File: TargetRewrite.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1043 lines) | stat: -rw-r--r-- 46,337 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
//===-- TargetRewrite.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target rewrite: rewriting of ops to make target-specific lowerings manifest.
// LLVM expects different lowering idioms to be used for distinct target
// triples. These distinctions are handled by this pass.
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/CodeGen/CodeGen.h"

#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/CodeGen/Target.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>

namespace fir {
#define GEN_PASS_DEF_TARGETREWRITEPASS
#include "flang/Optimizer/CodeGen/CGPasses.h.inc"
} // namespace fir

#define DEBUG_TYPE "flang-target-rewrite"

namespace {

/// Fixups for updating a FuncOp's arguments and return values.
struct FixupTy {
  enum class Codes {
    ArgumentAsLoad,
    ArgumentType,
    CharPair,
    ReturnAsStore,
    ReturnType,
    Split,
    Trailing,
    TrailingCharProc
  };

  FixupTy(Codes code, std::size_t index, std::size_t second = 0)
      : code{code}, index{index}, second{second} {}
  FixupTy(Codes code, std::size_t index,
          std::function<void(mlir::func::FuncOp)> &&finalizer)
      : code{code}, index{index}, finalizer{finalizer} {}
  FixupTy(Codes code, std::size_t index, std::size_t second,
          std::function<void(mlir::func::FuncOp)> &&finalizer)
      : code{code}, index{index}, second{second}, finalizer{finalizer} {}

  Codes code;
  std::size_t index;
  std::size_t second{};
  std::optional<std::function<void(mlir::func::FuncOp)>> finalizer{};
}; // namespace

/// Target-specific rewriting of the FIR. This is a prerequisite pass to code
/// generation that traverses the FIR and modifies types and operations to a
/// form that is appropriate for the specific target. LLVM IR has specific
/// idioms that are used for distinct target processor and ABI combinations.
class TargetRewrite : public fir::impl::TargetRewritePassBase<TargetRewrite> {
public:
  TargetRewrite(const fir::TargetRewriteOptions &options) {
    noCharacterConversion = options.noCharacterConversion;
    noComplexConversion = options.noComplexConversion;
  }

  void runOnOperation() override final {
    auto &context = getContext();
    mlir::OpBuilder rewriter(&context);

    auto mod = getModule();
    if (!forcedTargetTriple.empty())
      fir::setTargetTriple(mod, forcedTargetTriple);

    auto specifics = fir::CodeGenSpecifics::get(
        mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod));
    setMembers(specifics.get(), &rewriter);

    // We may need to call stacksave/stackrestore later, so
    // create the FuncOps beforehand.
    fir::FirOpBuilder builder(rewriter, mod);
    builder.setInsertionPointToStart(mod.getBody());
    stackSaveFn = fir::factory::getLlvmStackSave(builder);
    stackRestoreFn = fir::factory::getLlvmStackRestore(builder);

    // Perform type conversion on signatures and call sites.
    if (mlir::failed(convertTypes(mod))) {
      mlir::emitError(mlir::UnknownLoc::get(&context),
                      "error in converting types to target abi");
      signalPassFailure();
    }

    // Convert ops in target-specific patterns.
    mod.walk([&](mlir::Operation *op) {
      if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
        if (!hasPortableSignature(call.getFunctionType(), op))
          convertCallOp(call);
      } else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) {
        if (!hasPortableSignature(dispatch.getFunctionType(), op))
          convertCallOp(dispatch);
      } else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) {
        if (addr.getType().isa<mlir::FunctionType>() &&
            !hasPortableSignature(addr.getType(), op))
          convertAddrOp(addr);
      }
    });

    clearMembers();
  }

  mlir::ModuleOp getModule() { return getOperation(); }

  template <typename A, typename B, typename C>
  std::optional<std::function<mlir::Value(mlir::Operation *)>>
  rewriteCallComplexResultType(mlir::Location loc, A ty, B &newResTys,
                               B &newInTys, C &newOpers,
                               mlir::Value &savedStackPtr) {
    if (noComplexConversion) {
      newResTys.push_back(ty);
      return std::nullopt;
    }
    auto m = specifics->complexReturnType(loc, ty.getElementType());
    // Currently targets mandate COMPLEX is a single aggregate or packed
    // scalar, including the sret case.
    assert(m.size() == 1 && "target of complex return not supported");
    auto resTy = std::get<mlir::Type>(m[0]);
    auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
    if (attr.isSRet()) {
      assert(fir::isa_ref_type(resTy) && "must be a memory reference type");
      // Save the stack pointer, if it has not been saved for this call yet.
      // We will need to restore it after the call, because the alloca
      // needs to be deallocated.
      if (!savedStackPtr)
        savedStackPtr = genStackSave(loc);
      mlir::Value stack =
          rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy));
      newInTys.push_back(resTy);
      newOpers.push_back(stack);
      return [=](mlir::Operation *) -> mlir::Value {
        auto memTy = fir::ReferenceType::get(ty);
        auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack);
        return rewriter->create<fir::LoadOp>(loc, cast);
      };
    }
    newResTys.push_back(resTy);
    return [=, &savedStackPtr](mlir::Operation *call) -> mlir::Value {
      // We are going to generate an alloca, so save the stack pointer.
      if (!savedStackPtr)
        savedStackPtr = genStackSave(loc);
      auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
      rewriter->create<fir::StoreOp>(loc, call->getResult(0), mem);
      auto memTy = fir::ReferenceType::get(ty);
      auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, mem);
      return rewriter->create<fir::LoadOp>(loc, cast);
    };
  }

  template <typename A, typename B, typename C>
  void rewriteCallComplexInputType(A ty, mlir::Value oper, B &newInTys,
                                   C &newOpers, mlir::Value &savedStackPtr) {
    if (noComplexConversion) {
      newInTys.push_back(ty);
      newOpers.push_back(oper);
      return;
    }

    auto *ctx = ty.getContext();
    mlir::Location loc = mlir::UnknownLoc::get(ctx);
    if (auto *op = oper.getDefiningOp())
      loc = op->getLoc();
    auto m = specifics->complexArgumentType(loc, ty.getElementType());
    if (m.size() == 1) {
      // COMPLEX is a single aggregate
      auto resTy = std::get<mlir::Type>(m[0]);
      auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
      auto oldRefTy = fir::ReferenceType::get(ty);
      // We are going to generate an alloca, so save the stack pointer.
      if (!savedStackPtr)
        savedStackPtr = genStackSave(loc);
      if (attr.isByVal()) {
        auto mem = rewriter->create<fir::AllocaOp>(loc, ty);
        rewriter->create<fir::StoreOp>(loc, oper, mem);
        newOpers.push_back(rewriter->create<fir::ConvertOp>(loc, resTy, mem));
      } else {
        auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
        auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem);
        rewriter->create<fir::StoreOp>(loc, oper, cast);
        newOpers.push_back(rewriter->create<fir::LoadOp>(loc, mem));
      }
      newInTys.push_back(resTy);
    } else {
      assert(m.size() == 2);
      // COMPLEX is split into 2 separate arguments
      auto iTy = rewriter->getIntegerType(32);
      for (auto e : llvm::enumerate(m)) {
        auto &tup = e.value();
        auto ty = std::get<mlir::Type>(tup);
        auto index = e.index();
        auto idx = rewriter->getIntegerAttr(iTy, index);
        auto val = rewriter->create<fir::ExtractValueOp>(
            loc, ty, oper, rewriter->getArrayAttr(idx));
        newInTys.push_back(ty);
        newOpers.push_back(val);
      }
    }
  }

  // Convert fir.call and fir.dispatch Ops.
  template <typename A>
  void convertCallOp(A callOp) {
    auto fnTy = callOp.getFunctionType();
    auto loc = callOp.getLoc();
    rewriter->setInsertionPoint(callOp);
    llvm::SmallVector<mlir::Type> newResTys;
    llvm::SmallVector<mlir::Type> newInTys;
    llvm::SmallVector<mlir::Value> newOpers;
    mlir::Value savedStackPtr = nullptr;

    // If the call is indirect, the first argument must still be the function
    // to call.
    int dropFront = 0;
    if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
      if (!callOp.getCallee()) {
        newInTys.push_back(fnTy.getInput(0));
        newOpers.push_back(callOp.getOperand(0));
        dropFront = 1;
      }
    } else {
      dropFront = 1; // First operand is the polymorphic object.
    }

    // Determine the rewrite function, `wrap`, for the result value.
    std::optional<std::function<mlir::Value(mlir::Operation *)>> wrap;
    if (fnTy.getResults().size() == 1) {
      mlir::Type ty = fnTy.getResult(0);
      llvm::TypeSwitch<mlir::Type>(ty)
          .template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
            wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTys,
                                                newOpers, savedStackPtr);
          })
          .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
            wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTys,
                                                newOpers, savedStackPtr);
          })
          .Default([&](mlir::Type ty) { newResTys.push_back(ty); });
    } else if (fnTy.getResults().size() > 1) {
      TODO(loc, "multiple results not supported yet");
    }

    llvm::SmallVector<mlir::Type> trailingInTys;
    llvm::SmallVector<mlir::Value> trailingOpers;
    unsigned passArgShift = 0;
    for (auto e : llvm::enumerate(
             llvm::zip(fnTy.getInputs().drop_front(dropFront),
                       callOp.getOperands().drop_front(dropFront)))) {
      mlir::Type ty = std::get<0>(e.value());
      mlir::Value oper = std::get<1>(e.value());
      unsigned index = e.index();
      llvm::TypeSwitch<mlir::Type>(ty)
          .template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
            bool sret;
            if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
              if (noCharacterConversion) {
                newInTys.push_back(boxTy);
                newOpers.push_back(oper);
                return;
              }
              sret = callOp.getCallee() &&
                     functionArgIsSRet(
                         index, getModule().lookupSymbol<mlir::func::FuncOp>(
                                    *callOp.getCallee()));
            } else {
              // TODO: dispatch case; how do we put arguments on a call?
              // We cannot put both an sret and the dispatch object first.
              sret = false;
              TODO(loc, "dispatch + sret not supported yet");
            }
            auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret);
            auto unbox = rewriter->create<fir::UnboxCharOp>(
                loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]),
                oper);
            // unboxed CHARACTER arguments
            for (auto e : llvm::enumerate(m)) {
              unsigned idx = e.index();
              auto attr =
                  std::get<fir::CodeGenSpecifics::Attributes>(e.value());
              auto argTy = std::get<mlir::Type>(e.value());
              if (attr.isAppend()) {
                trailingInTys.push_back(argTy);
                trailingOpers.push_back(unbox.getResult(idx));
              } else {
                newInTys.push_back(argTy);
                newOpers.push_back(unbox.getResult(idx));
              }
            }
          })
          .template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
            rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers,
                                        savedStackPtr);
          })
          .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
            rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers,
                                        savedStackPtr);
          })
          .template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
            if (fir::isCharacterProcedureTuple(tuple)) {
              mlir::ModuleOp module = getModule();
              if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
                if (callOp.getCallee()) {
                  llvm::StringRef charProcAttr =
                      fir::getCharacterProcedureDummyAttrName();
                  // The charProcAttr attribute is only used as a safety to
                  // confirm that this is a dummy procedure and should be split.
                  // It cannot be used to match because attributes are not
                  // available in case of indirect calls.
                  auto funcOp = module.lookupSymbol<mlir::func::FuncOp>(
                      *callOp.getCallee());
                  if (funcOp &&
                      !funcOp.template getArgAttrOfType<mlir::UnitAttr>(
                          index, charProcAttr))
                    mlir::emitError(loc, "tuple argument will be split even "
                                         "though it does not have the `" +
                                             charProcAttr + "` attribute");
                }
              }
              mlir::Type funcPointerType = tuple.getType(0);
              mlir::Type lenType = tuple.getType(1);
              fir::FirOpBuilder builder(*rewriter, module);
              auto [funcPointer, len] =
                  fir::factory::extractCharacterProcedureTuple(builder, loc,
                                                               oper);
              newInTys.push_back(funcPointerType);
              newOpers.push_back(funcPointer);
              trailingInTys.push_back(lenType);
              trailingOpers.push_back(len);
            } else {
              newInTys.push_back(tuple);
              newOpers.push_back(oper);
            }
          })
          .Default([&](mlir::Type ty) {
            if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) {
              if (callOp.getPassArgPos() && *callOp.getPassArgPos() == index)
                passArgShift = newOpers.size() - *callOp.getPassArgPos();
            }
            newInTys.push_back(ty);
            newOpers.push_back(oper);
          });
    }
    newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
    newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end());

    llvm::SmallVector<mlir::Value, 1> newCallResults;
    if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
      fir::CallOp newCall;
      if (callOp.getCallee()) {
        newCall =
            rewriter->create<A>(loc, *callOp.getCallee(), newResTys, newOpers);
      } else {
        // Force new type on the input operand.
        newOpers[0].setType(mlir::FunctionType::get(
            callOp.getContext(),
            mlir::TypeRange{newInTys}.drop_front(dropFront), newResTys));
        newCall = rewriter->create<A>(loc, newResTys, newOpers);
      }
      LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n');
      if (wrap)
        newCallResults.push_back((*wrap)(newCall.getOperation()));
      else
        newCallResults.append(newCall.result_begin(), newCall.result_end());
    } else {
      fir::DispatchOp dispatchOp = rewriter->create<A>(
          loc, newResTys, rewriter->getStringAttr(callOp.getMethod()),
          callOp.getOperands()[0], newOpers,
          rewriter->getI32IntegerAttr(*callOp.getPassArgPos() + passArgShift));
      if (wrap)
        newCallResults.push_back((*wrap)(dispatchOp.getOperation()));
      else
        newCallResults.append(dispatchOp.result_begin(),
                              dispatchOp.result_end());
    }

    if (newCallResults.size() <= 1) {
      if (savedStackPtr) {
        if (newCallResults.size() == 1) {
          // We assume that all the allocas are inserted before
          // the operation that defines the new call result.
          rewriter->setInsertionPointAfterValue(newCallResults[0]);
        } else {
          // If the call does not have results, then insert
          // stack restore after the original call operation.
          rewriter->setInsertionPointAfter(callOp);
        }
        genStackRestore(loc, savedStackPtr);
      }
      replaceOp(callOp, newCallResults);
    } else {
      // The TODO is duplicated here to make sure this part
      // handles the stackrestore insertion properly, if
      // we add support for multiple call results.
      TODO(loc, "multiple results not supported yet");
    }
  }

  // Result type fixup for fir::ComplexType and mlir::ComplexType
  template <typename A, typename B>
  void lowerComplexSignatureRes(mlir::Location loc, A cmplx, B &newResTys,
                                B &newInTys) {
    if (noComplexConversion) {
      newResTys.push_back(cmplx);
    } else {
      for (auto &tup :
           specifics->complexReturnType(loc, cmplx.getElementType())) {
        auto argTy = std::get<mlir::Type>(tup);
        if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet())
          newInTys.push_back(argTy);
        else
          newResTys.push_back(argTy);
      }
    }
  }

  // Argument type fixup for fir::ComplexType and mlir::ComplexType
  template <typename A, typename B>
  void lowerComplexSignatureArg(mlir::Location loc, A cmplx, B &newInTys) {
    if (noComplexConversion)
      newInTys.push_back(cmplx);
    else
      for (auto &tup :
           specifics->complexArgumentType(loc, cmplx.getElementType()))
        newInTys.push_back(std::get<mlir::Type>(tup));
  }

  /// Taking the address of a function. Modify the signature as needed.
  void convertAddrOp(fir::AddrOfOp addrOp) {
    rewriter->setInsertionPoint(addrOp);
    auto addrTy = addrOp.getType().cast<mlir::FunctionType>();
    llvm::SmallVector<mlir::Type> newResTys;
    llvm::SmallVector<mlir::Type> newInTys;
    auto loc = addrOp.getLoc();
    for (mlir::Type ty : addrTy.getResults()) {
      llvm::TypeSwitch<mlir::Type>(ty)
          .Case<fir::ComplexType>([&](fir::ComplexType ty) {
            lowerComplexSignatureRes(loc, ty, newResTys, newInTys);
          })
          .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
            lowerComplexSignatureRes(loc, ty, newResTys, newInTys);
          })
          .Default([&](mlir::Type ty) { newResTys.push_back(ty); });
    }
    llvm::SmallVector<mlir::Type> trailingInTys;
    for (mlir::Type ty : addrTy.getInputs()) {
      llvm::TypeSwitch<mlir::Type>(ty)
          .Case<fir::BoxCharType>([&](auto box) {
            if (noCharacterConversion) {
              newInTys.push_back(box);
            } else {
              for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) {
                auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
                auto argTy = std::get<mlir::Type>(tup);
                llvm::SmallVector<mlir::Type> &vec =
                    attr.isAppend() ? trailingInTys : newInTys;
                vec.push_back(argTy);
              }
            }
          })
          .Case<fir::ComplexType>([&](fir::ComplexType ty) {
            lowerComplexSignatureArg(loc, ty, newInTys);
          })
          .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
            lowerComplexSignatureArg(loc, ty, newInTys);
          })
          .Case<mlir::TupleType>([&](mlir::TupleType tuple) {
            if (fir::isCharacterProcedureTuple(tuple)) {
              newInTys.push_back(tuple.getType(0));
              trailingInTys.push_back(tuple.getType(1));
            } else {
              newInTys.push_back(ty);
            }
          })
          .Default([&](mlir::Type ty) { newInTys.push_back(ty); });
    }
    // append trailing input types
    newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
    // replace this op with a new one with the updated signature
    auto newTy = rewriter->getFunctionType(newInTys, newResTys);
    auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy,
                                                 addrOp.getSymbol());
    replaceOp(addrOp, newOp.getResult());
  }

  /// Convert the type signatures on all the functions present in the module.
  /// As the type signature is being changed, this must also update the
  /// function itself to use any new arguments, etc.
  mlir::LogicalResult convertTypes(mlir::ModuleOp mod) {
    for (auto fn : mod.getOps<mlir::func::FuncOp>())
      convertSignature(fn);
    return mlir::success();
  }

  // Returns true if the function should be interoperable with C.
  static bool isFuncWithCCallingConvention(mlir::Operation *op) {
    auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(op);
    if (!funcOp)
      return false;
    return op->hasAttrOfType<mlir::UnitAttr>(
               fir::FIROpsDialect::getFirRuntimeAttrName()) ||
           op->hasAttrOfType<mlir::StringAttr>(fir::getSymbolAttrName());
  }

  /// If the signature does not need any special target-specific conversions,
  /// then it is considered portable for any target, and this function will
  /// return `true`. Otherwise, the signature is not portable and `false` is
  /// returned.
  bool hasPortableSignature(mlir::Type signature, mlir::Operation *op) {
    assert(signature.isa<mlir::FunctionType>());
    auto func = signature.dyn_cast<mlir::FunctionType>();
    bool hasCCallingConv = isFuncWithCCallingConvention(op);
    for (auto ty : func.getResults())
      if ((ty.isa<fir::BoxCharType>() && !noCharacterConversion) ||
          (fir::isa_complex(ty) && !noComplexConversion) ||
          (ty.isa<mlir::IntegerType>() && hasCCallingConv)) {
        LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
        return false;
      }
    for (auto ty : func.getInputs())
      if (((ty.isa<fir::BoxCharType>() || fir::isCharacterProcedureTuple(ty)) &&
           !noCharacterConversion) ||
          (fir::isa_complex(ty) && !noComplexConversion) ||
          (ty.isa<mlir::IntegerType>() && hasCCallingConv)) {
        LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
        return false;
      }
    return true;
  }

  /// Determine if the signature has host associations. The host association
  /// argument may need special target specific rewriting.
  static bool hasHostAssociations(mlir::func::FuncOp func) {
    std::size_t end = func.getFunctionType().getInputs().size();
    for (std::size_t i = 0; i < end; ++i)
      if (func.getArgAttrOfType<mlir::UnitAttr>(i, fir::getHostAssocAttrName()))
        return true;
    return false;
  }

  /// Rewrite the signatures and body of the `FuncOp`s in the module for
  /// the immediately subsequent target code gen.
  void convertSignature(mlir::func::FuncOp func) {
    auto funcTy = func.getFunctionType().cast<mlir::FunctionType>();
    if (hasPortableSignature(funcTy, func) && !hasHostAssociations(func))
      return;
    llvm::SmallVector<mlir::Type> newResTys;
    llvm::SmallVector<mlir::Type> newInTys;
    llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> savedAttrs;
    llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> extraAttrs;
    llvm::SmallVector<FixupTy> fixups;
    llvm::SmallVector<std::pair<unsigned, mlir::NamedAttrList>, 1> resultAttrs;

    // Save argument attributes in case there is a shift so we can replace them
    // correctly.
    for (auto e : llvm::enumerate(funcTy.getInputs())) {
      unsigned index = e.index();
      llvm::ArrayRef<mlir::NamedAttribute> attrs =
          mlir::function_interface_impl::getArgAttrs(func, index);
      for (mlir::NamedAttribute attr : attrs) {
        savedAttrs.push_back({index, attr});
      }
    }

    // Convert return value(s)
    for (auto ty : funcTy.getResults())
      llvm::TypeSwitch<mlir::Type>(ty)
          .Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
            if (noComplexConversion)
              newResTys.push_back(cmplx);
            else
              doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
          })
          .Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
            if (noComplexConversion)
              newResTys.push_back(cmplx);
            else
              doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
          })
          .Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
            auto m = specifics->integerArgumentType(func.getLoc(), intTy);
            assert(m.size() == 1);
            auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
            auto retTy = std::get<mlir::Type>(m[0]);
            std::size_t resId = newResTys.size();
            llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
            if (!extensionAttrName.empty() &&
                isFuncWithCCallingConvention(func))
              resultAttrs.emplace_back(
                  resId, rewriter->getNamedAttr(extensionAttrName,
                                                rewriter->getUnitAttr()));
            newResTys.push_back(retTy);
          })
          .Default([&](mlir::Type ty) { newResTys.push_back(ty); });

    // Saved potential shift in argument. Handling of result can add arguments
    // at the beginning of the function signature.
    unsigned argumentShift = newInTys.size();

    // Convert arguments
    llvm::SmallVector<mlir::Type> trailingTys;
    for (auto e : llvm::enumerate(funcTy.getInputs())) {
      auto ty = e.value();
      unsigned index = e.index();
      llvm::TypeSwitch<mlir::Type>(ty)
          .Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
            if (noCharacterConversion) {
              newInTys.push_back(boxTy);
            } else {
              // Convert a CHARACTER argument type. This can involve separating
              // the pointer and the LEN into two arguments and moving the LEN
              // argument to the end of the arg list.
              bool sret = functionArgIsSRet(index, func);
              for (auto e : llvm::enumerate(specifics->boxcharArgumentType(
                       boxTy.getEleTy(), sret))) {
                auto &tup = e.value();
                auto index = e.index();
                auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
                auto argTy = std::get<mlir::Type>(tup);
                if (attr.isAppend()) {
                  trailingTys.push_back(argTy);
                } else {
                  if (sret) {
                    fixups.emplace_back(FixupTy::Codes::CharPair,
                                        newInTys.size(), index);
                  } else {
                    fixups.emplace_back(FixupTy::Codes::Trailing,
                                        newInTys.size(), trailingTys.size());
                  }
                  newInTys.push_back(argTy);
                }
              }
            }
          })
          .Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
            if (noComplexConversion)
              newInTys.push_back(cmplx);
            else
              doComplexArg(func, cmplx, newInTys, fixups);
          })
          .Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
            if (noComplexConversion)
              newInTys.push_back(cmplx);
            else
              doComplexArg(func, cmplx, newInTys, fixups);
          })
          .Case<mlir::TupleType>([&](mlir::TupleType tuple) {
            if (fir::isCharacterProcedureTuple(tuple)) {
              fixups.emplace_back(FixupTy::Codes::TrailingCharProc,
                                  newInTys.size(), trailingTys.size());
              newInTys.push_back(tuple.getType(0));
              trailingTys.push_back(tuple.getType(1));
            } else {
              newInTys.push_back(ty);
            }
          })
          .Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
            auto m = specifics->integerArgumentType(func.getLoc(), intTy);
            assert(m.size() == 1);
            auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
            auto argTy = std::get<mlir::Type>(m[0]);
            auto argNo = newInTys.size();
            llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
            if (!extensionAttrName.empty() &&
                isFuncWithCCallingConvention(func))
              fixups.emplace_back(FixupTy::Codes::ArgumentType, argNo,
                                  [=](mlir::func::FuncOp func) {
                                    func.setArgAttr(
                                        argNo, extensionAttrName,
                                        mlir::UnitAttr::get(func.getContext()));
                                  });

            newInTys.push_back(argTy);
          })
          .Default([&](mlir::Type ty) { newInTys.push_back(ty); });

      if (func.getArgAttrOfType<mlir::UnitAttr>(index,
                                                fir::getHostAssocAttrName())) {
        extraAttrs.push_back(
            {newInTys.size() - 1,
             rewriter->getNamedAttr("llvm.nest", rewriter->getUnitAttr())});
      }
    }

    if (!func.empty()) {
      // If the function has a body, then apply the fixups to the arguments and
      // return ops as required. These fixups are done in place.
      auto loc = func.getLoc();
      const auto fixupSize = fixups.size();
      const auto oldArgTys = func.getFunctionType().getInputs();
      int offset = 0;
      for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) {
        const auto &fixup = fixups[i];
        switch (fixup.code) {
        case FixupTy::Codes::ArgumentAsLoad: {
          // Argument was pass-by-value, but is now pass-by-reference and
          // possibly with a different element type.
          auto newArg = func.front().insertArgument(fixup.index,
                                                    newInTys[fixup.index], loc);
          rewriter->setInsertionPointToStart(&func.front());
          auto oldArgTy =
              fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
          auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg);
          auto load = rewriter->create<fir::LoadOp>(loc, cast);
          func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
          func.front().eraseArgument(fixup.index + 1);
        } break;
        case FixupTy::Codes::ArgumentType: {
          // Argument is pass-by-value, but its type has likely been modified to
          // suit the target ABI convention.
          auto oldArgTy =
              fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
          // If type did not change, keep the original argument.
          if (newInTys[fixup.index] == oldArgTy)
            break;

          auto newArg = func.front().insertArgument(fixup.index,
                                                    newInTys[fixup.index], loc);
          rewriter->setInsertionPointToStart(&func.front());
          auto mem =
              rewriter->create<fir::AllocaOp>(loc, newInTys[fixup.index]);
          rewriter->create<fir::StoreOp>(loc, newArg, mem);
          auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, mem);
          mlir::Value load = rewriter->create<fir::LoadOp>(loc, cast);
          func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
          func.front().eraseArgument(fixup.index + 1);
          LLVM_DEBUG(llvm::dbgs()
                     << "old argument: " << oldArgTy.getEleTy()
                     << ", repl: " << load << ", new argument: "
                     << func.getArgument(fixup.index).getType() << '\n');
        } break;
        case FixupTy::Codes::CharPair: {
          // The FIR boxchar argument has been split into a pair of distinct
          // arguments that are in juxtaposition to each other.
          auto newArg = func.front().insertArgument(fixup.index,
                                                    newInTys[fixup.index], loc);
          if (fixup.second == 1) {
            rewriter->setInsertionPointToStart(&func.front());
            auto boxTy = oldArgTys[fixup.index - offset - fixup.second];
            auto box = rewriter->create<fir::EmboxCharOp>(
                loc, boxTy, func.front().getArgument(fixup.index - 1), newArg);
            func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
            func.front().eraseArgument(fixup.index + 1);
            offset++;
          }
        } break;
        case FixupTy::Codes::ReturnAsStore: {
          // The value being returned is now being returned in memory (callee
          // stack space) through a hidden reference argument.
          auto newArg = func.front().insertArgument(fixup.index,
                                                    newInTys[fixup.index], loc);
          offset++;
          func.walk([&](mlir::func::ReturnOp ret) {
            rewriter->setInsertionPoint(ret);
            auto oldOper = ret.getOperand(0);
            auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
            auto cast =
                rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg);
            rewriter->create<fir::StoreOp>(loc, oldOper, cast);
            rewriter->create<mlir::func::ReturnOp>(loc);
            ret.erase();
          });
        } break;
        case FixupTy::Codes::ReturnType: {
          // The function is still returning a value, but its type has likely
          // changed to suit the target ABI convention.
          func.walk([&](mlir::func::ReturnOp ret) {
            rewriter->setInsertionPoint(ret);
            auto oldOper = ret.getOperand(0);
            auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
            auto mem =
                rewriter->create<fir::AllocaOp>(loc, newResTys[fixup.index]);
            auto cast = rewriter->create<fir::ConvertOp>(loc, oldOperTy, mem);
            rewriter->create<fir::StoreOp>(loc, oldOper, cast);
            mlir::Value load = rewriter->create<fir::LoadOp>(loc, mem);
            rewriter->create<mlir::func::ReturnOp>(loc, load);
            ret.erase();
          });
        } break;
        case FixupTy::Codes::Split: {
          // The FIR argument has been split into a pair of distinct arguments
          // that are in juxtaposition to each other. (For COMPLEX value.)
          auto newArg = func.front().insertArgument(fixup.index,
                                                    newInTys[fixup.index], loc);
          if (fixup.second == 1) {
            rewriter->setInsertionPointToStart(&func.front());
            auto cplxTy = oldArgTys[fixup.index - offset - fixup.second];
            auto undef = rewriter->create<fir::UndefOp>(loc, cplxTy);
            auto iTy = rewriter->getIntegerType(32);
            auto zero = rewriter->getIntegerAttr(iTy, 0);
            auto one = rewriter->getIntegerAttr(iTy, 1);
            auto cplx1 = rewriter->create<fir::InsertValueOp>(
                loc, cplxTy, undef, func.front().getArgument(fixup.index - 1),
                rewriter->getArrayAttr(zero));
            auto cplx = rewriter->create<fir::InsertValueOp>(
                loc, cplxTy, cplx1, newArg, rewriter->getArrayAttr(one));
            func.getArgument(fixup.index + 1).replaceAllUsesWith(cplx);
            func.front().eraseArgument(fixup.index + 1);
            offset++;
          }
        } break;
        case FixupTy::Codes::Trailing: {
          // The FIR argument has been split into a pair of distinct arguments.
          // The first part of the pair appears in the original argument
          // position. The second part of the pair is appended after all the
          // original arguments. (Boxchar arguments.)
          auto newBufArg = func.front().insertArgument(
              fixup.index, newInTys[fixup.index], loc);
          auto newLenArg =
              func.front().addArgument(trailingTys[fixup.second], loc);
          auto boxTy = oldArgTys[fixup.index - offset];
          rewriter->setInsertionPointToStart(&func.front());
          auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg,
                                                        newLenArg);
          func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
          func.front().eraseArgument(fixup.index + 1);
        } break;
        case FixupTy::Codes::TrailingCharProc: {
          // The FIR character procedure argument tuple must be split into a
          // pair of distinct arguments. The first part of the pair appears in
          // the original argument position. The second part of the pair is
          // appended after all the original arguments.
          auto newProcPointerArg = func.front().insertArgument(
              fixup.index, newInTys[fixup.index], loc);
          auto newLenArg =
              func.front().addArgument(trailingTys[fixup.second], loc);
          auto tupleType = oldArgTys[fixup.index - offset];
          rewriter->setInsertionPointToStart(&func.front());
          fir::FirOpBuilder builder(*rewriter, getModule());
          auto tuple = fir::factory::createCharacterProcedureTuple(
              builder, loc, tupleType, newProcPointerArg, newLenArg);
          func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple);
          func.front().eraseArgument(fixup.index + 1);
        } break;
        }
      }
    }

    // Set the new type and finalize the arguments, etc.
    newInTys.insert(newInTys.end(), trailingTys.begin(), trailingTys.end());
    auto newFuncTy =
        mlir::FunctionType::get(func.getContext(), newInTys, newResTys);
    LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n');
    func.setType(newFuncTy);

    for (std::pair<unsigned, mlir::NamedAttribute> extraAttr : extraAttrs)
      func.setArgAttr(extraAttr.first, extraAttr.second.getName(),
                      extraAttr.second.getValue());

    for (auto [resId, resAttrList] : resultAttrs)
      for (mlir::NamedAttribute resAttr : resAttrList)
        func.setResultAttr(resId, resAttr.getName(), resAttr.getValue());

    // Replace attributes to the correct argument if there was an argument shift
    // to the right.
    if (argumentShift > 0) {
      for (std::pair<unsigned, mlir::NamedAttribute> savedAttr : savedAttrs) {
        func.removeArgAttr(savedAttr.first, savedAttr.second.getName());
        func.setArgAttr(savedAttr.first + argumentShift,
                        savedAttr.second.getName(),
                        savedAttr.second.getValue());
      }
    }

    for (auto &fixup : fixups)
      if (fixup.finalizer)
        (*fixup.finalizer)(func);
  }

  inline bool functionArgIsSRet(unsigned index, mlir::func::FuncOp func) {
    if (auto attr = func.getArgAttrOfType<mlir::TypeAttr>(index, "llvm.sret"))
      return true;
    return false;
  }

  /// Convert a complex return value. This can involve converting the return
  /// value to a "hidden" first argument or packing the complex into a wide
  /// GPR.
  template <typename A, typename B, typename C>
  void doComplexReturn(mlir::func::FuncOp func, A cmplx, B &newResTys,
                       B &newInTys, C &fixups) {
    if (noComplexConversion) {
      newResTys.push_back(cmplx);
      return;
    }
    auto m =
        specifics->complexReturnType(func.getLoc(), cmplx.getElementType());
    assert(m.size() == 1);
    auto &tup = m[0];
    auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
    auto argTy = std::get<mlir::Type>(tup);
    if (attr.isSRet()) {
      unsigned argNo = newInTys.size();
      if (auto align = attr.getAlignment())
        fixups.emplace_back(
            FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) {
              auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
                  func.getFunctionType().getInput(argNo));
              func.setArgAttr(argNo, "llvm.sret",
                              mlir::TypeAttr::get(elemType));
              func.setArgAttr(argNo, "llvm.align",
                              rewriter->getIntegerAttr(
                                  rewriter->getIntegerType(32), align));
            });
      else
        fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo,
                            [=](mlir::func::FuncOp func) {
                              auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
                                  func.getFunctionType().getInput(argNo));
                              func.setArgAttr(argNo, "llvm.sret",
                                              mlir::TypeAttr::get(elemType));
                            });
      newInTys.push_back(argTy);
      return;
    } else {
      if (auto align = attr.getAlignment())
        fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size(),
                            [=](mlir::func::FuncOp func) {
                              func.setArgAttr(
                                  newResTys.size(), "llvm.align",
                                  rewriter->getIntegerAttr(
                                      rewriter->getIntegerType(32), align));
                            });
      else
        fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size());
    }
    newResTys.push_back(argTy);
  }

  /// Convert a complex argument value. This can involve storing the value to
  /// a temporary memory location or factoring the value into two distinct
  /// arguments.
  template <typename A, typename B, typename C>
  void doComplexArg(mlir::func::FuncOp func, A cmplx, B &newInTys, C &fixups) {
    if (noComplexConversion) {
      newInTys.push_back(cmplx);
      return;
    }
    auto m =
        specifics->complexArgumentType(func.getLoc(), cmplx.getElementType());
    const auto fixupCode =
        m.size() > 1 ? FixupTy::Codes::Split : FixupTy::Codes::ArgumentType;
    for (auto e : llvm::enumerate(m)) {
      auto &tup = e.value();
      auto index = e.index();
      auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
      auto argTy = std::get<mlir::Type>(tup);
      auto argNo = newInTys.size();
      if (attr.isByVal()) {
        if (auto align = attr.getAlignment())
          fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, argNo,
                              [=](mlir::func::FuncOp func) {
                                auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
                                    func.getFunctionType().getInput(argNo));
                                func.setArgAttr(argNo, "llvm.byval",
                                                mlir::TypeAttr::get(elemType));
                                func.setArgAttr(
                                    argNo, "llvm.align",
                                    rewriter->getIntegerAttr(
                                        rewriter->getIntegerType(32), align));
                              });
        else
          fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, newInTys.size(),
                              [=](mlir::func::FuncOp func) {
                                auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
                                    func.getFunctionType().getInput(argNo));
                                func.setArgAttr(argNo, "llvm.byval",
                                                mlir::TypeAttr::get(elemType));
                              });
      } else {
        if (auto align = attr.getAlignment())
          fixups.emplace_back(
              fixupCode, argNo, index, [=](mlir::func::FuncOp func) {
                func.setArgAttr(argNo, "llvm.align",
                                rewriter->getIntegerAttr(
                                    rewriter->getIntegerType(32), align));
              });
        else
          fixups.emplace_back(fixupCode, argNo, index);
      }
      newInTys.push_back(argTy);
    }
  }

private:
  // Replace `op` and remove it.
  void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) {
    op->replaceAllUsesWith(newValues);
    op->dropAllReferences();
    op->erase();
  }

  inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r) {
    specifics = s;
    rewriter = r;
  }

  inline void clearMembers() { setMembers(nullptr, nullptr); }

  // Inserts a call to llvm.stacksave at the current insertion
  // point and the given location. Returns the call's result Value.
  inline mlir::Value genStackSave(mlir::Location loc) {
    return rewriter->create<fir::CallOp>(loc, stackSaveFn).getResult(0);
  }

  // Inserts a call to llvm.stackrestore at the current insertion
  // point and the given location and argument.
  inline void genStackRestore(mlir::Location loc, mlir::Value sp) {
    rewriter->create<fir::CallOp>(loc, stackRestoreFn, mlir::ValueRange{sp});
  }

  fir::CodeGenSpecifics *specifics = nullptr;
  mlir::OpBuilder *rewriter = nullptr;
  mlir::func::FuncOp stackSaveFn = nullptr;
  mlir::func::FuncOp stackRestoreFn = nullptr;
}; // namespace
} // namespace

std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
fir::createFirTargetRewritePass(const fir::TargetRewriteOptions &options) {
  return std::make_unique<TargetRewrite>(options);
}