1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
//===-- AffinePromotion.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation is a prototype that promote FIR loops operations
// to affine dialect operations.
// It is not part of the production pipeline and would need more work in order
// to be used in production.
// More information can be found in this presentation:
// https://slides.com/rajanwalia/deck
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#include <optional>
namespace fir {
#define GEN_PASS_DEF_AFFINEDIALECTPROMOTION
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-affine-promotion"
using namespace fir;
using namespace mlir;
namespace {
struct AffineLoopAnalysis;
struct AffineIfAnalysis;
/// Stores analysis objects for all loops and if operations inside a function
/// these analysis are used twice, first for marking operations for rewrite and
/// second when doing rewrite.
struct AffineFunctionAnalysis {
explicit AffineFunctionAnalysis(mlir::func::FuncOp funcOp) {
for (fir::DoLoopOp op : funcOp.getOps<fir::DoLoopOp>())
loopAnalysisMap.try_emplace(op, op, *this);
}
AffineLoopAnalysis getChildLoopAnalysis(fir::DoLoopOp op) const;
AffineIfAnalysis getChildIfAnalysis(fir::IfOp op) const;
llvm::DenseMap<mlir::Operation *, AffineLoopAnalysis> loopAnalysisMap;
llvm::DenseMap<mlir::Operation *, AffineIfAnalysis> ifAnalysisMap;
};
} // namespace
static bool analyzeCoordinate(mlir::Value coordinate, mlir::Operation *op) {
if (auto blockArg = coordinate.dyn_cast<mlir::BlockArgument>()) {
if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp()))
return true;
LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a "
"loop induction variable (owner not loopOp)\n";
op->dump());
return false;
}
LLVM_DEBUG(
llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a loop "
"induction variable (not a block argument)\n";
op->dump(); coordinate.getDefiningOp()->dump());
return false;
}
namespace {
struct AffineLoopAnalysis {
AffineLoopAnalysis() = default;
explicit AffineLoopAnalysis(fir::DoLoopOp op, AffineFunctionAnalysis &afa)
: legality(analyzeLoop(op, afa)) {}
bool canPromoteToAffine() { return legality; }
private:
bool analyzeBody(fir::DoLoopOp loopOperation,
AffineFunctionAnalysis &functionAnalysis) {
for (auto loopOp : loopOperation.getOps<fir::DoLoopOp>()) {
auto analysis = functionAnalysis.loopAnalysisMap
.try_emplace(loopOp, loopOp, functionAnalysis)
.first->getSecond();
if (!analysis.canPromoteToAffine())
return false;
}
for (auto ifOp : loopOperation.getOps<fir::IfOp>())
functionAnalysis.ifAnalysisMap.try_emplace(ifOp, ifOp, functionAnalysis);
return true;
}
bool analyzeLoop(fir::DoLoopOp loopOperation,
AffineFunctionAnalysis &functionAnalysis) {
LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: \n"; loopOperation.dump(););
return analyzeMemoryAccess(loopOperation) &&
analyzeBody(loopOperation, functionAnalysis);
}
bool analyzeReference(mlir::Value memref, mlir::Operation *op) {
if (auto acoOp = memref.getDefiningOp<ArrayCoorOp>()) {
if (acoOp.getMemref().getType().isa<fir::BoxType>()) {
// TODO: Look if and how fir.box can be promoted to affine.
LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: cannot promote loop, "
"array memory operation uses fir.box\n";
op->dump(); acoOp.dump(););
return false;
}
bool canPromote = true;
for (auto coordinate : acoOp.getIndices())
canPromote = canPromote && analyzeCoordinate(coordinate, op);
return canPromote;
}
if (auto coOp = memref.getDefiningOp<CoordinateOp>()) {
LLVM_DEBUG(llvm::dbgs()
<< "AffineLoopAnalysis: cannot promote loop, "
"array memory operation uses non ArrayCoorOp\n";
op->dump(); coOp.dump(););
return false;
}
LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: unknown type of memory "
"reference for array load\n";
op->dump(););
return false;
}
bool analyzeMemoryAccess(fir::DoLoopOp loopOperation) {
for (auto loadOp : loopOperation.getOps<fir::LoadOp>())
if (!analyzeReference(loadOp.getMemref(), loadOp))
return false;
for (auto storeOp : loopOperation.getOps<fir::StoreOp>())
if (!analyzeReference(storeOp.getMemref(), storeOp))
return false;
return true;
}
bool legality{};
};
} // namespace
AffineLoopAnalysis
AffineFunctionAnalysis::getChildLoopAnalysis(fir::DoLoopOp op) const {
auto it = loopAnalysisMap.find_as(op);
if (it == loopAnalysisMap.end()) {
LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n";
op.dump(););
op.emitError("error in fetching loop analysis in AffineFunctionAnalysis\n");
return {};
}
return it->getSecond();
}
namespace {
/// Calculates arguments for creating an IntegerSet. symCount, dimCount are the
/// final number of symbols and dimensions of the affine map. Integer set if
/// possible is in Optional IntegerSet.
struct AffineIfCondition {
using MaybeAffineExpr = std::optional<mlir::AffineExpr>;
explicit AffineIfCondition(mlir::Value fc) : firCondition(fc) {
if (auto condDef = firCondition.getDefiningOp<mlir::arith::CmpIOp>())
fromCmpIOp(condDef);
}
bool hasIntegerSet() const { return integerSet.has_value(); }
mlir::IntegerSet getIntegerSet() const {
assert(hasIntegerSet() && "integer set is missing");
return *integerSet;
}
mlir::ValueRange getAffineArgs() const { return affineArgs; }
private:
MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, mlir::Value lhs,
mlir::Value rhs) {
return affineBinaryOp(kind, toAffineExpr(lhs), toAffineExpr(rhs));
}
MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, MaybeAffineExpr lhs,
MaybeAffineExpr rhs) {
if (lhs && rhs)
return mlir::getAffineBinaryOpExpr(kind, *lhs, *rhs);
return {};
}
MaybeAffineExpr toAffineExpr(MaybeAffineExpr e) { return e; }
MaybeAffineExpr toAffineExpr(int64_t value) {
return {mlir::getAffineConstantExpr(value, firCondition.getContext())};
}
/// Returns an AffineExpr if it is a result of operations that can be done
/// in an affine expression, this includes -, +, *, rem, constant.
/// block arguments of a loopOp or forOp are used as dimensions
MaybeAffineExpr toAffineExpr(mlir::Value value) {
if (auto op = value.getDefiningOp<mlir::arith::SubIOp>())
return affineBinaryOp(
mlir::AffineExprKind::Add, toAffineExpr(op.getLhs()),
affineBinaryOp(mlir::AffineExprKind::Mul, toAffineExpr(op.getRhs()),
toAffineExpr(-1)));
if (auto op = value.getDefiningOp<mlir::arith::AddIOp>())
return affineBinaryOp(mlir::AffineExprKind::Add, op.getLhs(),
op.getRhs());
if (auto op = value.getDefiningOp<mlir::arith::MulIOp>())
return affineBinaryOp(mlir::AffineExprKind::Mul, op.getLhs(),
op.getRhs());
if (auto op = value.getDefiningOp<mlir::arith::RemUIOp>())
return affineBinaryOp(mlir::AffineExprKind::Mod, op.getLhs(),
op.getRhs());
if (auto op = value.getDefiningOp<mlir::arith::ConstantOp>())
if (auto intConstant = op.getValue().dyn_cast<IntegerAttr>())
return toAffineExpr(intConstant.getInt());
if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) {
affineArgs.push_back(value);
if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp()) ||
isa<mlir::affine::AffineForOp>(blockArg.getOwner()->getParentOp()))
return {mlir::getAffineDimExpr(dimCount++, value.getContext())};
return {mlir::getAffineSymbolExpr(symCount++, value.getContext())};
}
return {};
}
void fromCmpIOp(mlir::arith::CmpIOp cmpOp) {
auto lhsAffine = toAffineExpr(cmpOp.getLhs());
auto rhsAffine = toAffineExpr(cmpOp.getRhs());
if (!lhsAffine || !rhsAffine)
return;
auto constraintPair =
constraint(cmpOp.getPredicate(), *rhsAffine - *lhsAffine);
if (!constraintPair)
return;
integerSet = mlir::IntegerSet::get(
dimCount, symCount, {constraintPair->first}, {constraintPair->second});
}
std::optional<std::pair<AffineExpr, bool>>
constraint(mlir::arith::CmpIPredicate predicate, mlir::AffineExpr basic) {
switch (predicate) {
case mlir::arith::CmpIPredicate::slt:
return {std::make_pair(basic - 1, false)};
case mlir::arith::CmpIPredicate::sle:
return {std::make_pair(basic, false)};
case mlir::arith::CmpIPredicate::sgt:
return {std::make_pair(1 - basic, false)};
case mlir::arith::CmpIPredicate::sge:
return {std::make_pair(0 - basic, false)};
case mlir::arith::CmpIPredicate::eq:
return {std::make_pair(basic, true)};
default:
return {};
}
}
llvm::SmallVector<mlir::Value> affineArgs;
std::optional<mlir::IntegerSet> integerSet;
mlir::Value firCondition;
unsigned symCount{0u};
unsigned dimCount{0u};
};
} // namespace
namespace {
/// Analysis for affine promotion of fir.if
struct AffineIfAnalysis {
AffineIfAnalysis() = default;
explicit AffineIfAnalysis(fir::IfOp op, AffineFunctionAnalysis &afa)
: legality(analyzeIf(op, afa)) {}
bool canPromoteToAffine() { return legality; }
private:
bool analyzeIf(fir::IfOp op, AffineFunctionAnalysis &afa) {
if (op.getNumResults() == 0)
return true;
LLVM_DEBUG(llvm::dbgs()
<< "AffineIfAnalysis: not promoting as op has results\n";);
return false;
}
bool legality{};
};
} // namespace
AffineIfAnalysis
AffineFunctionAnalysis::getChildIfAnalysis(fir::IfOp op) const {
auto it = ifAnalysisMap.find_as(op);
if (it == ifAnalysisMap.end()) {
LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n";
op.dump(););
op.emitError("error in fetching if analysis in AffineFunctionAnalysis\n");
return {};
}
return it->getSecond();
}
/// AffineMap rewriting fir.array_coor operation to affine apply,
/// %dim = fir.gendim %lowerBound, %upperBound, %stride
/// %a = fir.array_coor %arr(%dim) %i
/// returning affineMap = affine_map<(i)[lb, ub, st] -> (i*st - lb)>
static mlir::AffineMap createArrayIndexAffineMap(unsigned dimensions,
MLIRContext *context) {
auto index = mlir::getAffineConstantExpr(0, context);
auto accuExtent = mlir::getAffineConstantExpr(1, context);
for (unsigned i = 0; i < dimensions; ++i) {
mlir::AffineExpr idx = mlir::getAffineDimExpr(i, context),
lowerBound = mlir::getAffineSymbolExpr(i * 3, context),
currentExtent =
mlir::getAffineSymbolExpr(i * 3 + 1, context),
stride = mlir::getAffineSymbolExpr(i * 3 + 2, context),
currentPart = (idx * stride - lowerBound) * accuExtent;
index = currentPart + index;
accuExtent = accuExtent * currentExtent;
}
return mlir::AffineMap::get(dimensions, dimensions * 3, index);
}
static std::optional<int64_t> constantIntegerLike(const mlir::Value value) {
if (auto definition = value.getDefiningOp<mlir::arith::ConstantOp>())
if (auto stepAttr = definition.getValue().dyn_cast<IntegerAttr>())
return stepAttr.getInt();
return {};
}
static mlir::Type coordinateArrayElement(fir::ArrayCoorOp op) {
if (auto refType =
op.getMemref().getType().dyn_cast_or_null<ReferenceType>()) {
if (auto seqType = refType.getEleTy().dyn_cast_or_null<SequenceType>()) {
return seqType.getEleTy();
}
}
op.emitError(
"AffineLoopConversion: array type in coordinate operation not valid\n");
return mlir::Type();
}
static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeOp shape,
SmallVectorImpl<mlir::Value> &indexArgs,
mlir::PatternRewriter &rewriter) {
auto one = rewriter.create<mlir::arith::ConstantOp>(
acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1));
auto extents = shape.getExtents();
for (auto i = extents.begin(); i < extents.end(); i++) {
indexArgs.push_back(one);
indexArgs.push_back(*i);
indexArgs.push_back(one);
}
}
static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeShiftOp shape,
SmallVectorImpl<mlir::Value> &indexArgs,
mlir::PatternRewriter &rewriter) {
auto one = rewriter.create<mlir::arith::ConstantOp>(
acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1));
auto extents = shape.getPairs();
for (auto i = extents.begin(); i < extents.end();) {
indexArgs.push_back(*i++);
indexArgs.push_back(*i++);
indexArgs.push_back(one);
}
}
static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::SliceOp slice,
SmallVectorImpl<mlir::Value> &indexArgs,
mlir::PatternRewriter &rewriter) {
auto extents = slice.getTriples();
for (auto i = extents.begin(); i < extents.end();) {
indexArgs.push_back(*i++);
indexArgs.push_back(*i++);
indexArgs.push_back(*i++);
}
}
static void populateIndexArgs(fir::ArrayCoorOp acoOp,
SmallVectorImpl<mlir::Value> &indexArgs,
mlir::PatternRewriter &rewriter) {
if (auto shape = acoOp.getShape().getDefiningOp<ShapeOp>())
return populateIndexArgs(acoOp, shape, indexArgs, rewriter);
if (auto shapeShift = acoOp.getShape().getDefiningOp<ShapeShiftOp>())
return populateIndexArgs(acoOp, shapeShift, indexArgs, rewriter);
if (auto slice = acoOp.getShape().getDefiningOp<SliceOp>())
return populateIndexArgs(acoOp, slice, indexArgs, rewriter);
}
/// Returns affine.apply and fir.convert from array_coor and gendims
static std::pair<affine::AffineApplyOp, fir::ConvertOp>
createAffineOps(mlir::Value arrayRef, mlir::PatternRewriter &rewriter) {
auto acoOp = arrayRef.getDefiningOp<ArrayCoorOp>();
auto affineMap =
createArrayIndexAffineMap(acoOp.getIndices().size(), acoOp.getContext());
SmallVector<mlir::Value> indexArgs;
indexArgs.append(acoOp.getIndices().begin(), acoOp.getIndices().end());
populateIndexArgs(acoOp, indexArgs, rewriter);
auto affineApply = rewriter.create<affine::AffineApplyOp>(
acoOp.getLoc(), affineMap, indexArgs);
auto arrayElementType = coordinateArrayElement(acoOp);
auto newType =
mlir::MemRefType::get({mlir::ShapedType::kDynamic}, arrayElementType);
auto arrayConvert = rewriter.create<fir::ConvertOp>(acoOp.getLoc(), newType,
acoOp.getMemref());
return std::make_pair(affineApply, arrayConvert);
}
static void rewriteLoad(fir::LoadOp loadOp, mlir::PatternRewriter &rewriter) {
rewriter.setInsertionPoint(loadOp);
auto affineOps = createAffineOps(loadOp.getMemref(), rewriter);
rewriter.replaceOpWithNewOp<affine::AffineLoadOp>(
loadOp, affineOps.second.getResult(), affineOps.first.getResult());
}
static void rewriteStore(fir::StoreOp storeOp,
mlir::PatternRewriter &rewriter) {
rewriter.setInsertionPoint(storeOp);
auto affineOps = createAffineOps(storeOp.getMemref(), rewriter);
rewriter.replaceOpWithNewOp<affine::AffineStoreOp>(
storeOp, storeOp.getValue(), affineOps.second.getResult(),
affineOps.first.getResult());
}
static void rewriteMemoryOps(Block *block, mlir::PatternRewriter &rewriter) {
for (auto &bodyOp : block->getOperations()) {
if (isa<fir::LoadOp>(bodyOp))
rewriteLoad(cast<fir::LoadOp>(bodyOp), rewriter);
if (isa<fir::StoreOp>(bodyOp))
rewriteStore(cast<fir::StoreOp>(bodyOp), rewriter);
}
}
namespace {
/// Convert `fir.do_loop` to `affine.for`, creates fir.convert for arrays to
/// memref, rewrites array_coor to affine.apply with affine_map. Rewrites fir
/// loads and stores to affine.
class AffineLoopConversion : public mlir::OpRewritePattern<fir::DoLoopOp> {
public:
using OpRewritePattern::OpRewritePattern;
AffineLoopConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa)
: OpRewritePattern(context), functionAnalysis(afa) {}
mlir::LogicalResult
matchAndRewrite(fir::DoLoopOp loop,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: rewriting loop:\n";
loop.dump(););
LLVM_ATTRIBUTE_UNUSED auto loopAnalysis =
functionAnalysis.getChildLoopAnalysis(loop);
auto &loopOps = loop.getBody()->getOperations();
auto loopAndIndex = createAffineFor(loop, rewriter);
auto affineFor = loopAndIndex.first;
auto inductionVar = loopAndIndex.second;
rewriter.startRootUpdate(affineFor.getOperation());
affineFor.getBody()->getOperations().splice(
std::prev(affineFor.getBody()->end()), loopOps, loopOps.begin(),
std::prev(loopOps.end()));
rewriter.finalizeRootUpdate(affineFor.getOperation());
rewriter.startRootUpdate(loop.getOperation());
loop.getInductionVar().replaceAllUsesWith(inductionVar);
rewriter.finalizeRootUpdate(loop.getOperation());
rewriteMemoryOps(affineFor.getBody(), rewriter);
LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: loop rewriten to:\n";
affineFor.dump(););
rewriter.replaceOp(loop, affineFor.getOperation()->getResults());
return success();
}
private:
std::pair<affine::AffineForOp, mlir::Value>
createAffineFor(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const {
if (auto constantStep = constantIntegerLike(op.getStep()))
if (*constantStep > 0)
return positiveConstantStep(op, *constantStep, rewriter);
return genericBounds(op, rewriter);
}
// when step for the loop is positive compile time constant
std::pair<affine::AffineForOp, mlir::Value>
positiveConstantStep(fir::DoLoopOp op, int64_t step,
mlir::PatternRewriter &rewriter) const {
auto affineFor = rewriter.create<affine::AffineForOp>(
op.getLoc(), ValueRange(op.getLowerBound()),
mlir::AffineMap::get(0, 1,
mlir::getAffineSymbolExpr(0, op.getContext())),
ValueRange(op.getUpperBound()),
mlir::AffineMap::get(0, 1,
1 + mlir::getAffineSymbolExpr(0, op.getContext())),
step);
return std::make_pair(affineFor, affineFor.getInductionVar());
}
std::pair<affine::AffineForOp, mlir::Value>
genericBounds(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const {
auto lowerBound = mlir::getAffineSymbolExpr(0, op.getContext());
auto upperBound = mlir::getAffineSymbolExpr(1, op.getContext());
auto step = mlir::getAffineSymbolExpr(2, op.getContext());
mlir::AffineMap upperBoundMap = mlir::AffineMap::get(
0, 3, (upperBound - lowerBound + step).floorDiv(step));
auto genericUpperBound = rewriter.create<affine::AffineApplyOp>(
op.getLoc(), upperBoundMap,
ValueRange({op.getLowerBound(), op.getUpperBound(), op.getStep()}));
auto actualIndexMap = mlir::AffineMap::get(
1, 2,
(lowerBound + mlir::getAffineDimExpr(0, op.getContext())) *
mlir::getAffineSymbolExpr(1, op.getContext()));
auto affineFor = rewriter.create<affine::AffineForOp>(
op.getLoc(), ValueRange(),
AffineMap::getConstantMap(0, op.getContext()),
genericUpperBound.getResult(),
mlir::AffineMap::get(0, 1,
1 + mlir::getAffineSymbolExpr(0, op.getContext())),
1);
rewriter.setInsertionPointToStart(affineFor.getBody());
auto actualIndex = rewriter.create<affine::AffineApplyOp>(
op.getLoc(), actualIndexMap,
ValueRange(
{affineFor.getInductionVar(), op.getLowerBound(), op.getStep()}));
return std::make_pair(affineFor, actualIndex.getResult());
}
AffineFunctionAnalysis &functionAnalysis;
};
/// Convert `fir.if` to `affine.if`.
class AffineIfConversion : public mlir::OpRewritePattern<fir::IfOp> {
public:
using OpRewritePattern::OpRewritePattern;
AffineIfConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa)
: OpRewritePattern(context) {}
mlir::LogicalResult
matchAndRewrite(fir::IfOp op,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: rewriting if:\n";
op.dump(););
auto &ifOps = op.getThenRegion().front().getOperations();
auto affineCondition = AffineIfCondition(op.getCondition());
if (!affineCondition.hasIntegerSet()) {
LLVM_DEBUG(
llvm::dbgs()
<< "AffineIfConversion: couldn't calculate affine condition\n";);
return failure();
}
auto affineIf = rewriter.create<affine::AffineIfOp>(
op.getLoc(), affineCondition.getIntegerSet(),
affineCondition.getAffineArgs(), !op.getElseRegion().empty());
rewriter.startRootUpdate(affineIf);
affineIf.getThenBlock()->getOperations().splice(
std::prev(affineIf.getThenBlock()->end()), ifOps, ifOps.begin(),
std::prev(ifOps.end()));
if (!op.getElseRegion().empty()) {
auto &otherOps = op.getElseRegion().front().getOperations();
affineIf.getElseBlock()->getOperations().splice(
std::prev(affineIf.getElseBlock()->end()), otherOps, otherOps.begin(),
std::prev(otherOps.end()));
}
rewriter.finalizeRootUpdate(affineIf);
rewriteMemoryOps(affineIf.getBody(), rewriter);
LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: if converted to:\n";
affineIf.dump(););
rewriter.replaceOp(op, affineIf.getOperation()->getResults());
return success();
}
};
/// Promote fir.do_loop and fir.if to affine.for and affine.if, in the cases
/// where such a promotion is possible.
class AffineDialectPromotion
: public fir::impl::AffineDialectPromotionBase<AffineDialectPromotion> {
public:
void runOnOperation() override {
auto *context = &getContext();
auto function = getOperation();
markAllAnalysesPreserved();
auto functionAnalysis = AffineFunctionAnalysis(function);
mlir::RewritePatternSet patterns(context);
patterns.insert<AffineIfConversion>(context, functionAnalysis);
patterns.insert<AffineLoopConversion>(context, functionAnalysis);
mlir::ConversionTarget target = *context;
target.addLegalDialect<mlir::affine::AffineDialect, FIROpsDialect,
mlir::scf::SCFDialect, mlir::arith::ArithDialect,
mlir::func::FuncDialect>();
target.addDynamicallyLegalOp<IfOp>([&functionAnalysis](fir::IfOp op) {
return !(functionAnalysis.getChildIfAnalysis(op).canPromoteToAffine());
});
target.addDynamicallyLegalOp<DoLoopOp>([&functionAnalysis](
fir::DoLoopOp op) {
return !(functionAnalysis.getChildLoopAnalysis(op).canPromoteToAffine());
});
LLVM_DEBUG(llvm::dbgs()
<< "AffineDialectPromotion: running promotion on: \n";
function.print(llvm::dbgs()););
// apply the patterns
if (mlir::failed(mlir::applyPartialConversion(function, target,
std::move(patterns)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"error in converting to affine dialect\n");
signalPassFailure();
}
}
};
} // namespace
/// Convert FIR loop constructs to the Affine dialect
std::unique_ptr<mlir::Pass> fir::createPromoteToAffinePass() {
return std::make_unique<AffineDialectPromotion>();
}
|