1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
|
//===-- HLFIROps.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/TypeSwitch.h"
#include <iterator>
#include <optional>
#include <tuple>
//===----------------------------------------------------------------------===//
// DeclareOp
//===----------------------------------------------------------------------===//
/// Is this a fir.[ref/ptr/heap]<fir.[box/class]<fir.heap<T>>> type?
static bool isAllocatableBoxRef(mlir::Type type) {
fir::BaseBoxType boxType =
fir::dyn_cast_ptrEleTy(type).dyn_cast_or_null<fir::BaseBoxType>();
return boxType && boxType.getEleTy().isa<fir::HeapType>();
}
mlir::LogicalResult hlfir::AssignOp::verify() {
mlir::Type lhsType = getLhs().getType();
if (isAllocatableAssignment() && !isAllocatableBoxRef(lhsType))
return emitOpError("lhs must be an allocatable when `realloc` is set");
if (mustKeepLhsLengthInAllocatableAssignment() &&
!(isAllocatableAssignment() &&
hlfir::getFortranElementType(lhsType).isa<fir::CharacterType>()))
return emitOpError("`realloc` must be set and lhs must be a character "
"allocatable when `keep_lhs_length_if_realloc` is set");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// DeclareOp
//===----------------------------------------------------------------------===//
/// Given a FIR memory type, and information about non default lower bounds, get
/// the related HLFIR variable type.
mlir::Type hlfir::DeclareOp::getHLFIRVariableType(mlir::Type inputType,
bool hasExplicitLowerBounds) {
mlir::Type type = fir::unwrapRefType(inputType);
if (type.isa<fir::BaseBoxType>())
return inputType;
if (auto charType = type.dyn_cast<fir::CharacterType>())
if (charType.hasDynamicLen())
return fir::BoxCharType::get(charType.getContext(), charType.getFKind());
auto seqType = type.dyn_cast<fir::SequenceType>();
bool hasDynamicExtents =
seqType && fir::sequenceWithNonConstantShape(seqType);
mlir::Type eleType = seqType ? seqType.getEleTy() : type;
bool hasDynamicLengthParams = fir::characterWithDynamicLen(eleType) ||
fir::isRecordWithTypeParameters(eleType);
if (hasExplicitLowerBounds || hasDynamicExtents || hasDynamicLengthParams)
return fir::BoxType::get(type);
return inputType;
}
static bool hasExplicitLowerBounds(mlir::Value shape) {
return shape && shape.getType().isa<fir::ShapeShiftType, fir::ShiftType>();
}
void hlfir::DeclareOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value memref,
llvm::StringRef uniq_name, mlir::Value shape,
mlir::ValueRange typeparams,
fir::FortranVariableFlagsAttr fortran_attrs) {
auto nameAttr = builder.getStringAttr(uniq_name);
mlir::Type inputType = memref.getType();
bool hasExplicitLbs = hasExplicitLowerBounds(shape);
mlir::Type hlfirVariableType =
getHLFIRVariableType(inputType, hasExplicitLbs);
build(builder, result, {hlfirVariableType, inputType}, memref, shape,
typeparams, nameAttr, fortran_attrs);
}
mlir::LogicalResult hlfir::DeclareOp::verify() {
if (getMemref().getType() != getResult(1).getType())
return emitOpError("second result type must match input memref type");
mlir::Type hlfirVariableType = getHLFIRVariableType(
getMemref().getType(), hasExplicitLowerBounds(getShape()));
if (hlfirVariableType != getResult(0).getType())
return emitOpError("first result type is inconsistent with variable "
"properties: expected ")
<< hlfirVariableType;
// The rest of the argument verification is done by the
// FortranVariableInterface verifier.
auto fortranVar =
mlir::cast<fir::FortranVariableOpInterface>(this->getOperation());
return fortranVar.verifyDeclareLikeOpImpl(getMemref());
}
//===----------------------------------------------------------------------===//
// DesignateOp
//===----------------------------------------------------------------------===//
void hlfir::DesignateOp::build(
mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::Type result_type, mlir::Value memref, llvm::StringRef component,
mlir::Value component_shape, llvm::ArrayRef<Subscript> subscripts,
mlir::ValueRange substring, std::optional<bool> complex_part,
mlir::Value shape, mlir::ValueRange typeparams,
fir::FortranVariableFlagsAttr fortran_attrs) {
auto componentAttr =
component.empty() ? mlir::StringAttr{} : builder.getStringAttr(component);
llvm::SmallVector<mlir::Value> indices;
llvm::SmallVector<bool> isTriplet;
for (auto subscript : subscripts) {
if (auto *triplet = std::get_if<Triplet>(&subscript)) {
isTriplet.push_back(true);
indices.push_back(std::get<0>(*triplet));
indices.push_back(std::get<1>(*triplet));
indices.push_back(std::get<2>(*triplet));
} else {
isTriplet.push_back(false);
indices.push_back(std::get<mlir::Value>(subscript));
}
}
auto isTripletAttr =
mlir::DenseBoolArrayAttr::get(builder.getContext(), isTriplet);
auto complexPartAttr =
complex_part.has_value()
? mlir::BoolAttr::get(builder.getContext(), *complex_part)
: mlir::BoolAttr{};
build(builder, result, result_type, memref, componentAttr, component_shape,
indices, isTripletAttr, substring, complexPartAttr, shape, typeparams,
fortran_attrs);
}
void hlfir::DesignateOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
mlir::Type result_type, mlir::Value memref,
mlir::ValueRange indices,
mlir::ValueRange typeparams,
fir::FortranVariableFlagsAttr fortran_attrs) {
llvm::SmallVector<bool> isTriplet(indices.size(), false);
auto isTripletAttr =
mlir::DenseBoolArrayAttr::get(builder.getContext(), isTriplet);
build(builder, result, result_type, memref,
/*componentAttr=*/mlir::StringAttr{}, /*component_shape=*/mlir::Value{},
indices, isTripletAttr, /*substring*/ mlir::ValueRange{},
/*complexPartAttr=*/mlir::BoolAttr{}, /*shape=*/mlir::Value{},
typeparams, fortran_attrs);
}
static mlir::ParseResult parseDesignatorIndices(
mlir::OpAsmParser &parser,
llvm::SmallVectorImpl<mlir::OpAsmParser::UnresolvedOperand> &indices,
mlir::DenseBoolArrayAttr &isTripletAttr) {
llvm::SmallVector<bool> isTriplet;
if (mlir::succeeded(parser.parseOptionalLParen())) {
do {
mlir::OpAsmParser::UnresolvedOperand i1, i2, i3;
if (parser.parseOperand(i1))
return mlir::failure();
indices.push_back(i1);
if (mlir::succeeded(parser.parseOptionalColon())) {
if (parser.parseOperand(i2) || parser.parseColon() ||
parser.parseOperand(i3))
return mlir::failure();
indices.push_back(i2);
indices.push_back(i3);
isTriplet.push_back(true);
} else {
isTriplet.push_back(false);
}
} while (mlir::succeeded(parser.parseOptionalComma()));
if (parser.parseRParen())
return mlir::failure();
}
isTripletAttr = mlir::DenseBoolArrayAttr::get(parser.getContext(), isTriplet);
return mlir::success();
}
static void
printDesignatorIndices(mlir::OpAsmPrinter &p, hlfir::DesignateOp designateOp,
mlir::OperandRange indices,
const mlir::DenseBoolArrayAttr &isTripletAttr) {
if (!indices.empty()) {
p << '(';
unsigned i = 0;
for (auto isTriplet : isTripletAttr.asArrayRef()) {
if (isTriplet) {
assert(i + 2 < indices.size() && "ill-formed indices");
p << indices[i] << ":" << indices[i + 1] << ":" << indices[i + 2];
i += 3;
} else {
p << indices[i++];
}
if (i != indices.size())
p << ", ";
}
p << ')';
}
}
static mlir::ParseResult
parseDesignatorComplexPart(mlir::OpAsmParser &parser,
mlir::BoolAttr &complexPart) {
if (mlir::succeeded(parser.parseOptionalKeyword("imag")))
complexPart = mlir::BoolAttr::get(parser.getContext(), true);
else if (mlir::succeeded(parser.parseOptionalKeyword("real")))
complexPart = mlir::BoolAttr::get(parser.getContext(), false);
return mlir::success();
}
static void printDesignatorComplexPart(mlir::OpAsmPrinter &p,
hlfir::DesignateOp designateOp,
mlir::BoolAttr complexPartAttr) {
if (complexPartAttr) {
if (complexPartAttr.getValue())
p << "imag";
else
p << "real";
}
}
mlir::LogicalResult hlfir::DesignateOp::verify() {
mlir::Type memrefType = getMemref().getType();
mlir::Type baseType = getFortranElementOrSequenceType(memrefType);
mlir::Type baseElementType = fir::unwrapSequenceType(baseType);
unsigned numSubscripts = getIsTriplet().size();
unsigned subscriptsRank =
llvm::count_if(getIsTriplet(), [](bool isTriplet) { return isTriplet; });
unsigned outputRank = 0;
mlir::Type outputElementType;
bool hasBoxComponent;
if (getComponent()) {
auto component = getComponent().value();
auto recType = baseElementType.dyn_cast<fir::RecordType>();
if (!recType)
return emitOpError(
"component must be provided only when the memref is a derived type");
unsigned fieldIdx = recType.getFieldIndex(component);
if (fieldIdx > recType.getNumFields()) {
return emitOpError("component ")
<< component << " is not a component of memref element type "
<< recType;
}
mlir::Type fieldType = recType.getType(fieldIdx);
mlir::Type componentBaseType = getFortranElementOrSequenceType(fieldType);
hasBoxComponent = fieldType.isa<fir::BaseBoxType>();
if (componentBaseType.isa<fir::SequenceType>() &&
baseType.isa<fir::SequenceType>() &&
(numSubscripts == 0 || subscriptsRank > 0))
return emitOpError("indices must be provided and must not contain "
"triplets when both memref and component are arrays");
if (numSubscripts != 0) {
if (!componentBaseType.isa<fir::SequenceType>())
return emitOpError("indices must not be provided if component appears "
"and is not an array component");
if (!getComponentShape())
return emitOpError(
"component_shape must be provided when indexing a component");
mlir::Type compShapeType = getComponentShape().getType();
unsigned componentRank =
componentBaseType.cast<fir::SequenceType>().getDimension();
auto shapeType = compShapeType.dyn_cast<fir::ShapeType>();
auto shapeShiftType = compShapeType.dyn_cast<fir::ShapeShiftType>();
if (!((shapeType && shapeType.getRank() == componentRank) ||
(shapeShiftType && shapeShiftType.getRank() == componentRank)))
return emitOpError("component_shape must be a fir.shape or "
"fir.shapeshift with the rank of the component");
if (numSubscripts > componentRank)
return emitOpError("indices number must match array component rank");
}
if (auto baseSeqType = baseType.dyn_cast<fir::SequenceType>())
// This case must come first to cover "array%array_comp(i, j)" that has
// subscripts for the component but whose rank come from the base.
outputRank = baseSeqType.getDimension();
else if (numSubscripts != 0)
outputRank = subscriptsRank;
else if (auto componentSeqType =
componentBaseType.dyn_cast<fir::SequenceType>())
outputRank = componentSeqType.getDimension();
outputElementType = fir::unwrapSequenceType(componentBaseType);
} else {
outputElementType = baseElementType;
unsigned baseTypeRank =
baseType.isa<fir::SequenceType>()
? baseType.cast<fir::SequenceType>().getDimension()
: 0;
if (numSubscripts != 0) {
if (baseTypeRank != numSubscripts)
return emitOpError("indices number must match memref rank");
outputRank = subscriptsRank;
} else if (auto baseSeqType = baseType.dyn_cast<fir::SequenceType>()) {
outputRank = baseSeqType.getDimension();
}
}
if (!getSubstring().empty()) {
if (!outputElementType.isa<fir::CharacterType>())
return emitOpError("memref or component must have character type if "
"substring indices are provided");
if (getSubstring().size() != 2)
return emitOpError("substring must contain 2 indices when provided");
}
if (getComplexPart()) {
if (!fir::isa_complex(outputElementType))
return emitOpError("memref or component must have complex type if "
"complex_part is provided");
if (auto firCplx = outputElementType.dyn_cast<fir::ComplexType>())
outputElementType = firCplx.getElementType();
else
outputElementType =
outputElementType.cast<mlir::ComplexType>().getElementType();
}
mlir::Type resultBaseType =
getFortranElementOrSequenceType(getResult().getType());
unsigned resultRank = 0;
if (auto resultSeqType = resultBaseType.dyn_cast<fir::SequenceType>())
resultRank = resultSeqType.getDimension();
if (resultRank != outputRank)
return emitOpError("result type rank is not consistent with operands, "
"expected rank ")
<< outputRank;
mlir::Type resultElementType = fir::unwrapSequenceType(resultBaseType);
// result type must match the one that was inferred here, except the character
// length may differ because of substrings.
if (resultElementType != outputElementType &&
!(resultElementType.isa<fir::CharacterType>() &&
outputElementType.isa<fir::CharacterType>()) &&
!(resultElementType.isa<mlir::FloatType>() &&
outputElementType.isa<fir::RealType>()))
return emitOpError(
"result element type is not consistent with operands, expected ")
<< outputElementType;
if (isBoxAddressType(getResult().getType())) {
if (!hasBoxComponent || numSubscripts != 0 || !getSubstring().empty() ||
getComplexPart())
return emitOpError(
"result type must only be a box address type if it designates a "
"component that is a fir.box or fir.class and if there are no "
"indices, substrings, and complex part");
} else {
if ((resultRank == 0) != !getShape())
return emitOpError("shape must be provided if and only if the result is "
"an array that is not a box address");
if (resultRank != 0) {
auto shapeType = getShape().getType().dyn_cast<fir::ShapeType>();
auto shapeShiftType =
getShape().getType().dyn_cast<fir::ShapeShiftType>();
if (!((shapeType && shapeType.getRank() == resultRank) ||
(shapeShiftType && shapeShiftType.getRank() == resultRank)))
return emitOpError("shape must be a fir.shape or fir.shapeshift with "
"the rank of the result");
}
auto numLenParam = getTypeparams().size();
if (outputElementType.isa<fir::CharacterType>()) {
if (numLenParam != 1)
return emitOpError("must be provided one length parameter when the "
"result is a character");
} else if (fir::isRecordWithTypeParameters(outputElementType)) {
if (numLenParam !=
outputElementType.cast<fir::RecordType>().getNumLenParams())
return emitOpError("must be provided the same number of length "
"parameters as in the result derived type");
} else if (numLenParam != 0) {
return emitOpError("must not be provided length parameters if the result "
"type does not have length parameters");
}
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ParentComponentOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::ParentComponentOp::verify() {
mlir::Type baseType =
hlfir::getFortranElementOrSequenceType(getMemref().getType());
auto maybeInputSeqType = baseType.dyn_cast<fir::SequenceType>();
unsigned inputTypeRank =
maybeInputSeqType ? maybeInputSeqType.getDimension() : 0;
unsigned shapeRank = 0;
if (mlir::Value shape = getShape())
if (auto shapeType = shape.getType().dyn_cast<fir::ShapeType>())
shapeRank = shapeType.getRank();
if (inputTypeRank != shapeRank)
return emitOpError(
"must be provided a shape if and only if the base is an array");
mlir::Type outputBaseType = hlfir::getFortranElementOrSequenceType(getType());
auto maybeOutputSeqType = outputBaseType.dyn_cast<fir::SequenceType>();
unsigned outputTypeRank =
maybeOutputSeqType ? maybeOutputSeqType.getDimension() : 0;
if (inputTypeRank != outputTypeRank)
return emitOpError("result type rank must match input type rank");
if (maybeOutputSeqType && maybeInputSeqType)
for (auto [inputDim, outputDim] :
llvm::zip(maybeInputSeqType.getShape(), maybeOutputSeqType.getShape()))
if (inputDim != fir::SequenceType::getUnknownExtent() &&
outputDim != fir::SequenceType::getUnknownExtent())
if (inputDim != outputDim)
return emitOpError(
"result type extents are inconsistent with memref type");
fir::RecordType baseRecType =
hlfir::getFortranElementType(baseType).dyn_cast<fir::RecordType>();
fir::RecordType outRecType =
hlfir::getFortranElementType(outputBaseType).dyn_cast<fir::RecordType>();
if (!baseRecType || !outRecType)
return emitOpError("result type and input type must be derived types");
// Note: result should not be a fir.class: its dynamic type is being set to
// the parent type and allowing fir.class would break the operation codegen:
// it would keep the input dynamic type.
if (getType().isa<fir::ClassType>())
return emitOpError("result type must not be polymorphic");
// The array results are known to not be dis-contiguous in most cases (the
// exception being if the parent type was extended by a type without any
// components): require a fir.box to be used for the result to carry the
// strides.
if (!getType().isa<fir::BoxType>() &&
(outputTypeRank != 0 || fir::isRecordWithTypeParameters(outRecType)))
return emitOpError("result type must be a fir.box if the result is an "
"array or has length parameters");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// LogicalReductionOp
//===----------------------------------------------------------------------===//
template <typename LogicalReductionOp>
static mlir::LogicalResult
verifyLogicalReductionOp(LogicalReductionOp reductionOp) {
mlir::Operation *op = reductionOp->getOperation();
auto results = op->getResultTypes();
assert(results.size() == 1);
mlir::Value mask = reductionOp->getMask();
mlir::Value dim = reductionOp->getDim();
fir::SequenceType maskTy =
hlfir::getFortranElementOrSequenceType(mask.getType())
.cast<fir::SequenceType>();
mlir::Type logicalTy = maskTy.getEleTy();
llvm::ArrayRef<int64_t> maskShape = maskTy.getShape();
mlir::Type resultType = results[0];
if (mlir::isa<fir::LogicalType>(resultType)) {
// Result is of the same type as MASK
if (resultType != logicalTy)
return reductionOp->emitOpError(
"result must have the same element type as MASK argument");
} else if (auto resultExpr =
mlir::dyn_cast_or_null<hlfir::ExprType>(resultType)) {
// Result should only be in hlfir.expr form if it is an array
if (maskShape.size() > 1 && dim != nullptr) {
if (!resultExpr.isArray())
return reductionOp->emitOpError("result must be an array");
if (resultExpr.getEleTy() != logicalTy)
return reductionOp->emitOpError(
"result must have the same element type as MASK argument");
llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape();
// Result has rank n-1
if (resultShape.size() != (maskShape.size() - 1))
return reductionOp->emitOpError(
"result rank must be one less than MASK");
} else {
return reductionOp->emitOpError("result must be of logical type");
}
} else {
return reductionOp->emitOpError("result must be of logical type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// AllOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::AllOp::verify() {
return verifyLogicalReductionOp<hlfir::AllOp *>(this);
}
//===----------------------------------------------------------------------===//
// AnyOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::AnyOp::verify() {
return verifyLogicalReductionOp<hlfir::AnyOp *>(this);
}
//===----------------------------------------------------------------------===//
// CountOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::CountOp::verify() {
mlir::Operation *op = getOperation();
auto results = op->getResultTypes();
assert(results.size() == 1);
mlir::Value mask = getMask();
mlir::Value dim = getDim();
fir::SequenceType maskTy =
hlfir::getFortranElementOrSequenceType(mask.getType())
.cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> maskShape = maskTy.getShape();
mlir::Type resultType = results[0];
if (auto resultExpr = mlir::dyn_cast_or_null<hlfir::ExprType>(resultType)) {
if (maskShape.size() > 1 && dim != nullptr) {
if (!resultExpr.isArray())
return emitOpError("result must be an array");
llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape();
// Result has rank n-1
if (resultShape.size() != (maskShape.size() - 1))
return emitOpError("result rank must be one less than MASK");
} else {
return emitOpError("result must be of numerical scalar type");
}
} else if (!hlfir::isFortranScalarNumericalType(resultType)) {
return emitOpError("result must be of numerical scalar type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ConcatOp
//===----------------------------------------------------------------------===//
static unsigned getCharacterKind(mlir::Type t) {
return hlfir::getFortranElementType(t).cast<fir::CharacterType>().getFKind();
}
static std::optional<fir::CharacterType::LenType>
getCharacterLengthIfStatic(mlir::Type t) {
if (auto charType =
hlfir::getFortranElementType(t).dyn_cast<fir::CharacterType>())
if (charType.hasConstantLen())
return charType.getLen();
return std::nullopt;
}
mlir::LogicalResult hlfir::ConcatOp::verify() {
if (getStrings().size() < 2)
return emitOpError("must be provided at least two string operands");
unsigned kind = getCharacterKind(getResult().getType());
for (auto string : getStrings())
if (kind != getCharacterKind(string.getType()))
return emitOpError("strings must have the same KIND as the result type");
return mlir::success();
}
void hlfir::ConcatOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
mlir::ValueRange strings, mlir::Value len) {
fir::CharacterType::LenType resultTypeLen = 0;
assert(!strings.empty() && "must contain operands");
unsigned kind = getCharacterKind(strings[0].getType());
for (auto string : strings)
if (auto cstLen = getCharacterLengthIfStatic(string.getType())) {
resultTypeLen += *cstLen;
} else {
resultTypeLen = fir::CharacterType::unknownLen();
break;
}
auto resultType = hlfir::ExprType::get(
builder.getContext(), hlfir::ExprType::Shape{},
fir::CharacterType::get(builder.getContext(), kind, resultTypeLen),
false);
build(builder, result, resultType, strings, len);
}
//===----------------------------------------------------------------------===//
// NumericalReductionOp
//===----------------------------------------------------------------------===//
template <typename NumericalReductionOp>
static mlir::LogicalResult
verifyNumericalReductionOp(NumericalReductionOp reductionOp) {
mlir::Operation *op = reductionOp->getOperation();
auto results = op->getResultTypes();
assert(results.size() == 1);
mlir::Value array = reductionOp->getArray();
mlir::Value dim = reductionOp->getDim();
mlir::Value mask = reductionOp->getMask();
fir::SequenceType arrayTy =
hlfir::getFortranElementOrSequenceType(array.getType())
.cast<fir::SequenceType>();
mlir::Type numTy = arrayTy.getEleTy();
llvm::ArrayRef<int64_t> arrayShape = arrayTy.getShape();
if (mask) {
fir::SequenceType maskSeq =
hlfir::getFortranElementOrSequenceType(mask.getType())
.dyn_cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> maskShape;
if (maskSeq)
maskShape = maskSeq.getShape();
if (!maskShape.empty()) {
if (maskShape.size() != arrayShape.size())
return reductionOp->emitWarning("MASK must be conformable to ARRAY");
static_assert(fir::SequenceType::getUnknownExtent() ==
hlfir::ExprType::getUnknownExtent());
constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent();
for (std::size_t i = 0; i < arrayShape.size(); ++i) {
int64_t arrayExtent = arrayShape[i];
int64_t maskExtent = maskShape[i];
if ((arrayExtent != maskExtent) && (arrayExtent != unknownExtent) &&
(maskExtent != unknownExtent))
return reductionOp->emitWarning("MASK must be conformable to ARRAY");
}
}
}
mlir::Type resultType = results[0];
if (hlfir::isFortranScalarNumericalType(resultType)) {
// Result is of the same type as ARRAY
if (resultType != numTy)
return reductionOp->emitOpError(
"result must have the same element type as ARRAY argument");
} else if (auto resultExpr =
mlir::dyn_cast_or_null<hlfir::ExprType>(resultType)) {
if (arrayShape.size() > 1 && dim != nullptr) {
if (!resultExpr.isArray())
return reductionOp->emitOpError("result must be an array");
if (resultExpr.getEleTy() != numTy)
return reductionOp->emitOpError(
"result must have the same element type as ARRAY argument");
llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape();
// Result has rank n-1
if (resultShape.size() != (arrayShape.size() - 1))
return reductionOp->emitOpError(
"result rank must be one less than ARRAY");
} else {
return reductionOp->emitOpError(
"result must be of numerical scalar type");
}
} else {
return reductionOp->emitOpError("result must be of numerical scalar type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ProductOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::ProductOp::verify() {
return verifyNumericalReductionOp<hlfir::ProductOp *>(this);
}
//===----------------------------------------------------------------------===//
// SetLengthOp
//===----------------------------------------------------------------------===//
void hlfir::SetLengthOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value string,
mlir::Value len) {
fir::CharacterType::LenType resultTypeLen = fir::CharacterType::unknownLen();
if (auto cstLen = fir::getIntIfConstant(len))
resultTypeLen = *cstLen;
unsigned kind = getCharacterKind(string.getType());
auto resultType = hlfir::ExprType::get(
builder.getContext(), hlfir::ExprType::Shape{},
fir::CharacterType::get(builder.getContext(), kind, resultTypeLen),
false);
build(builder, result, resultType, string, len);
}
//===----------------------------------------------------------------------===//
// SumOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::SumOp::verify() {
return verifyNumericalReductionOp<hlfir::SumOp *>(this);
}
//===----------------------------------------------------------------------===//
// DotProductOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::DotProductOp::verify() {
mlir::Value lhs = getLhs();
mlir::Value rhs = getRhs();
fir::SequenceType lhsTy =
hlfir::getFortranElementOrSequenceType(lhs.getType())
.cast<fir::SequenceType>();
fir::SequenceType rhsTy =
hlfir::getFortranElementOrSequenceType(rhs.getType())
.cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> lhsShape = lhsTy.getShape();
llvm::ArrayRef<int64_t> rhsShape = rhsTy.getShape();
std::size_t lhsRank = lhsShape.size();
std::size_t rhsRank = rhsShape.size();
mlir::Type lhsEleTy = lhsTy.getEleTy();
mlir::Type rhsEleTy = rhsTy.getEleTy();
mlir::Type resultTy = getResult().getType();
if ((lhsRank != 1) || (rhsRank != 1))
return emitOpError("both arrays must have rank 1");
int64_t lhsSize = lhsShape[0];
int64_t rhsSize = rhsShape[0];
constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent();
if ((lhsSize != unknownExtent) && (rhsSize != unknownExtent) &&
(lhsSize != rhsSize))
return emitOpError("both arrays must have the same size");
if (mlir::isa<fir::LogicalType>(lhsEleTy) !=
mlir::isa<fir::LogicalType>(rhsEleTy))
return emitOpError("if one array is logical, so should the other be");
if (mlir::isa<fir::LogicalType>(lhsEleTy) !=
mlir::isa<fir::LogicalType>(resultTy))
return emitOpError("the result type should be a logical only if the "
"argument types are logical");
if (!hlfir::isFortranScalarNumericalType(resultTy) &&
!mlir::isa<fir::LogicalType>(resultTy))
return emitOpError(
"the result must be of scalar numerical or logical type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// MatmulOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::MatmulOp::verify() {
mlir::Value lhs = getLhs();
mlir::Value rhs = getRhs();
fir::SequenceType lhsTy =
hlfir::getFortranElementOrSequenceType(lhs.getType())
.cast<fir::SequenceType>();
fir::SequenceType rhsTy =
hlfir::getFortranElementOrSequenceType(rhs.getType())
.cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> lhsShape = lhsTy.getShape();
llvm::ArrayRef<int64_t> rhsShape = rhsTy.getShape();
std::size_t lhsRank = lhsShape.size();
std::size_t rhsRank = rhsShape.size();
mlir::Type lhsEleTy = lhsTy.getEleTy();
mlir::Type rhsEleTy = rhsTy.getEleTy();
hlfir::ExprType resultTy = getResult().getType().cast<hlfir::ExprType>();
llvm::ArrayRef<int64_t> resultShape = resultTy.getShape();
mlir::Type resultEleTy = resultTy.getEleTy();
if (((lhsRank != 1) && (lhsRank != 2)) || ((rhsRank != 1) && (rhsRank != 2)))
return emitOpError("array must have either rank 1 or rank 2");
if ((lhsRank == 1) && (rhsRank == 1))
return emitOpError("at least one array must have rank 2");
if (mlir::isa<fir::LogicalType>(lhsEleTy) !=
mlir::isa<fir::LogicalType>(rhsEleTy))
return emitOpError("if one array is logical, so should the other be");
int64_t lastLhsDim = lhsShape[lhsRank - 1];
int64_t firstRhsDim = rhsShape[0];
constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent();
if (lastLhsDim != firstRhsDim)
if ((lastLhsDim != unknownExtent) && (firstRhsDim != unknownExtent))
return emitOpError(
"the last dimension of LHS should match the first dimension of RHS");
if (mlir::isa<fir::LogicalType>(lhsEleTy) !=
mlir::isa<fir::LogicalType>(resultEleTy))
return emitOpError("the result type should be a logical only if the "
"argument types are logical");
llvm::SmallVector<int64_t, 2> expectedResultShape;
if (lhsRank == 2) {
if (rhsRank == 2) {
expectedResultShape.push_back(lhsShape[0]);
expectedResultShape.push_back(rhsShape[1]);
} else {
// rhsRank == 1
expectedResultShape.push_back(lhsShape[0]);
}
} else {
// lhsRank == 1
// rhsRank == 2
expectedResultShape.push_back(rhsShape[1]);
}
if (resultShape.size() != expectedResultShape.size())
return emitOpError("incorrect result shape");
if (resultShape[0] != expectedResultShape[0] &&
expectedResultShape[0] != unknownExtent)
return emitOpError("incorrect result shape");
if (resultShape.size() == 2 && resultShape[1] != expectedResultShape[1] &&
expectedResultShape[1] != unknownExtent)
return emitOpError("incorrect result shape");
return mlir::success();
}
mlir::LogicalResult
hlfir::MatmulOp::canonicalize(MatmulOp matmulOp,
mlir::PatternRewriter &rewriter) {
// the only two uses of the transposed matrix should be for the hlfir.matmul
// and hlfir.destory
auto isOtherwiseUnused = [&](hlfir::TransposeOp transposeOp) -> bool {
std::size_t numUses = 0;
for (mlir::Operation *user : transposeOp.getResult().getUsers()) {
++numUses;
if (user == matmulOp)
continue;
if (mlir::dyn_cast_or_null<hlfir::DestroyOp>(user))
continue;
// some other use!
return false;
}
return numUses <= 2;
};
mlir::Value lhs = matmulOp.getLhs();
// Rewrite MATMUL(TRANSPOSE(lhs), rhs) => hlfir.matmul_transpose lhs, rhs
if (auto transposeOp = lhs.getDefiningOp<hlfir::TransposeOp>()) {
if (isOtherwiseUnused(transposeOp)) {
mlir::Location loc = matmulOp.getLoc();
mlir::Type resultTy = matmulOp.getResult().getType();
auto matmulTransposeOp = rewriter.create<hlfir::MatmulTransposeOp>(
loc, resultTy, transposeOp.getArray(), matmulOp.getRhs());
// we don't need to remove any hlfir.destroy because it will be needed for
// the new intrinsic result anyway
rewriter.replaceOp(matmulOp, matmulTransposeOp.getResult());
// but we do need to get rid of the hlfir.destroy for the hlfir.transpose
// result (which is entirely removed)
for (mlir::Operation *user : transposeOp->getResult(0).getUsers())
if (auto destroyOp = mlir::dyn_cast_or_null<hlfir::DestroyOp>(user))
rewriter.eraseOp(destroyOp);
rewriter.eraseOp(transposeOp);
return mlir::success();
}
}
return mlir::failure();
}
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::TransposeOp::verify() {
mlir::Value array = getArray();
fir::SequenceType arrayTy =
hlfir::getFortranElementOrSequenceType(array.getType())
.cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> inShape = arrayTy.getShape();
std::size_t rank = inShape.size();
mlir::Type eleTy = arrayTy.getEleTy();
hlfir::ExprType resultTy = getResult().getType().cast<hlfir::ExprType>();
llvm::ArrayRef<int64_t> resultShape = resultTy.getShape();
std::size_t resultRank = resultShape.size();
mlir::Type resultEleTy = resultTy.getEleTy();
if (rank != 2 || resultRank != 2)
return emitOpError("input and output arrays should have rank 2");
constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent();
if ((inShape[0] != resultShape[1]) && (inShape[0] != unknownExtent))
return emitOpError("output shape does not match input array");
if ((inShape[1] != resultShape[0]) && (inShape[1] != unknownExtent))
return emitOpError("output shape does not match input array");
if (eleTy != resultEleTy)
return emitOpError(
"input and output arrays should have the same element type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// MatmulTransposeOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::MatmulTransposeOp::verify() {
mlir::Value lhs = getLhs();
mlir::Value rhs = getRhs();
fir::SequenceType lhsTy =
hlfir::getFortranElementOrSequenceType(lhs.getType())
.cast<fir::SequenceType>();
fir::SequenceType rhsTy =
hlfir::getFortranElementOrSequenceType(rhs.getType())
.cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> lhsShape = lhsTy.getShape();
llvm::ArrayRef<int64_t> rhsShape = rhsTy.getShape();
std::size_t lhsRank = lhsShape.size();
std::size_t rhsRank = rhsShape.size();
mlir::Type lhsEleTy = lhsTy.getEleTy();
mlir::Type rhsEleTy = rhsTy.getEleTy();
hlfir::ExprType resultTy = getResult().getType().cast<hlfir::ExprType>();
llvm::ArrayRef<int64_t> resultShape = resultTy.getShape();
mlir::Type resultEleTy = resultTy.getEleTy();
// lhs must have rank 2 for the transpose to be valid
if ((lhsRank != 2) || ((rhsRank != 1) && (rhsRank != 2)))
return emitOpError("array must have either rank 1 or rank 2");
if (mlir::isa<fir::LogicalType>(lhsEleTy) !=
mlir::isa<fir::LogicalType>(rhsEleTy))
return emitOpError("if one array is logical, so should the other be");
// for matmul we compare the last dimension of lhs with the first dimension of
// rhs, but for MatmulTranspose, dimensions of lhs are inverted by the
// transpose
int64_t firstLhsDim = lhsShape[0];
int64_t firstRhsDim = rhsShape[0];
constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent();
if (firstLhsDim != firstRhsDim)
if ((firstLhsDim != unknownExtent) && (firstRhsDim != unknownExtent))
return emitOpError(
"the first dimension of LHS should match the first dimension of RHS");
if (mlir::isa<fir::LogicalType>(lhsEleTy) !=
mlir::isa<fir::LogicalType>(resultEleTy))
return emitOpError("the result type should be a logical only if the "
"argument types are logical");
llvm::SmallVector<int64_t, 2> expectedResultShape;
if (rhsRank == 2) {
expectedResultShape.push_back(lhsShape[1]);
expectedResultShape.push_back(rhsShape[1]);
} else {
// rhsRank == 1
expectedResultShape.push_back(lhsShape[1]);
}
if (resultShape.size() != expectedResultShape.size())
return emitOpError("incorrect result shape");
if (resultShape[0] != expectedResultShape[0])
return emitOpError("incorrect result shape");
if (resultShape.size() == 2 && resultShape[1] != expectedResultShape[1])
return emitOpError("incorrect result shape");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// AssociateOp
//===----------------------------------------------------------------------===//
void hlfir::AssociateOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value source,
llvm::StringRef uniq_name, mlir::Value shape,
mlir::ValueRange typeparams,
fir::FortranVariableFlagsAttr fortran_attrs) {
auto nameAttr = builder.getStringAttr(uniq_name);
mlir::Type dataType = getFortranElementOrSequenceType(source.getType());
// Preserve polymorphism of polymorphic expr.
mlir::Type firVarType;
auto sourceExprType = mlir::dyn_cast<hlfir::ExprType>(source.getType());
if (sourceExprType && sourceExprType.isPolymorphic())
firVarType = fir::ClassType::get(fir::HeapType::get(dataType));
else
firVarType = fir::ReferenceType::get(dataType);
mlir::Type hlfirVariableType =
DeclareOp::getHLFIRVariableType(firVarType, /*hasExplicitLbs=*/false);
mlir::Type i1Type = builder.getI1Type();
build(builder, result, {hlfirVariableType, firVarType, i1Type}, source, shape,
typeparams, nameAttr, fortran_attrs);
}
//===----------------------------------------------------------------------===//
// EndAssociateOp
//===----------------------------------------------------------------------===//
void hlfir::EndAssociateOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
hlfir::AssociateOp associate) {
return build(builder, result, associate.getFirBase(),
associate.getMustFreeStrorageFlag());
}
//===----------------------------------------------------------------------===//
// AsExprOp
//===----------------------------------------------------------------------===//
void hlfir::AsExprOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value var,
mlir::Value mustFree) {
hlfir::ExprType::Shape typeShape;
bool isPolymorphic = fir::isPolymorphicType(var.getType());
mlir::Type type = getFortranElementOrSequenceType(var.getType());
if (auto seqType = type.dyn_cast<fir::SequenceType>()) {
typeShape.append(seqType.getShape().begin(), seqType.getShape().end());
type = seqType.getEleTy();
}
auto resultType = hlfir::ExprType::get(builder.getContext(), typeShape, type,
isPolymorphic);
return build(builder, result, resultType, var, mustFree);
}
//===----------------------------------------------------------------------===//
// ElementalOp
//===----------------------------------------------------------------------===//
void hlfir::ElementalOp::build(mlir::OpBuilder &builder,
mlir::OperationState &odsState,
mlir::Type resultType, mlir::Value shape,
mlir::ValueRange typeparams, bool isUnordered) {
odsState.addOperands(shape);
odsState.addOperands(typeparams);
odsState.addTypes(resultType);
if (isUnordered)
odsState.addAttribute(getUnorderedAttrName(odsState.name),
isUnordered ? builder.getUnitAttr() : nullptr);
mlir::Region *bodyRegion = odsState.addRegion();
bodyRegion->push_back(new mlir::Block{});
if (auto exprType = resultType.dyn_cast<hlfir::ExprType>()) {
unsigned dim = exprType.getRank();
mlir::Type indexType = builder.getIndexType();
for (unsigned d = 0; d < dim; ++d)
bodyRegion->front().addArgument(indexType, odsState.location);
}
}
mlir::Value hlfir::ElementalOp::getElementEntity() {
return mlir::cast<hlfir::YieldElementOp>(getBody()->back()).getElementValue();
}
//===----------------------------------------------------------------------===//
// ApplyOp
//===----------------------------------------------------------------------===//
void hlfir::ApplyOp::build(mlir::OpBuilder &builder,
mlir::OperationState &odsState, mlir::Value expr,
mlir::ValueRange indices,
mlir::ValueRange typeparams) {
mlir::Type resultType = expr.getType();
if (auto exprType = resultType.dyn_cast<hlfir::ExprType>())
resultType = exprType.getElementExprType();
build(builder, odsState, resultType, expr, indices, typeparams);
}
//===----------------------------------------------------------------------===//
// NullOp
//===----------------------------------------------------------------------===//
void hlfir::NullOp::build(mlir::OpBuilder &builder,
mlir::OperationState &odsState) {
return build(builder, odsState,
fir::ReferenceType::get(builder.getNoneType()));
}
//===----------------------------------------------------------------------===//
// CopyInOp
//===----------------------------------------------------------------------===//
void hlfir::CopyInOp::build(mlir::OpBuilder &builder,
mlir::OperationState &odsState, mlir::Value var,
mlir::Value var_is_present) {
return build(builder, odsState, {var.getType(), builder.getI1Type()}, var,
var_is_present);
}
//===----------------------------------------------------------------------===//
// ShapeOfOp
//===----------------------------------------------------------------------===//
void hlfir::ShapeOfOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value expr) {
hlfir::ExprType exprTy = expr.getType().cast<hlfir::ExprType>();
mlir::Type type = fir::ShapeType::get(builder.getContext(), exprTy.getRank());
build(builder, result, type, expr);
}
std::size_t hlfir::ShapeOfOp::getRank() {
mlir::Type resTy = getResult().getType();
fir::ShapeType shape = resTy.cast<fir::ShapeType>();
return shape.getRank();
}
mlir::LogicalResult hlfir::ShapeOfOp::verify() {
mlir::Value expr = getExpr();
hlfir::ExprType exprTy = expr.getType().cast<hlfir::ExprType>();
std::size_t exprRank = exprTy.getShape().size();
if (exprRank == 0)
return emitOpError("cannot get the shape of a shape-less expression");
std::size_t shapeRank = getRank();
if (shapeRank != exprRank)
return emitOpError("result rank and expr rank do not match");
return mlir::success();
}
mlir::LogicalResult
hlfir::ShapeOfOp::canonicalize(ShapeOfOp shapeOf,
mlir::PatternRewriter &rewriter) {
// if extent information is available at compile time, immediately fold the
// hlfir.shape_of into a fir.shape
mlir::Location loc = shapeOf.getLoc();
hlfir::ExprType expr = shapeOf.getExpr().getType().cast<hlfir::ExprType>();
mlir::Value shape = hlfir::genExprShape(rewriter, loc, expr);
if (!shape)
// shape information is not available at compile time
return mlir::LogicalResult::failure();
rewriter.replaceAllUsesWith(shapeOf.getResult(), shape);
rewriter.eraseOp(shapeOf);
return mlir::LogicalResult::success();
}
//===----------------------------------------------------------------------===//
// GetExtent
//===----------------------------------------------------------------------===//
void hlfir::GetExtentOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value shape,
unsigned dim) {
mlir::Type indexTy = builder.getIndexType();
mlir::IntegerAttr dimAttr = mlir::IntegerAttr::get(indexTy, dim);
build(builder, result, indexTy, shape, dimAttr);
}
mlir::LogicalResult hlfir::GetExtentOp::verify() {
fir::ShapeType shapeTy = getShape().getType().cast<fir::ShapeType>();
std::uint64_t rank = shapeTy.getRank();
llvm::APInt dim = getDim();
if (dim.sge(rank))
return emitOpError("dimension index out of bounds");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// RegionAssignOp
//===----------------------------------------------------------------------===//
/// Add a fir.end terminator to a parsed region if it does not already has a
/// terminator.
static void ensureTerminator(mlir::Region ®ion, mlir::Builder &builder,
mlir::Location loc) {
// Borrow YielOp::ensureTerminator MLIR generated implementation to add a
// fir.end if there is no terminator. This has nothing to do with YielOp,
// other than the fact that yieldOp has the
// SingleBlocklicitTerminator<"fir::FirEndOp"> interface that
// cannot be added on other HLFIR operations with several regions which are
// not all terminated the same way.
hlfir::YieldOp::ensureTerminator(region, builder, loc);
}
mlir::ParseResult hlfir::RegionAssignOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Region &rhsRegion = *result.addRegion();
if (parser.parseRegion(rhsRegion))
return mlir::failure();
mlir::Region &lhsRegion = *result.addRegion();
if (parser.parseKeyword("to") || parser.parseRegion(lhsRegion))
return mlir::failure();
mlir::Region &userDefinedAssignmentRegion = *result.addRegion();
if (succeeded(parser.parseOptionalKeyword("user_defined_assign"))) {
mlir::OpAsmParser::Argument rhsArg, lhsArg;
if (parser.parseLParen() || parser.parseArgument(rhsArg) ||
parser.parseColon() || parser.parseType(rhsArg.type) ||
parser.parseRParen() || parser.parseKeyword("to") ||
parser.parseLParen() || parser.parseArgument(lhsArg) ||
parser.parseColon() || parser.parseType(lhsArg.type) ||
parser.parseRParen())
return mlir::failure();
if (parser.parseRegion(userDefinedAssignmentRegion, {rhsArg, lhsArg}))
return mlir::failure();
ensureTerminator(userDefinedAssignmentRegion, parser.getBuilder(),
result.location);
}
return mlir::success();
}
void hlfir::RegionAssignOp::print(mlir::OpAsmPrinter &p) {
p << " ";
p.printRegion(getRhsRegion(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
p << " to ";
p.printRegion(getLhsRegion(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
if (!getUserDefinedAssignment().empty()) {
p << " user_defined_assign ";
mlir::Value userAssignmentRhs = getUserAssignmentRhs();
mlir::Value userAssignmentLhs = getUserAssignmentLhs();
p << " (" << userAssignmentRhs << ": " << userAssignmentRhs.getType()
<< ") to (";
p << userAssignmentLhs << ": " << userAssignmentLhs.getType() << ") ";
p.printRegion(getUserDefinedAssignment(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
}
static mlir::Operation *getTerminator(mlir::Region ®ion) {
if (region.empty() || region.back().empty())
return nullptr;
return ®ion.back().back();
}
mlir::LogicalResult hlfir::RegionAssignOp::verify() {
if (!mlir::isa_and_nonnull<hlfir::YieldOp>(getTerminator(getRhsRegion())))
return emitOpError(
"right-hand side region must be terminated by an hlfir.yield");
if (!mlir::isa_and_nonnull<hlfir::YieldOp, hlfir::ElementalAddrOp>(
getTerminator(getLhsRegion())))
return emitOpError("left-hand side region must be terminated by an "
"hlfir.yield or hlfir.elemental_addr");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseYieldOpCleanup(mlir::OpAsmParser &parser,
mlir::Region &cleanup) {
if (succeeded(parser.parseOptionalKeyword("cleanup"))) {
if (parser.parseRegion(cleanup, /*arguments=*/{},
/*argTypes=*/{}))
return mlir::failure();
hlfir::YieldOp::ensureTerminator(cleanup, parser.getBuilder(),
parser.getBuilder().getUnknownLoc());
}
return mlir::success();
}
template <typename YieldOp>
static void printYieldOpCleanup(mlir::OpAsmPrinter &p, YieldOp yieldOp,
mlir::Region &cleanup) {
if (!cleanup.empty()) {
p << "cleanup ";
p.printRegion(cleanup, /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
}
//===----------------------------------------------------------------------===//
// ElementalAddrOp
//===----------------------------------------------------------------------===//
void hlfir::ElementalAddrOp::build(mlir::OpBuilder &builder,
mlir::OperationState &odsState,
mlir::Value shape, bool isUnordered) {
odsState.addOperands(shape);
if (isUnordered)
odsState.addAttribute(getUnorderedAttrName(odsState.name),
isUnordered ? builder.getUnitAttr() : nullptr);
mlir::Region *bodyRegion = odsState.addRegion();
bodyRegion->push_back(new mlir::Block{});
if (auto shapeType = shape.getType().dyn_cast<fir::ShapeType>()) {
unsigned dim = shapeType.getRank();
mlir::Type indexType = builder.getIndexType();
for (unsigned d = 0; d < dim; ++d)
bodyRegion->front().addArgument(indexType, odsState.location);
}
// Push cleanUp region.
odsState.addRegion();
}
mlir::LogicalResult hlfir::ElementalAddrOp::verify() {
hlfir::YieldOp yieldOp =
mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(getBody()));
if (!yieldOp)
return emitOpError("body region must be terminated by an hlfir.yield");
mlir::Type elementAddrType = yieldOp.getEntity().getType();
if (!hlfir::isFortranVariableType(elementAddrType) ||
hlfir::getFortranElementOrSequenceType(elementAddrType)
.isa<fir::SequenceType>())
return emitOpError("body must compute the address of a scalar entity");
unsigned shapeRank = getShape().getType().cast<fir::ShapeType>().getRank();
if (shapeRank != getIndices().size())
return emitOpError("body number of indices must match shape rank");
return mlir::success();
}
hlfir::YieldOp hlfir::ElementalAddrOp::getYieldOp() {
hlfir::YieldOp yieldOp =
mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(getBody()));
assert(yieldOp && "element_addr is ill-formed");
return yieldOp;
}
mlir::Value hlfir::ElementalAddrOp::getElementEntity() {
return getYieldOp().getEntity();
}
mlir::Region *hlfir::ElementalAddrOp::getElementCleanup() {
mlir::Region *cleanup = &getYieldOp().getCleanup();
return cleanup->empty() ? nullptr : cleanup;
}
//===----------------------------------------------------------------------===//
// OrderedAssignmentTreeOpInterface
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::OrderedAssignmentTreeOpInterface::verifyImpl() {
if (mlir::Region *body = getSubTreeRegion())
if (!body->empty())
for (mlir::Operation &op : body->front())
if (!mlir::isa<hlfir::OrderedAssignmentTreeOpInterface, fir::FirEndOp>(
op))
return emitOpError(
"body region must only contain OrderedAssignmentTreeOpInterface "
"operations or fir.end");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ForallOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseForallOpBody(mlir::OpAsmParser &parser,
mlir::Region &body) {
mlir::OpAsmParser::Argument bodyArg;
if (parser.parseLParen() || parser.parseArgument(bodyArg) ||
parser.parseColon() || parser.parseType(bodyArg.type) ||
parser.parseRParen())
return mlir::failure();
if (parser.parseRegion(body, {bodyArg}))
return mlir::failure();
ensureTerminator(body, parser.getBuilder(),
parser.getBuilder().getUnknownLoc());
return mlir::success();
}
static void printForallOpBody(mlir::OpAsmPrinter &p, hlfir::ForallOp forall,
mlir::Region &body) {
mlir::Value forallIndex = forall.getForallIndexValue();
p << " (" << forallIndex << ": " << forallIndex.getType() << ") ";
p.printRegion(body, /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
/// Predicate implementation of YieldIntegerOrEmpty.
static bool yieldsIntegerOrEmpty(mlir::Region ®ion) {
if (region.empty())
return true;
auto yield = mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(region));
return yield && fir::isa_integer(yield.getEntity().getType());
}
//===----------------------------------------------------------------------===//
// ForallMaskOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseAssignmentMaskOpBody(mlir::OpAsmParser &parser,
mlir::Region &body) {
if (parser.parseRegion(body))
return mlir::failure();
ensureTerminator(body, parser.getBuilder(),
parser.getBuilder().getUnknownLoc());
return mlir::success();
}
template <typename ConcreteOp>
static void printAssignmentMaskOpBody(mlir::OpAsmPrinter &p, ConcreteOp,
mlir::Region &body) {
// ElseWhereOp is a WhereOp/ElseWhereOp terminator that should be printed.
bool printBlockTerminators =
!body.empty() &&
mlir::isa_and_nonnull<hlfir::ElseWhereOp>(body.back().getTerminator());
p.printRegion(body, /*printEntryBlockArgs=*/false, printBlockTerminators);
}
static bool yieldsLogical(mlir::Region ®ion, bool mustBeScalarI1) {
if (region.empty())
return false;
auto yield = mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(region));
if (!yield)
return false;
mlir::Type yieldType = yield.getEntity().getType();
if (mustBeScalarI1)
return hlfir::isI1Type(yieldType);
return hlfir::isMaskArgument(yieldType) &&
hlfir::getFortranElementOrSequenceType(yieldType)
.isa<fir::SequenceType>();
}
mlir::LogicalResult hlfir::ForallMaskOp::verify() {
if (!yieldsLogical(getMaskRegion(), /*mustBeScalarI1=*/true))
return emitOpError("mask region must yield a scalar i1");
mlir::Operation *op = getOperation();
hlfir::ForallOp forallOp =
mlir::dyn_cast_or_null<hlfir::ForallOp>(op->getParentOp());
if (!forallOp || op->getParentRegion() != &forallOp.getBody())
return emitOpError("must be inside the body region of an hlfir.forall");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// WhereOp and ElseWhereOp
//===----------------------------------------------------------------------===//
template <typename ConcreteOp>
static mlir::LogicalResult verifyWhereAndElseWhereBody(ConcreteOp &concreteOp) {
for (mlir::Operation &op : concreteOp.getBody().front())
if (mlir::isa<hlfir::ForallOp>(op))
return concreteOp.emitOpError(
"body region must not contain hlfir.forall");
return mlir::success();
}
mlir::LogicalResult hlfir::WhereOp::verify() {
if (!yieldsLogical(getMaskRegion(), /*mustBeScalarI1=*/false))
return emitOpError("mask region must yield a logical array");
return verifyWhereAndElseWhereBody(*this);
}
mlir::LogicalResult hlfir::ElseWhereOp::verify() {
if (!getMaskRegion().empty())
if (!yieldsLogical(getMaskRegion(), /*mustBeScalarI1=*/false))
return emitOpError(
"mask region must yield a logical array when provided");
return verifyWhereAndElseWhereBody(*this);
}
//===----------------------------------------------------------------------===//
// ForallIndexOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult
hlfir::ForallIndexOp::canonicalize(hlfir::ForallIndexOp indexOp,
mlir::PatternRewriter &rewriter) {
for (mlir::Operation *user : indexOp->getResult(0).getUsers())
if (!mlir::isa<fir::LoadOp>(user))
return mlir::failure();
auto insertPt = rewriter.saveInsertionPoint();
for (mlir::Operation *user : indexOp->getResult(0).getUsers())
if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(user)) {
rewriter.setInsertionPoint(loadOp);
rewriter.replaceOpWithNewOp<fir::ConvertOp>(
user, loadOp.getResult().getType(), indexOp.getIndex());
}
rewriter.restoreInsertionPoint(insertPt);
rewriter.eraseOp(indexOp);
return mlir::success();
}
//===----------------------------------------------------------------------===//
// CharExtremumOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult hlfir::CharExtremumOp::verify() {
if (getStrings().size() < 2)
return emitOpError("must be provided at least two string operands");
unsigned kind = getCharacterKind(getResult().getType());
for (auto string : getStrings())
if (kind != getCharacterKind(string.getType()))
return emitOpError("strings must have the same KIND as the result type");
return mlir::success();
}
void hlfir::CharExtremumOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
hlfir::CharExtremumPredicate predicate,
mlir::ValueRange strings) {
fir::CharacterType::LenType resultTypeLen = 0;
assert(!strings.empty() && "must contain operands");
unsigned kind = getCharacterKind(strings[0].getType());
for (auto string : strings)
if (auto cstLen = getCharacterLengthIfStatic(string.getType())) {
resultTypeLen = std::max(resultTypeLen, *cstLen);
} else {
resultTypeLen = fir::CharacterType::unknownLen();
break;
}
auto resultType = hlfir::ExprType::get(
builder.getContext(), hlfir::ExprType::Shape{},
fir::CharacterType::get(builder.getContext(), kind, resultTypeLen),
false);
build(builder, result, resultType, predicate, strings);
}
//===----------------------------------------------------------------------===//
// GetLength
//===----------------------------------------------------------------------===//
mlir::LogicalResult
hlfir::GetLengthOp::canonicalize(GetLengthOp getLength,
mlir::PatternRewriter &rewriter) {
mlir::Location loc = getLength.getLoc();
auto exprTy = mlir::cast<hlfir::ExprType>(getLength.getExpr().getType());
auto charTy = mlir::cast<fir::CharacterType>(exprTy.getElementType());
if (!charTy.hasConstantLen())
return mlir::failure();
mlir::Type indexTy = rewriter.getIndexType();
auto cstLen = rewriter.create<mlir::arith::ConstantOp>(
loc, indexTy, mlir::IntegerAttr::get(indexTy, charTy.getLen()));
rewriter.replaceOp(getLength, cstLen);
return mlir::success();
}
#include "flang/Optimizer/HLFIR/HLFIROpInterfaces.cpp.inc"
#define GET_OP_CLASSES
#include "flang/Optimizer/HLFIR/HLFIREnums.cpp.inc"
#include "flang/Optimizer/HLFIR/HLFIROps.cpp.inc"
|