { return gen(ref); },
dataRef.u);
}
mlir::Type gen(const Fortran::evaluate::SymbolRef &symRef) {
// Never visited because expr lowering is used to lowered the ranked
// ArrayRef.
fir::emitFatalError(
loc, "expected at least one ArrayRef with vector susbcripts");
}
mlir::Type gen(const Fortran::evaluate::Substring &substring) {
// StaticDataObject::Pointer bases are constants and cannot be
// subscripted, so the base must be a DataRef here.
mlir::Type baseElementType =
gen(std::get<Fortran::evaluate::DataRef>(substring.parent()));
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type idxTy = builder.getIndexType();
mlir::Value lb = genScalarValue(substring.lower());
substringBounds.emplace_back(builder.createConvert(loc, idxTy, lb));
if (const auto &ubExpr = substring.upper()) {
mlir::Value ub = genScalarValue(*ubExpr);
substringBounds.emplace_back(builder.createConvert(loc, idxTy, ub));
}
return baseElementType;
}
mlir::Type gen(const Fortran::evaluate::ComplexPart &complexPart) {
auto complexType = gen(complexPart.complex());
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type i32Ty = builder.getI32Type(); // llvm's GEP requires i32
mlir::Value offset = builder.createIntegerConstant(
loc, i32Ty,
complexPart.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1);
componentPath.emplace_back(offset);
return fir::factory::Complex{builder, loc}.getComplexPartType(complexType);
}
mlir::Type gen(const Fortran::evaluate::Component &component) {
auto recTy = gen(component.base()).cast<fir::RecordType>();
const Fortran::semantics::Symbol &componentSymbol =
component.GetLastSymbol();
// Parent components will not be found here, they are not part
// of the FIR type and cannot be used in the path yet.
if (componentSymbol.test(Fortran::semantics::Symbol::Flag::ParentComp))
TODO(loc, "reference to parent component");
mlir::Type fldTy = fir::FieldType::get(&converter.getMLIRContext());
llvm::StringRef componentName = toStringRef(componentSymbol.name());
// Parameters threading in field_index is not yet very clear. We only
// have the ones of the ranked array ref at hand, but it looks like
// the fir.field_index expects the one of the direct base.
if (recTy.getNumLenParams() != 0)
TODO(loc, "threading length parameters in field index op");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
componentPath.emplace_back(builder.create<fir::FieldIndexOp>(
loc, fldTy, componentName, recTy, /*typeParams*/ std::nullopt));
return fir::unwrapSequenceType(recTy.getType(componentName));
}
mlir::Type gen(const Fortran::evaluate::ArrayRef &arrayRef) {
auto isTripletOrVector =
[](const Fortran::evaluate::Subscript &subscript) -> bool {
return std::visit(
Fortran::common::visitors{
[](const Fortran::evaluate::IndirectSubscriptIntegerExpr &expr) {
return expr.value().Rank() != 0;
},
[&](const Fortran::evaluate::Triplet &) { return true; }},
subscript.u);
};
if (llvm::any_of(arrayRef.subscript(), isTripletOrVector))
return genRankedArrayRefSubscriptAndBase(arrayRef);
// This is a scalar ArrayRef (only scalar indexes), collect the indexes and
// visit the base that must contain another arrayRef with the vector
// subscript.
mlir::Type elementType = gen(namedEntityToDataRef(arrayRef.base()));
for (const Fortran::evaluate::Subscript &subscript : arrayRef.subscript()) {
const auto &expr =
std::get<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
subscript.u);
componentPath.emplace_back(genScalarValue(expr.value()));
}
return elementType;
}
/// Lower the subscripts and base of the ArrayRef that is an array (there must
/// be one since there is a vector subscript, and there can only be one
/// according to C925).
mlir::Type genRankedArrayRefSubscriptAndBase(
const Fortran::evaluate::ArrayRef &arrayRef) {
// Lower the save the base
Fortran::lower::SomeExpr baseExpr = namedEntityToExpr(arrayRef.base());
loweredBase = converter.genExprAddr(baseExpr, stmtCtx);
// Lower and save the subscripts
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
for (const auto &subscript : llvm::enumerate(arrayRef.subscript())) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &expr) {
if (expr.value().Rank() == 0) {
// Simple scalar subscript
loweredSubscripts.emplace_back(genScalarValue(expr.value()));
} else {
// Vector subscript.
// Remove conversion if any to avoid temp creation that may
// have been added by the front-end to avoid the creation of a
// temp array value.
auto vector = converter.genExprAddr(
ignoreEvConvert(expr.value()), stmtCtx);
mlir::Value size =
fir::factory::readExtent(builder, loc, vector, /*dim=*/0);
size = builder.createConvert(loc, idxTy, size);
loweredSubscripts.emplace_back(
LoweredVectorSubscript{std::move(vector), size});
}
},
[&](const Fortran::evaluate::Triplet &triplet) {
mlir::Value lb, ub;
if (const auto &lbExpr = triplet.lower())
lb = genScalarValue(*lbExpr);
else
lb = fir::factory::readLowerBound(builder, loc, loweredBase,
subscript.index(), one);
if (const auto &ubExpr = triplet.upper())
ub = genScalarValue(*ubExpr);
else
ub = fir::factory::readExtent(builder, loc, loweredBase,
subscript.index());
lb = builder.createConvert(loc, idxTy, lb);
ub = builder.createConvert(loc, idxTy, ub);
mlir::Value stride = genScalarValue(triplet.stride());
stride = builder.createConvert(loc, idxTy, stride);
loweredSubscripts.emplace_back(LoweredTriplet{lb, ub, stride});
},
},
subscript.value().u);
}
return fir::unwrapSequenceType(
fir::unwrapPassByRefType(fir::getBase(loweredBase).getType()));
}
mlir::Type gen(const Fortran::evaluate::CoarrayRef &) {
// Is this possible/legal ?
TODO(loc, "coarray ref with vector subscript in IO input");
}
template <typename A>
mlir::Value genScalarValue(const A &expr) {
return fir::getBase(converter.genExprValue(toEvExpr(expr), stmtCtx));
}
Fortran::evaluate::DataRef
namedEntityToDataRef(const Fortran::evaluate::NamedEntity &namedEntity) {
if (namedEntity.IsSymbol())
return Fortran::evaluate::DataRef{namedEntity.GetFirstSymbol()};
return Fortran::evaluate::DataRef{namedEntity.GetComponent()};
}
Fortran::lower::SomeExpr
namedEntityToExpr(const Fortran::evaluate::NamedEntity &namedEntity) {
return Fortran::evaluate::AsGenericExpr(namedEntityToDataRef(namedEntity))
.value();
}
Fortran::lower::AbstractConverter &converter;
Fortran::lower::StatementContext &stmtCtx;
mlir::Location loc;
/// Elements of VectorSubscriptBox being built.
fir::ExtendedValue loweredBase;
llvm::SmallVector<LoweredSubscript, 16> loweredSubscripts;
llvm::SmallVector<mlir::Value> componentPath;
MaybeSubstring substringBounds;
mlir::Type elementType;
};
} // namespace
Fortran::lower::VectorSubscriptBox Fortran::lower::genVectorSubscriptBox(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::lower::SomeExpr &expr) {
return VectorSubscriptBoxBuilder(loc, converter, stmtCtx).gen(expr);
}
template <typename LoopType, typename Generator>
mlir::Value Fortran::lower::VectorSubscriptBox::loopOverElementsBase(
fir::FirOpBuilder &builder, mlir::Location loc,
const Generator &elementalGenerator,
[[maybe_unused]] mlir::Value initialCondition) {
mlir::Value shape = builder.createShape(loc, loweredBase);
mlir::Value slice = createSlice(builder, loc);
// Create loop nest for triplets and vector subscripts in column
// major order.
llvm::SmallVector<mlir::Value> inductionVariables;
LoopType outerLoop;
for (auto [lb, ub, step] : genLoopBounds(builder, loc)) {
LoopType loop;
if constexpr (std::is_same_v<LoopType, fir::IterWhileOp>) {
loop =
builder.create<fir::IterWhileOp>(loc, lb, ub, step, initialCondition);
initialCondition = loop.getIterateVar();
if (!outerLoop)
outerLoop = loop;
else
builder.create<fir::ResultOp>(loc, loop.getResult(0));
} else {
loop =
builder.create<fir::DoLoopOp>(loc, lb, ub, step, /*unordered=*/false);
if (!outerLoop)
outerLoop = loop;
}
builder.setInsertionPointToStart(loop.getBody());
inductionVariables.push_back(loop.getInductionVar());
}
assert(outerLoop && !inductionVariables.empty() &&
"at least one loop should be created");
fir::ExtendedValue elem =
getElementAt(builder, loc, shape, slice, inductionVariables);
if constexpr (std::is_same_v<LoopType, fir::IterWhileOp>) {
auto res = elementalGenerator(elem);
builder.create<fir::ResultOp>(loc, res);
builder.setInsertionPointAfter(outerLoop);
return outerLoop.getResult(0);
} else {
elementalGenerator(elem);
builder.setInsertionPointAfter(outerLoop);
return {};
}
}
void Fortran::lower::VectorSubscriptBox::loopOverElements(
fir::FirOpBuilder &builder, mlir::Location loc,
const ElementalGenerator &elementalGenerator) {
mlir::Value initialCondition;
loopOverElementsBase<fir::DoLoopOp, ElementalGenerator>(
builder, loc, elementalGenerator, initialCondition);
}
mlir::Value Fortran::lower::VectorSubscriptBox::loopOverElementsWhile(
fir::FirOpBuilder &builder, mlir::Location loc,
const ElementalGeneratorWithBoolReturn &elementalGenerator,
mlir::Value initialCondition) {
return loopOverElementsBase<fir::IterWhileOp,
ElementalGeneratorWithBoolReturn>(
builder, loc, elementalGenerator, initialCondition);
}
mlir::Value
Fortran::lower::VectorSubscriptBox::createSlice(fir::FirOpBuilder &builder,
mlir::Location loc) {
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> triples;
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
for (const LoweredSubscript &subscript : loweredSubscripts)
std::visit(Fortran::common::visitors{
[&](const LoweredTriplet &triplet) {
triples.emplace_back(triplet.lb);
triples.emplace_back(triplet.ub);
triples.emplace_back(triplet.stride);
},
[&](const LoweredVectorSubscript &vector) {
triples.emplace_back(one);
triples.emplace_back(vector.size);
triples.emplace_back(one);
},
[&](const mlir::Value &i) {
triples.emplace_back(i);
triples.emplace_back(undef);
triples.emplace_back(undef);
},
},
subscript);
return builder.create<fir::SliceOp>(loc, triples, componentPath);
}
llvm::SmallVector<std::tuple<mlir::Value, mlir::Value, mlir::Value>>
Fortran::lower::VectorSubscriptBox::genLoopBounds(fir::FirOpBuilder &builder,
mlir::Location loc) {
mlir::Type idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
llvm::SmallVector<std::tuple<mlir::Value, mlir::Value, mlir::Value>> bounds;
size_t dimension = loweredSubscripts.size();
for (const LoweredSubscript &subscript : llvm::reverse(loweredSubscripts)) {
--dimension;
if (std::holds_alternative<mlir::Value>(subscript))
continue;
mlir::Value lb, ub, step;
if (const auto *triplet = std::get_if<LoweredTriplet>(&subscript)) {
mlir::Value extent = builder.genExtentFromTriplet(
loc, triplet->lb, triplet->ub, triplet->stride, idxTy);
mlir::Value baseLb = fir::factory::readLowerBound(
builder, loc, loweredBase, dimension, one);
baseLb = builder.createConvert(loc, idxTy, baseLb);
lb = baseLb;
ub = builder.create<mlir::arith::SubIOp>(loc, idxTy, extent, one);
ub = builder.create<mlir::arith::AddIOp>(loc, idxTy, ub, baseLb);
step = one;
} else {
const auto &vector = std::get<LoweredVectorSubscript>(subscript);
lb = zero;
ub = builder.create<mlir::arith::SubIOp>(loc, idxTy, vector.size, one);
step = one;
}
bounds.emplace_back(lb, ub, step);
}
return bounds;
}
fir::ExtendedValue Fortran::lower::VectorSubscriptBox::getElementAt(
fir::FirOpBuilder &builder, mlir::Location loc, mlir::Value shape,
mlir::Value slice, mlir::ValueRange inductionVariables) {
/// Generate the indexes for the array_coor inside the loops.
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> indexes;
size_t inductionIdx = inductionVariables.size() - 1;
for (const LoweredSubscript &subscript : loweredSubscripts)
std::visit(Fortran::common::visitors{
[&](const LoweredTriplet &triplet) {
indexes.emplace_back(inductionVariables[inductionIdx--]);
},
[&](const LoweredVectorSubscript &vector) {
mlir::Value vecIndex = inductionVariables[inductionIdx--];
mlir::Value vecBase = fir::getBase(vector.vector);
mlir::Type vecEleTy = fir::unwrapSequenceType(
fir::unwrapPassByRefType(vecBase.getType()));
mlir::Type refTy = builder.getRefType(vecEleTy);
auto vecEltRef = builder.create<fir::CoordinateOp>(
loc, refTy, vecBase, vecIndex);
auto vecElt =
builder.create<fir::LoadOp>(loc, vecEleTy, vecEltRef);
indexes.emplace_back(
builder.createConvert(loc, idxTy, vecElt));
},
[&](const mlir::Value &i) {
indexes.emplace_back(builder.createConvert(loc, idxTy, i));
},
},
subscript);
mlir::Type refTy = builder.getRefType(getElementType());
auto elementAddr = builder.create<fir::ArrayCoorOp>(
loc, refTy, fir::getBase(loweredBase), shape, slice, indexes,
fir::getTypeParams(loweredBase));
fir::ExtendedValue element = fir::factory::arraySectionElementToExtendedValue(
builder, loc, loweredBase, elementAddr, slice);
if (!substringBounds.empty()) {
const fir::CharBoxValue *charBox = element.getCharBox();
assert(charBox && "substring requires CharBox base");
fir::factory::CharacterExprHelper helper{builder, loc};
return helper.createSubstring(*charBox, substringBounds);
}
return element;
}
|