1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
|
//===-- ArrayValueCopy.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/Array.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Factory.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Debug.h"
namespace fir {
#define GEN_PASS_DEF_ARRAYVALUECOPY
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-array-value-copy"
using namespace fir;
using namespace mlir;
using OperationUseMapT = llvm::DenseMap<mlir::Operation *, mlir::Operation *>;
namespace {
/// Array copy analysis.
/// Perform an interference analysis between array values.
///
/// Lowering will generate a sequence of the following form.
/// ```mlir
/// %a_1 = fir.array_load %array_1(%shape) : ...
/// ...
/// %a_j = fir.array_load %array_j(%shape) : ...
/// ...
/// %a_n = fir.array_load %array_n(%shape) : ...
/// ...
/// %v_i = fir.array_fetch %a_i, ...
/// %a_j1 = fir.array_update %a_j, ...
/// ...
/// fir.array_merge_store %a_j, %a_jn to %array_j : ...
/// ```
///
/// The analysis is to determine if there are any conflicts. A conflict is when
/// one the following cases occurs.
///
/// 1. There is an `array_update` to an array value, a_j, such that a_j was
/// loaded from the same array memory reference (array_j) but with a different
/// shape as the other array values a_i, where i != j. [Possible overlapping
/// arrays.]
///
/// 2. There is either an array_fetch or array_update of a_j with a different
/// set of index values. [Possible loop-carried dependence.]
///
/// If none of the array values overlap in storage and the accesses are not
/// loop-carried, then the arrays are conflict-free and no copies are required.
class ArrayCopyAnalysisBase {
public:
using ConflictSetT = llvm::SmallPtrSet<mlir::Operation *, 16>;
using UseSetT = llvm::SmallPtrSet<mlir::OpOperand *, 8>;
using LoadMapSetsT = llvm::DenseMap<mlir::Operation *, UseSetT>;
using AmendAccessSetT = llvm::SmallPtrSet<mlir::Operation *, 4>;
ArrayCopyAnalysisBase(mlir::Operation *op, bool optimized)
: operation{op}, optimizeConflicts(optimized) {
construct(op);
}
virtual ~ArrayCopyAnalysisBase() = default;
mlir::Operation *getOperation() const { return operation; }
/// Return true iff the `array_merge_store` has potential conflicts.
bool hasPotentialConflict(mlir::Operation *op) const {
LLVM_DEBUG(llvm::dbgs()
<< "looking for a conflict on " << *op
<< " and the set has a total of " << conflicts.size() << '\n');
return conflicts.contains(op);
}
/// Return the use map.
/// The use map maps array access, amend, fetch and update operations back to
/// the array load that is the original source of the array value.
/// It maps an array_load to an array_merge_store, if and only if the loaded
/// array value has pending modifications to be merged.
const OperationUseMapT &getUseMap() const { return useMap; }
/// Return the set of array_access ops directly associated with array_amend
/// ops.
bool inAmendAccessSet(mlir::Operation *op) const {
return amendAccesses.count(op);
}
/// For ArrayLoad `load`, return the transitive set of all OpOperands.
UseSetT getLoadUseSet(mlir::Operation *load) const {
assert(loadMapSets.count(load) && "analysis missed an array load?");
return loadMapSets.lookup(load);
}
void arrayMentions(llvm::SmallVectorImpl<mlir::Operation *> &mentions,
ArrayLoadOp load);
private:
void construct(mlir::Operation *topLevelOp);
mlir::Operation *operation; // operation that analysis ran upon
ConflictSetT conflicts; // set of conflicts (loads and merge stores)
OperationUseMapT useMap;
LoadMapSetsT loadMapSets;
// Set of array_access ops associated with array_amend ops.
AmendAccessSetT amendAccesses;
bool optimizeConflicts;
};
// Optimized array copy analysis that takes into account Fortran
// variable attributes to prove that no conflict is possible
// and reduce the number of temporary arrays.
class ArrayCopyAnalysisOptimized : public ArrayCopyAnalysisBase {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(ArrayCopyAnalysisOptimized)
ArrayCopyAnalysisOptimized(mlir::Operation *op)
: ArrayCopyAnalysisBase(op, /*optimized=*/true) {}
};
// Unoptimized array copy analysis used at O0.
class ArrayCopyAnalysis : public ArrayCopyAnalysisBase {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(ArrayCopyAnalysis)
ArrayCopyAnalysis(mlir::Operation *op)
: ArrayCopyAnalysisBase(op, /*optimized=*/false) {}
};
} // namespace
namespace {
/// Helper class to collect all array operations that produced an array value.
class ReachCollector {
public:
ReachCollector(llvm::SmallVectorImpl<mlir::Operation *> &reach,
mlir::Region *loopRegion)
: reach{reach}, loopRegion{loopRegion} {}
void collectArrayMentionFrom(mlir::Operation *op, mlir::ValueRange range) {
if (range.empty()) {
collectArrayMentionFrom(op, mlir::Value{});
return;
}
for (mlir::Value v : range)
collectArrayMentionFrom(v);
}
// Collect all the array_access ops in `block`. This recursively looks into
// blocks in ops with regions.
// FIXME: This is temporarily relying on the array_amend appearing in a
// do_loop Region. This phase ordering assumption can be eliminated by using
// dominance information to find the array_access ops or by scanning the
// transitive closure of the amending array_access's users and the defs that
// reach them.
void collectAccesses(llvm::SmallVector<ArrayAccessOp> &result,
mlir::Block *block) {
for (auto &op : *block) {
if (auto access = mlir::dyn_cast<ArrayAccessOp>(op)) {
LLVM_DEBUG(llvm::dbgs() << "adding access: " << access << '\n');
result.push_back(access);
continue;
}
for (auto ®ion : op.getRegions())
for (auto &bb : region.getBlocks())
collectAccesses(result, &bb);
}
}
void collectArrayMentionFrom(mlir::Operation *op, mlir::Value val) {
// `val` is defined by an Op, process the defining Op.
// If `val` is defined by a region containing Op, we want to drill down
// and through that Op's region(s).
LLVM_DEBUG(llvm::dbgs() << "popset: " << *op << '\n');
auto popFn = [&](auto rop) {
assert(val && "op must have a result value");
auto resNum = val.cast<mlir::OpResult>().getResultNumber();
llvm::SmallVector<mlir::Value> results;
rop.resultToSourceOps(results, resNum);
for (auto u : results)
collectArrayMentionFrom(u);
};
if (auto rop = mlir::dyn_cast<DoLoopOp>(op)) {
popFn(rop);
return;
}
if (auto rop = mlir::dyn_cast<IterWhileOp>(op)) {
popFn(rop);
return;
}
if (auto rop = mlir::dyn_cast<fir::IfOp>(op)) {
popFn(rop);
return;
}
if (auto box = mlir::dyn_cast<EmboxOp>(op)) {
for (auto *user : box.getMemref().getUsers())
if (user != op)
collectArrayMentionFrom(user, user->getResults());
return;
}
if (auto mergeStore = mlir::dyn_cast<ArrayMergeStoreOp>(op)) {
if (opIsInsideLoops(mergeStore))
collectArrayMentionFrom(mergeStore.getSequence());
return;
}
if (mlir::isa<AllocaOp, AllocMemOp>(op)) {
// Look for any stores inside the loops, and collect an array operation
// that produced the value being stored to it.
for (auto *user : op->getUsers())
if (auto store = mlir::dyn_cast<fir::StoreOp>(user))
if (opIsInsideLoops(store))
collectArrayMentionFrom(store.getValue());
return;
}
// Scan the uses of amend's memref
if (auto amend = mlir::dyn_cast<ArrayAmendOp>(op)) {
reach.push_back(op);
llvm::SmallVector<ArrayAccessOp> accesses;
collectAccesses(accesses, op->getBlock());
for (auto access : accesses)
collectArrayMentionFrom(access.getResult());
}
// Otherwise, Op does not contain a region so just chase its operands.
if (mlir::isa<ArrayAccessOp, ArrayLoadOp, ArrayUpdateOp, ArrayModifyOp,
ArrayFetchOp>(op)) {
LLVM_DEBUG(llvm::dbgs() << "add " << *op << " to reachable set\n");
reach.push_back(op);
}
// Include all array_access ops using an array_load.
if (auto arrLd = mlir::dyn_cast<ArrayLoadOp>(op))
for (auto *user : arrLd.getResult().getUsers())
if (mlir::isa<ArrayAccessOp>(user)) {
LLVM_DEBUG(llvm::dbgs() << "add " << *user << " to reachable set\n");
reach.push_back(user);
}
// Array modify assignment is performed on the result. So the analysis must
// look at the what is done with the result.
if (mlir::isa<ArrayModifyOp>(op))
for (auto *user : op->getResult(0).getUsers())
followUsers(user);
if (mlir::isa<fir::CallOp>(op)) {
LLVM_DEBUG(llvm::dbgs() << "add " << *op << " to reachable set\n");
reach.push_back(op);
}
for (auto u : op->getOperands())
collectArrayMentionFrom(u);
}
void collectArrayMentionFrom(mlir::BlockArgument ba) {
auto *parent = ba.getOwner()->getParentOp();
// If inside an Op holding a region, the block argument corresponds to an
// argument passed to the containing Op.
auto popFn = [&](auto rop) {
collectArrayMentionFrom(rop.blockArgToSourceOp(ba.getArgNumber()));
};
if (auto rop = mlir::dyn_cast<DoLoopOp>(parent)) {
popFn(rop);
return;
}
if (auto rop = mlir::dyn_cast<IterWhileOp>(parent)) {
popFn(rop);
return;
}
// Otherwise, a block argument is provided via the pred blocks.
for (auto *pred : ba.getOwner()->getPredecessors()) {
auto u = pred->getTerminator()->getOperand(ba.getArgNumber());
collectArrayMentionFrom(u);
}
}
// Recursively trace operands to find all array operations relating to the
// values merged.
void collectArrayMentionFrom(mlir::Value val) {
if (!val || visited.contains(val))
return;
visited.insert(val);
// Process a block argument.
if (auto ba = val.dyn_cast<mlir::BlockArgument>()) {
collectArrayMentionFrom(ba);
return;
}
// Process an Op.
if (auto *op = val.getDefiningOp()) {
collectArrayMentionFrom(op, val);
return;
}
emitFatalError(val.getLoc(), "unhandled value");
}
/// Return all ops that produce the array value that is stored into the
/// `array_merge_store`.
static void reachingValues(llvm::SmallVectorImpl<mlir::Operation *> &reach,
mlir::Value seq) {
reach.clear();
mlir::Region *loopRegion = nullptr;
if (auto doLoop = mlir::dyn_cast_or_null<DoLoopOp>(seq.getDefiningOp()))
loopRegion = &doLoop->getRegion(0);
ReachCollector collector(reach, loopRegion);
collector.collectArrayMentionFrom(seq);
}
private:
/// Is \op inside the loop nest region ?
/// FIXME: replace this structural dependence with graph properties.
bool opIsInsideLoops(mlir::Operation *op) const {
auto *region = op->getParentRegion();
while (region) {
if (region == loopRegion)
return true;
region = region->getParentRegion();
}
return false;
}
/// Recursively trace the use of an operation results, calling
/// collectArrayMentionFrom on the direct and indirect user operands.
void followUsers(mlir::Operation *op) {
for (auto userOperand : op->getOperands())
collectArrayMentionFrom(userOperand);
// Go through potential converts/coordinate_op.
for (auto indirectUser : op->getUsers())
followUsers(indirectUser);
}
llvm::SmallVectorImpl<mlir::Operation *> &reach;
llvm::SmallPtrSet<mlir::Value, 16> visited;
/// Region of the loops nest that produced the array value.
mlir::Region *loopRegion;
};
} // namespace
/// Find all the array operations that access the array value that is loaded by
/// the array load operation, `load`.
void ArrayCopyAnalysisBase::arrayMentions(
llvm::SmallVectorImpl<mlir::Operation *> &mentions, ArrayLoadOp load) {
mentions.clear();
auto lmIter = loadMapSets.find(load);
if (lmIter != loadMapSets.end()) {
for (auto *opnd : lmIter->second) {
auto *owner = opnd->getOwner();
if (mlir::isa<ArrayAccessOp, ArrayAmendOp, ArrayFetchOp, ArrayUpdateOp,
ArrayModifyOp>(owner))
mentions.push_back(owner);
}
return;
}
UseSetT visited;
llvm::SmallVector<mlir::OpOperand *> queue; // uses of ArrayLoad[orig]
auto appendToQueue = [&](mlir::Value val) {
for (auto &use : val.getUses())
if (!visited.count(&use)) {
visited.insert(&use);
queue.push_back(&use);
}
};
// Build the set of uses of `original`.
// let USES = { uses of original fir.load }
appendToQueue(load);
// Process the worklist until done.
while (!queue.empty()) {
mlir::OpOperand *operand = queue.pop_back_val();
mlir::Operation *owner = operand->getOwner();
if (!owner)
continue;
auto structuredLoop = [&](auto ro) {
if (auto blockArg = ro.iterArgToBlockArg(operand->get())) {
int64_t arg = blockArg.getArgNumber();
mlir::Value output = ro.getResult(ro.getFinalValue() ? arg : arg - 1);
appendToQueue(output);
appendToQueue(blockArg);
}
};
// TODO: this need to be updated to use the control-flow interface.
auto branchOp = [&](mlir::Block *dest, OperandRange operands) {
if (operands.empty())
return;
// Check if this operand is within the range.
unsigned operandIndex = operand->getOperandNumber();
unsigned operandsStart = operands.getBeginOperandIndex();
if (operandIndex < operandsStart ||
operandIndex >= (operandsStart + operands.size()))
return;
// Index the successor.
unsigned argIndex = operandIndex - operandsStart;
appendToQueue(dest->getArgument(argIndex));
};
// Thread uses into structured loop bodies and return value uses.
if (auto ro = mlir::dyn_cast<DoLoopOp>(owner)) {
structuredLoop(ro);
} else if (auto ro = mlir::dyn_cast<IterWhileOp>(owner)) {
structuredLoop(ro);
} else if (auto rs = mlir::dyn_cast<ResultOp>(owner)) {
// Thread any uses of fir.if that return the marked array value.
mlir::Operation *parent = rs->getParentRegion()->getParentOp();
if (auto ifOp = mlir::dyn_cast<fir::IfOp>(parent))
appendToQueue(ifOp.getResult(operand->getOperandNumber()));
} else if (mlir::isa<ArrayFetchOp>(owner)) {
// Keep track of array value fetches.
LLVM_DEBUG(llvm::dbgs()
<< "add fetch {" << *owner << "} to array value set\n");
mentions.push_back(owner);
} else if (auto update = mlir::dyn_cast<ArrayUpdateOp>(owner)) {
// Keep track of array value updates and thread the return value uses.
LLVM_DEBUG(llvm::dbgs()
<< "add update {" << *owner << "} to array value set\n");
mentions.push_back(owner);
appendToQueue(update.getResult());
} else if (auto update = mlir::dyn_cast<ArrayModifyOp>(owner)) {
// Keep track of array value modification and thread the return value
// uses.
LLVM_DEBUG(llvm::dbgs()
<< "add modify {" << *owner << "} to array value set\n");
mentions.push_back(owner);
appendToQueue(update.getResult(1));
} else if (auto mention = mlir::dyn_cast<ArrayAccessOp>(owner)) {
mentions.push_back(owner);
} else if (auto amend = mlir::dyn_cast<ArrayAmendOp>(owner)) {
mentions.push_back(owner);
appendToQueue(amend.getResult());
} else if (auto br = mlir::dyn_cast<mlir::cf::BranchOp>(owner)) {
branchOp(br.getDest(), br.getDestOperands());
} else if (auto br = mlir::dyn_cast<mlir::cf::CondBranchOp>(owner)) {
branchOp(br.getTrueDest(), br.getTrueOperands());
branchOp(br.getFalseDest(), br.getFalseOperands());
} else if (mlir::isa<ArrayMergeStoreOp>(owner)) {
// do nothing
} else {
llvm::report_fatal_error("array value reached unexpected op");
}
}
loadMapSets.insert({load, visited});
}
static bool hasPointerType(mlir::Type type) {
if (auto boxTy = type.dyn_cast<BoxType>())
type = boxTy.getEleTy();
return type.isa<fir::PointerType>();
}
// This is a NF performance hack. It makes a simple test that the slices of the
// load, \p ld, and the merge store, \p st, are trivially mutually exclusive.
static bool mutuallyExclusiveSliceRange(ArrayLoadOp ld, ArrayMergeStoreOp st) {
// If the same array_load, then no further testing is warranted.
if (ld.getResult() == st.getOriginal())
return false;
auto getSliceOp = [](mlir::Value val) -> SliceOp {
if (!val)
return {};
auto sliceOp = mlir::dyn_cast_or_null<SliceOp>(val.getDefiningOp());
if (!sliceOp)
return {};
return sliceOp;
};
auto ldSlice = getSliceOp(ld.getSlice());
auto stSlice = getSliceOp(st.getSlice());
if (!ldSlice || !stSlice)
return false;
// Resign on subobject slices.
if (!ldSlice.getFields().empty() || !stSlice.getFields().empty() ||
!ldSlice.getSubstr().empty() || !stSlice.getSubstr().empty())
return false;
// Crudely test that the two slices do not overlap by looking for the
// following general condition. If the slices look like (i:j) and (j+1:k) then
// these ranges do not overlap. The addend must be a constant.
auto ldTriples = ldSlice.getTriples();
auto stTriples = stSlice.getTriples();
const auto size = ldTriples.size();
if (size != stTriples.size())
return false;
auto displacedByConstant = [](mlir::Value v1, mlir::Value v2) {
auto removeConvert = [](mlir::Value v) -> mlir::Operation * {
auto *op = v.getDefiningOp();
while (auto conv = mlir::dyn_cast_or_null<ConvertOp>(op))
op = conv.getValue().getDefiningOp();
return op;
};
auto isPositiveConstant = [](mlir::Value v) -> bool {
if (auto conOp =
mlir::dyn_cast<mlir::arith::ConstantOp>(v.getDefiningOp()))
if (auto iattr = conOp.getValue().dyn_cast<mlir::IntegerAttr>())
return iattr.getInt() > 0;
return false;
};
auto *op1 = removeConvert(v1);
auto *op2 = removeConvert(v2);
if (!op1 || !op2)
return false;
if (auto addi = mlir::dyn_cast<mlir::arith::AddIOp>(op2))
if ((addi.getLhs().getDefiningOp() == op1 &&
isPositiveConstant(addi.getRhs())) ||
(addi.getRhs().getDefiningOp() == op1 &&
isPositiveConstant(addi.getLhs())))
return true;
if (auto subi = mlir::dyn_cast<mlir::arith::SubIOp>(op1))
if (subi.getLhs().getDefiningOp() == op2 &&
isPositiveConstant(subi.getRhs()))
return true;
return false;
};
for (std::remove_const_t<decltype(size)> i = 0; i < size; i += 3) {
// If both are loop invariant, skip to the next triple.
if (mlir::isa_and_nonnull<fir::UndefOp>(ldTriples[i + 1].getDefiningOp()) &&
mlir::isa_and_nonnull<fir::UndefOp>(stTriples[i + 1].getDefiningOp())) {
// Unless either is a vector index, then be conservative.
if (mlir::isa_and_nonnull<fir::UndefOp>(ldTriples[i].getDefiningOp()) ||
mlir::isa_and_nonnull<fir::UndefOp>(stTriples[i].getDefiningOp()))
return false;
continue;
}
// If identical, skip to the next triple.
if (ldTriples[i] == stTriples[i] && ldTriples[i + 1] == stTriples[i + 1] &&
ldTriples[i + 2] == stTriples[i + 2])
continue;
// If ubound and lbound are the same with a constant offset, skip to the
// next triple.
if (displacedByConstant(ldTriples[i + 1], stTriples[i]) ||
displacedByConstant(stTriples[i + 1], ldTriples[i]))
continue;
return false;
}
LLVM_DEBUG(llvm::dbgs() << "detected non-overlapping slice ranges on " << ld
<< " and " << st << ", which is not a conflict\n");
return true;
}
/// Is there a conflict between the array value that was updated and to be
/// stored to `st` and the set of arrays loaded (`reach`) and used to compute
/// the updated value?
/// If `optimize` is true, use the variable attributes to prove that
/// there is no conflict.
static bool conflictOnLoad(llvm::ArrayRef<mlir::Operation *> reach,
ArrayMergeStoreOp st, bool optimize) {
mlir::Value load;
mlir::Value addr = st.getMemref();
const bool storeHasPointerType = hasPointerType(addr.getType());
for (auto *op : reach)
if (auto ld = mlir::dyn_cast<ArrayLoadOp>(op)) {
mlir::Type ldTy = ld.getMemref().getType();
if (ld.getMemref() == addr) {
if (mutuallyExclusiveSliceRange(ld, st))
continue;
if (ld.getResult() != st.getOriginal())
return true;
if (load) {
// TODO: extend this to allow checking if the first `load` and this
// `ld` are mutually exclusive accesses but not identical.
return true;
}
load = ld;
} else if (storeHasPointerType) {
if (optimize && !hasPointerType(ldTy) &&
!valueMayHaveFirAttributes(
ld.getMemref(),
{getTargetAttrName(), GlobalOp::getTargetAttrNameStr()}))
continue;
return true;
} else if (hasPointerType(ldTy)) {
if (optimize && !storeHasPointerType &&
!valueMayHaveFirAttributes(
addr, {getTargetAttrName(), GlobalOp::getTargetAttrNameStr()}))
continue;
return true;
}
// TODO: Check if types can also allow ruling out some cases. For now,
// the fact that equivalences is using pointer attribute to enforce
// aliasing is preventing any attempt to do so, and in general, it may
// be wrong to use this if any of the types is a complex or a derived
// for which it is possible to create a pointer to a part with a
// different type than the whole, although this deserve some more
// investigation because existing compiler behavior seem to diverge
// here.
}
return false;
}
/// Is there an access vector conflict on the array being merged into? If the
/// access vectors diverge, then assume that there are potentially overlapping
/// loop-carried references.
static bool conflictOnMerge(llvm::ArrayRef<mlir::Operation *> mentions) {
if (mentions.size() < 2)
return false;
llvm::SmallVector<mlir::Value> indices;
LLVM_DEBUG(llvm::dbgs() << "check merge conflict on with " << mentions.size()
<< " mentions on the list\n");
bool valSeen = false;
bool refSeen = false;
for (auto *op : mentions) {
llvm::SmallVector<mlir::Value> compareVector;
if (auto u = mlir::dyn_cast<ArrayUpdateOp>(op)) {
valSeen = true;
if (indices.empty()) {
indices = u.getIndices();
continue;
}
compareVector = u.getIndices();
} else if (auto f = mlir::dyn_cast<ArrayModifyOp>(op)) {
valSeen = true;
if (indices.empty()) {
indices = f.getIndices();
continue;
}
compareVector = f.getIndices();
} else if (auto f = mlir::dyn_cast<ArrayFetchOp>(op)) {
valSeen = true;
if (indices.empty()) {
indices = f.getIndices();
continue;
}
compareVector = f.getIndices();
} else if (auto f = mlir::dyn_cast<ArrayAccessOp>(op)) {
refSeen = true;
if (indices.empty()) {
indices = f.getIndices();
continue;
}
compareVector = f.getIndices();
} else if (mlir::isa<ArrayAmendOp>(op)) {
refSeen = true;
continue;
} else {
mlir::emitError(op->getLoc(), "unexpected operation in analysis");
}
if (compareVector.size() != indices.size() ||
llvm::any_of(llvm::zip(compareVector, indices), [&](auto pair) {
return std::get<0>(pair) != std::get<1>(pair);
}))
return true;
LLVM_DEBUG(llvm::dbgs() << "vectors compare equal\n");
}
return valSeen && refSeen;
}
/// With element-by-reference semantics, an amended array with more than once
/// access to the same loaded array are conservatively considered a conflict.
/// Note: the array copy can still be eliminated in subsequent optimizations.
static bool conflictOnReference(llvm::ArrayRef<mlir::Operation *> mentions) {
LLVM_DEBUG(llvm::dbgs() << "checking reference semantics " << mentions.size()
<< '\n');
if (mentions.size() < 3)
return false;
unsigned amendCount = 0;
unsigned accessCount = 0;
for (auto *op : mentions) {
if (mlir::isa<ArrayAmendOp>(op) && ++amendCount > 1) {
LLVM_DEBUG(llvm::dbgs() << "conflict: multiple amends of array value\n");
return true;
}
if (mlir::isa<ArrayAccessOp>(op) && ++accessCount > 1) {
LLVM_DEBUG(llvm::dbgs()
<< "conflict: multiple accesses of array value\n");
return true;
}
if (mlir::isa<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>(op)) {
LLVM_DEBUG(llvm::dbgs()
<< "conflict: array value has both uses by-value and uses "
"by-reference. conservative assumption.\n");
return true;
}
}
return false;
}
static mlir::Operation *
amendingAccess(llvm::ArrayRef<mlir::Operation *> mentions) {
for (auto *op : mentions)
if (auto amend = mlir::dyn_cast<ArrayAmendOp>(op))
return amend.getMemref().getDefiningOp();
return {};
}
// Are any conflicts present? The conflicts detected here are described above.
static bool conflictDetected(llvm::ArrayRef<mlir::Operation *> reach,
llvm::ArrayRef<mlir::Operation *> mentions,
ArrayMergeStoreOp st, bool optimize) {
return conflictOnLoad(reach, st, optimize) || conflictOnMerge(mentions);
}
// Assume that any call to a function that uses host-associations will be
// modifying the output array.
static bool
conservativeCallConflict(llvm::ArrayRef<mlir::Operation *> reaches) {
return llvm::any_of(reaches, [](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op))
if (auto callee =
call.getCallableForCallee().dyn_cast<mlir::SymbolRefAttr>()) {
auto module = op->getParentOfType<mlir::ModuleOp>();
return isInternalPorcedure(
module.lookupSymbol<mlir::func::FuncOp>(callee));
}
return false;
});
}
/// Constructor of the array copy analysis.
/// This performs the analysis and saves the intermediate results.
void ArrayCopyAnalysisBase::construct(mlir::Operation *topLevelOp) {
topLevelOp->walk([&](Operation *op) {
if (auto st = mlir::dyn_cast<fir::ArrayMergeStoreOp>(op)) {
llvm::SmallVector<mlir::Operation *> values;
ReachCollector::reachingValues(values, st.getSequence());
bool callConflict = conservativeCallConflict(values);
llvm::SmallVector<mlir::Operation *> mentions;
arrayMentions(mentions,
mlir::cast<ArrayLoadOp>(st.getOriginal().getDefiningOp()));
bool conflict = conflictDetected(values, mentions, st, optimizeConflicts);
bool refConflict = conflictOnReference(mentions);
if (callConflict || conflict || refConflict) {
LLVM_DEBUG(llvm::dbgs()
<< "CONFLICT: copies required for " << st << '\n'
<< " adding conflicts on: " << *op << " and "
<< st.getOriginal() << '\n');
conflicts.insert(op);
conflicts.insert(st.getOriginal().getDefiningOp());
if (auto *access = amendingAccess(mentions))
amendAccesses.insert(access);
}
auto *ld = st.getOriginal().getDefiningOp();
LLVM_DEBUG(llvm::dbgs()
<< "map: adding {" << *ld << " -> " << st << "}\n");
useMap.insert({ld, op});
} else if (auto load = mlir::dyn_cast<ArrayLoadOp>(op)) {
llvm::SmallVector<mlir::Operation *> mentions;
arrayMentions(mentions, load);
LLVM_DEBUG(llvm::dbgs() << "process load: " << load
<< ", mentions: " << mentions.size() << '\n');
for (auto *acc : mentions) {
LLVM_DEBUG(llvm::dbgs() << " mention: " << *acc << '\n');
if (mlir::isa<ArrayAccessOp, ArrayAmendOp, ArrayFetchOp, ArrayUpdateOp,
ArrayModifyOp>(acc)) {
if (useMap.count(acc)) {
mlir::emitError(
load.getLoc(),
"The parallel semantics of multiple array_merge_stores per "
"array_load are not supported.");
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "map: adding {" << *acc << "} -> {" << load << "}\n");
useMap.insert({acc, op});
}
}
}
});
}
//===----------------------------------------------------------------------===//
// Conversions for converting out of array value form.
//===----------------------------------------------------------------------===//
namespace {
class ArrayLoadConversion : public mlir::OpRewritePattern<ArrayLoadOp> {
public:
using OpRewritePattern::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(ArrayLoadOp load,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "replace load " << load << " with undef.\n");
rewriter.replaceOpWithNewOp<UndefOp>(load, load.getType());
return mlir::success();
}
};
class ArrayMergeStoreConversion
: public mlir::OpRewritePattern<ArrayMergeStoreOp> {
public:
using OpRewritePattern::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(ArrayMergeStoreOp store,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "marking store " << store << " as dead.\n");
rewriter.eraseOp(store);
return mlir::success();
}
};
} // namespace
static mlir::Type getEleTy(mlir::Type ty) {
auto eleTy = unwrapSequenceType(unwrapPassByRefType(ty));
// FIXME: keep ptr/heap/ref information.
return ReferenceType::get(eleTy);
}
// Extract extents from the ShapeOp/ShapeShiftOp into the result vector.
static bool getAdjustedExtents(mlir::Location loc,
mlir::PatternRewriter &rewriter,
ArrayLoadOp arrLoad,
llvm::SmallVectorImpl<mlir::Value> &result,
mlir::Value shape) {
bool copyUsingSlice = false;
auto *shapeOp = shape.getDefiningOp();
if (auto s = mlir::dyn_cast_or_null<ShapeOp>(shapeOp)) {
auto e = s.getExtents();
result.insert(result.end(), e.begin(), e.end());
} else if (auto s = mlir::dyn_cast_or_null<ShapeShiftOp>(shapeOp)) {
auto e = s.getExtents();
result.insert(result.end(), e.begin(), e.end());
} else {
emitFatalError(loc, "not a fir.shape/fir.shape_shift op");
}
auto idxTy = rewriter.getIndexType();
if (factory::isAssumedSize(result)) {
// Use slice information to compute the extent of the column.
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
mlir::Value size = one;
if (mlir::Value sliceArg = arrLoad.getSlice()) {
if (auto sliceOp =
mlir::dyn_cast_or_null<SliceOp>(sliceArg.getDefiningOp())) {
auto triples = sliceOp.getTriples();
const std::size_t tripleSize = triples.size();
auto module = arrLoad->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
size = builder.genExtentFromTriplet(loc, triples[tripleSize - 3],
triples[tripleSize - 2],
triples[tripleSize - 1], idxTy);
copyUsingSlice = true;
}
}
result[result.size() - 1] = size;
}
return copyUsingSlice;
}
/// Place the extents of the array load, \p arrLoad, into \p result and
/// return a ShapeOp or ShapeShiftOp with the same extents. If \p arrLoad is
/// loading a `!fir.box`, code will be generated to read the extents from the
/// boxed value, and the retunred shape Op will be built with the extents read
/// from the box. Otherwise, the extents will be extracted from the ShapeOp (or
/// ShapeShiftOp) argument of \p arrLoad. \p copyUsingSlice will be set to true
/// if slicing of the output array is to be done in the copy-in/copy-out rather
/// than in the elemental computation step.
static mlir::Value getOrReadExtentsAndShapeOp(
mlir::Location loc, mlir::PatternRewriter &rewriter, ArrayLoadOp arrLoad,
llvm::SmallVectorImpl<mlir::Value> &result, bool ©UsingSlice) {
assert(result.empty());
if (arrLoad->hasAttr(fir::getOptionalAttrName()))
fir::emitFatalError(
loc, "shapes from array load of OPTIONAL arrays must not be used");
if (auto boxTy = arrLoad.getMemref().getType().dyn_cast<BoxType>()) {
auto rank =
dyn_cast_ptrOrBoxEleTy(boxTy).cast<SequenceType>().getDimension();
auto idxTy = rewriter.getIndexType();
for (decltype(rank) dim = 0; dim < rank; ++dim) {
auto dimVal = rewriter.create<mlir::arith::ConstantIndexOp>(loc, dim);
auto dimInfo = rewriter.create<BoxDimsOp>(loc, idxTy, idxTy, idxTy,
arrLoad.getMemref(), dimVal);
result.emplace_back(dimInfo.getResult(1));
}
if (!arrLoad.getShape()) {
auto shapeType = ShapeType::get(rewriter.getContext(), rank);
return rewriter.create<ShapeOp>(loc, shapeType, result);
}
auto shiftOp = arrLoad.getShape().getDefiningOp<ShiftOp>();
auto shapeShiftType = ShapeShiftType::get(rewriter.getContext(), rank);
llvm::SmallVector<mlir::Value> shapeShiftOperands;
for (auto [lb, extent] : llvm::zip(shiftOp.getOrigins(), result)) {
shapeShiftOperands.push_back(lb);
shapeShiftOperands.push_back(extent);
}
return rewriter.create<ShapeShiftOp>(loc, shapeShiftType,
shapeShiftOperands);
}
copyUsingSlice =
getAdjustedExtents(loc, rewriter, arrLoad, result, arrLoad.getShape());
return arrLoad.getShape();
}
static mlir::Type toRefType(mlir::Type ty) {
if (fir::isa_ref_type(ty))
return ty;
return fir::ReferenceType::get(ty);
}
static llvm::SmallVector<mlir::Value>
getTypeParamsIfRawData(mlir::Location loc, FirOpBuilder &builder,
ArrayLoadOp arrLoad, mlir::Type ty) {
if (ty.isa<BoxType>())
return {};
return fir::factory::getTypeParams(loc, builder, arrLoad);
}
static mlir::Value genCoorOp(mlir::PatternRewriter &rewriter,
mlir::Location loc, mlir::Type eleTy,
mlir::Type resTy, mlir::Value alloc,
mlir::Value shape, mlir::Value slice,
mlir::ValueRange indices, ArrayLoadOp load,
bool skipOrig = false) {
llvm::SmallVector<mlir::Value> originated;
if (skipOrig)
originated.assign(indices.begin(), indices.end());
else
originated = factory::originateIndices(loc, rewriter, alloc.getType(),
shape, indices);
auto seqTy = dyn_cast_ptrOrBoxEleTy(alloc.getType());
assert(seqTy && seqTy.isa<SequenceType>());
const auto dimension = seqTy.cast<SequenceType>().getDimension();
auto module = load->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
auto typeparams = getTypeParamsIfRawData(loc, builder, load, alloc.getType());
mlir::Value result = rewriter.create<ArrayCoorOp>(
loc, eleTy, alloc, shape, slice,
llvm::ArrayRef<mlir::Value>{originated}.take_front(dimension),
typeparams);
if (dimension < originated.size())
result = rewriter.create<fir::CoordinateOp>(
loc, resTy, result,
llvm::ArrayRef<mlir::Value>{originated}.drop_front(dimension));
return result;
}
static mlir::Value getCharacterLen(mlir::Location loc, FirOpBuilder &builder,
ArrayLoadOp load, CharacterType charTy) {
auto charLenTy = builder.getCharacterLengthType();
if (charTy.hasDynamicLen()) {
if (load.getMemref().getType().isa<BoxType>()) {
// The loaded array is an emboxed value. Get the CHARACTER length from
// the box value.
auto eleSzInBytes =
builder.create<BoxEleSizeOp>(loc, charLenTy, load.getMemref());
auto kindSize =
builder.getKindMap().getCharacterBitsize(charTy.getFKind());
auto kindByteSize =
builder.createIntegerConstant(loc, charLenTy, kindSize / 8);
return builder.create<mlir::arith::DivSIOp>(loc, eleSzInBytes,
kindByteSize);
}
// The loaded array is a (set of) unboxed values. If the CHARACTER's
// length is not a constant, it must be provided as a type parameter to
// the array_load.
auto typeparams = load.getTypeparams();
assert(typeparams.size() > 0 && "expected type parameters on array_load");
return typeparams.back();
}
// The typical case: the length of the CHARACTER is a compile-time
// constant that is encoded in the type information.
return builder.createIntegerConstant(loc, charLenTy, charTy.getLen());
}
/// Generate a shallow array copy. This is used for both copy-in and copy-out.
template <bool CopyIn>
void genArrayCopy(mlir::Location loc, mlir::PatternRewriter &rewriter,
mlir::Value dst, mlir::Value src, mlir::Value shapeOp,
mlir::Value sliceOp, ArrayLoadOp arrLoad) {
auto insPt = rewriter.saveInsertionPoint();
llvm::SmallVector<mlir::Value> indices;
llvm::SmallVector<mlir::Value> extents;
bool copyUsingSlice =
getAdjustedExtents(loc, rewriter, arrLoad, extents, shapeOp);
auto idxTy = rewriter.getIndexType();
// Build loop nest from column to row.
for (auto sh : llvm::reverse(extents)) {
auto ubi = rewriter.create<ConvertOp>(loc, idxTy, sh);
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
auto ub = rewriter.create<mlir::arith::SubIOp>(loc, idxTy, ubi, one);
auto loop = rewriter.create<DoLoopOp>(loc, zero, ub, one);
rewriter.setInsertionPointToStart(loop.getBody());
indices.push_back(loop.getInductionVar());
}
// Reverse the indices so they are in column-major order.
std::reverse(indices.begin(), indices.end());
auto module = arrLoad->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
auto fromAddr = rewriter.create<ArrayCoorOp>(
loc, getEleTy(src.getType()), src, shapeOp,
CopyIn && copyUsingSlice ? sliceOp : mlir::Value{},
factory::originateIndices(loc, rewriter, src.getType(), shapeOp, indices),
getTypeParamsIfRawData(loc, builder, arrLoad, src.getType()));
auto toAddr = rewriter.create<ArrayCoorOp>(
loc, getEleTy(dst.getType()), dst, shapeOp,
!CopyIn && copyUsingSlice ? sliceOp : mlir::Value{},
factory::originateIndices(loc, rewriter, dst.getType(), shapeOp, indices),
getTypeParamsIfRawData(loc, builder, arrLoad, dst.getType()));
auto eleTy = unwrapSequenceType(unwrapPassByRefType(dst.getType()));
// Copy from (to) object to (from) temp copy of same object.
if (auto charTy = eleTy.dyn_cast<CharacterType>()) {
auto len = getCharacterLen(loc, builder, arrLoad, charTy);
CharBoxValue toChar(toAddr, len);
CharBoxValue fromChar(fromAddr, len);
factory::genScalarAssignment(builder, loc, toChar, fromChar);
} else {
if (hasDynamicSize(eleTy))
TODO(loc, "copy element of dynamic size");
factory::genScalarAssignment(builder, loc, toAddr, fromAddr);
}
rewriter.restoreInsertionPoint(insPt);
}
/// The array load may be either a boxed or unboxed value. If the value is
/// boxed, we read the type parameters from the boxed value.
static llvm::SmallVector<mlir::Value>
genArrayLoadTypeParameters(mlir::Location loc, mlir::PatternRewriter &rewriter,
ArrayLoadOp load) {
if (load.getTypeparams().empty()) {
auto eleTy =
unwrapSequenceType(unwrapPassByRefType(load.getMemref().getType()));
if (hasDynamicSize(eleTy)) {
if (auto charTy = eleTy.dyn_cast<CharacterType>()) {
assert(load.getMemref().getType().isa<BoxType>());
auto module = load->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
return {getCharacterLen(loc, builder, load, charTy)};
}
TODO(loc, "unhandled dynamic type parameters");
}
return {};
}
return load.getTypeparams();
}
static llvm::SmallVector<mlir::Value>
findNonconstantExtents(mlir::Type memrefTy,
llvm::ArrayRef<mlir::Value> extents) {
llvm::SmallVector<mlir::Value> nce;
auto arrTy = unwrapPassByRefType(memrefTy);
auto seqTy = arrTy.cast<SequenceType>();
for (auto [s, x] : llvm::zip(seqTy.getShape(), extents))
if (s == SequenceType::getUnknownExtent())
nce.emplace_back(x);
if (extents.size() > seqTy.getShape().size())
for (auto x : extents.drop_front(seqTy.getShape().size()))
nce.emplace_back(x);
return nce;
}
/// Allocate temporary storage for an ArrayLoadOp \load and initialize any
/// allocatable direct components of the array elements with an unallocated
/// status. Returns the temporary address as well as a callback to generate the
/// temporary clean-up once it has been used. The clean-up will take care of
/// deallocating all the element allocatable components that may have been
/// allocated while using the temporary.
static std::pair<mlir::Value,
std::function<void(mlir::PatternRewriter &rewriter)>>
allocateArrayTemp(mlir::Location loc, mlir::PatternRewriter &rewriter,
ArrayLoadOp load, llvm::ArrayRef<mlir::Value> extents,
mlir::Value shape) {
mlir::Type baseType = load.getMemref().getType();
llvm::SmallVector<mlir::Value> nonconstantExtents =
findNonconstantExtents(baseType, extents);
llvm::SmallVector<mlir::Value> typeParams =
genArrayLoadTypeParameters(loc, rewriter, load);
mlir::Value allocmem = rewriter.create<AllocMemOp>(
loc, dyn_cast_ptrOrBoxEleTy(baseType), typeParams, nonconstantExtents);
mlir::Type eleType =
fir::unwrapSequenceType(fir::unwrapPassByRefType(baseType));
if (fir::isRecordWithAllocatableMember(eleType)) {
// The allocatable component descriptors need to be set to a clean
// deallocated status before anything is done with them.
mlir::Value box = rewriter.create<fir::EmboxOp>(
loc, fir::BoxType::get(allocmem.getType()), allocmem, shape,
/*slice=*/mlir::Value{}, typeParams);
auto module = load->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
runtime::genDerivedTypeInitialize(builder, loc, box);
// Any allocatable component that may have been allocated must be
// deallocated during the clean-up.
auto cleanup = [=](mlir::PatternRewriter &r) {
FirOpBuilder builder(r, module);
runtime::genDerivedTypeDestroy(builder, loc, box);
r.create<FreeMemOp>(loc, allocmem);
};
return {allocmem, cleanup};
}
auto cleanup = [=](mlir::PatternRewriter &r) {
r.create<FreeMemOp>(loc, allocmem);
};
return {allocmem, cleanup};
}
namespace {
/// Conversion of fir.array_update and fir.array_modify Ops.
/// If there is a conflict for the update, then we need to perform a
/// copy-in/copy-out to preserve the original values of the array. If there is
/// no conflict, then it is save to eschew making any copies.
template <typename ArrayOp>
class ArrayUpdateConversionBase : public mlir::OpRewritePattern<ArrayOp> {
public:
// TODO: Implement copy/swap semantics?
explicit ArrayUpdateConversionBase(mlir::MLIRContext *ctx,
const ArrayCopyAnalysisBase &a,
const OperationUseMapT &m)
: mlir::OpRewritePattern<ArrayOp>{ctx}, analysis{a}, useMap{m} {}
/// The array_access, \p access, is to be to a cloned copy due to a potential
/// conflict. Uses copy-in/copy-out semantics and not copy/swap.
mlir::Value referenceToClone(mlir::Location loc,
mlir::PatternRewriter &rewriter,
ArrayOp access) const {
LLVM_DEBUG(llvm::dbgs()
<< "generating copy-in/copy-out loops for " << access << '\n');
auto *op = access.getOperation();
auto *loadOp = useMap.lookup(op);
auto load = mlir::cast<ArrayLoadOp>(loadOp);
auto eleTy = access.getType();
rewriter.setInsertionPoint(loadOp);
// Copy in.
llvm::SmallVector<mlir::Value> extents;
bool copyUsingSlice = false;
auto shapeOp = getOrReadExtentsAndShapeOp(loc, rewriter, load, extents,
copyUsingSlice);
auto [allocmem, genTempCleanUp] =
allocateArrayTemp(loc, rewriter, load, extents, shapeOp);
genArrayCopy</*copyIn=*/true>(load.getLoc(), rewriter, allocmem,
load.getMemref(), shapeOp, load.getSlice(),
load);
// Generate the reference for the access.
rewriter.setInsertionPoint(op);
auto coor = genCoorOp(
rewriter, loc, getEleTy(load.getType()), eleTy, allocmem, shapeOp,
copyUsingSlice ? mlir::Value{} : load.getSlice(), access.getIndices(),
load, access->hasAttr(factory::attrFortranArrayOffsets()));
// Copy out.
auto *storeOp = useMap.lookup(loadOp);
auto store = mlir::cast<ArrayMergeStoreOp>(storeOp);
rewriter.setInsertionPoint(storeOp);
// Copy out.
genArrayCopy</*copyIn=*/false>(store.getLoc(), rewriter, store.getMemref(),
allocmem, shapeOp, store.getSlice(), load);
genTempCleanUp(rewriter);
return coor;
}
/// Copy the RHS element into the LHS and insert copy-in/copy-out between a
/// temp and the LHS if the analysis found potential overlaps between the RHS
/// and LHS arrays. The element copy generator must be provided in \p
/// assignElement. \p update must be the ArrayUpdateOp or the ArrayModifyOp.
/// Returns the address of the LHS element inside the loop and the LHS
/// ArrayLoad result.
std::pair<mlir::Value, mlir::Value>
materializeAssignment(mlir::Location loc, mlir::PatternRewriter &rewriter,
ArrayOp update,
const std::function<void(mlir::Value)> &assignElement,
mlir::Type lhsEltRefType) const {
auto *op = update.getOperation();
auto *loadOp = useMap.lookup(op);
auto load = mlir::cast<ArrayLoadOp>(loadOp);
LLVM_DEBUG(llvm::outs() << "does " << load << " have a conflict?\n");
if (analysis.hasPotentialConflict(loadOp)) {
// If there is a conflict between the arrays, then we copy the lhs array
// to a temporary, update the temporary, and copy the temporary back to
// the lhs array. This yields Fortran's copy-in copy-out array semantics.
LLVM_DEBUG(llvm::outs() << "Yes, conflict was found\n");
rewriter.setInsertionPoint(loadOp);
// Copy in.
llvm::SmallVector<mlir::Value> extents;
bool copyUsingSlice = false;
auto shapeOp = getOrReadExtentsAndShapeOp(loc, rewriter, load, extents,
copyUsingSlice);
auto [allocmem, genTempCleanUp] =
allocateArrayTemp(loc, rewriter, load, extents, shapeOp);
genArrayCopy</*copyIn=*/true>(load.getLoc(), rewriter, allocmem,
load.getMemref(), shapeOp, load.getSlice(),
load);
rewriter.setInsertionPoint(op);
auto coor = genCoorOp(
rewriter, loc, getEleTy(load.getType()), lhsEltRefType, allocmem,
shapeOp, copyUsingSlice ? mlir::Value{} : load.getSlice(),
update.getIndices(), load,
update->hasAttr(factory::attrFortranArrayOffsets()));
assignElement(coor);
auto *storeOp = useMap.lookup(loadOp);
auto store = mlir::cast<ArrayMergeStoreOp>(storeOp);
rewriter.setInsertionPoint(storeOp);
// Copy out.
genArrayCopy</*copyIn=*/false>(store.getLoc(), rewriter,
store.getMemref(), allocmem, shapeOp,
store.getSlice(), load);
genTempCleanUp(rewriter);
return {coor, load.getResult()};
}
// Otherwise, when there is no conflict (a possible loop-carried
// dependence), the lhs array can be updated in place.
LLVM_DEBUG(llvm::outs() << "No, conflict wasn't found\n");
rewriter.setInsertionPoint(op);
auto coorTy = getEleTy(load.getType());
auto coor =
genCoorOp(rewriter, loc, coorTy, lhsEltRefType, load.getMemref(),
load.getShape(), load.getSlice(), update.getIndices(), load,
update->hasAttr(factory::attrFortranArrayOffsets()));
assignElement(coor);
return {coor, load.getResult()};
}
protected:
const ArrayCopyAnalysisBase &analysis;
const OperationUseMapT &useMap;
};
class ArrayUpdateConversion : public ArrayUpdateConversionBase<ArrayUpdateOp> {
public:
explicit ArrayUpdateConversion(mlir::MLIRContext *ctx,
const ArrayCopyAnalysisBase &a,
const OperationUseMapT &m)
: ArrayUpdateConversionBase{ctx, a, m} {}
mlir::LogicalResult
matchAndRewrite(ArrayUpdateOp update,
mlir::PatternRewriter &rewriter) const override {
auto loc = update.getLoc();
auto assignElement = [&](mlir::Value coor) {
auto input = update.getMerge();
if (auto inEleTy = dyn_cast_ptrEleTy(input.getType())) {
emitFatalError(loc, "array_update on references not supported");
} else {
rewriter.create<fir::StoreOp>(loc, input, coor);
}
};
auto lhsEltRefType = toRefType(update.getMerge().getType());
auto [_, lhsLoadResult] = materializeAssignment(
loc, rewriter, update, assignElement, lhsEltRefType);
update.replaceAllUsesWith(lhsLoadResult);
rewriter.replaceOp(update, lhsLoadResult);
return mlir::success();
}
};
class ArrayModifyConversion : public ArrayUpdateConversionBase<ArrayModifyOp> {
public:
explicit ArrayModifyConversion(mlir::MLIRContext *ctx,
const ArrayCopyAnalysisBase &a,
const OperationUseMapT &m)
: ArrayUpdateConversionBase{ctx, a, m} {}
mlir::LogicalResult
matchAndRewrite(ArrayModifyOp modify,
mlir::PatternRewriter &rewriter) const override {
auto loc = modify.getLoc();
auto assignElement = [](mlir::Value) {
// Assignment already materialized by lowering using lhs element address.
};
auto lhsEltRefType = modify.getResult(0).getType();
auto [lhsEltCoor, lhsLoadResult] = materializeAssignment(
loc, rewriter, modify, assignElement, lhsEltRefType);
modify.replaceAllUsesWith(mlir::ValueRange{lhsEltCoor, lhsLoadResult});
rewriter.replaceOp(modify, mlir::ValueRange{lhsEltCoor, lhsLoadResult});
return mlir::success();
}
};
class ArrayFetchConversion : public mlir::OpRewritePattern<ArrayFetchOp> {
public:
explicit ArrayFetchConversion(mlir::MLIRContext *ctx,
const OperationUseMapT &m)
: OpRewritePattern{ctx}, useMap{m} {}
mlir::LogicalResult
matchAndRewrite(ArrayFetchOp fetch,
mlir::PatternRewriter &rewriter) const override {
auto *op = fetch.getOperation();
rewriter.setInsertionPoint(op);
auto load = mlir::cast<ArrayLoadOp>(useMap.lookup(op));
auto loc = fetch.getLoc();
auto coor = genCoorOp(
rewriter, loc, getEleTy(load.getType()), toRefType(fetch.getType()),
load.getMemref(), load.getShape(), load.getSlice(), fetch.getIndices(),
load, fetch->hasAttr(factory::attrFortranArrayOffsets()));
if (isa_ref_type(fetch.getType()))
rewriter.replaceOp(fetch, coor);
else
rewriter.replaceOpWithNewOp<fir::LoadOp>(fetch, coor);
return mlir::success();
}
private:
const OperationUseMapT &useMap;
};
/// As array_access op is like an array_fetch op, except that it does not imply
/// a load op. (It operates in the reference domain.)
class ArrayAccessConversion : public ArrayUpdateConversionBase<ArrayAccessOp> {
public:
explicit ArrayAccessConversion(mlir::MLIRContext *ctx,
const ArrayCopyAnalysisBase &a,
const OperationUseMapT &m)
: ArrayUpdateConversionBase{ctx, a, m} {}
mlir::LogicalResult
matchAndRewrite(ArrayAccessOp access,
mlir::PatternRewriter &rewriter) const override {
auto *op = access.getOperation();
auto loc = access.getLoc();
if (analysis.inAmendAccessSet(op)) {
// This array_access is associated with an array_amend and there is a
// conflict. Make a copy to store into.
auto result = referenceToClone(loc, rewriter, access);
access.replaceAllUsesWith(result);
rewriter.replaceOp(access, result);
return mlir::success();
}
rewriter.setInsertionPoint(op);
auto load = mlir::cast<ArrayLoadOp>(useMap.lookup(op));
auto coor = genCoorOp(
rewriter, loc, getEleTy(load.getType()), toRefType(access.getType()),
load.getMemref(), load.getShape(), load.getSlice(), access.getIndices(),
load, access->hasAttr(factory::attrFortranArrayOffsets()));
rewriter.replaceOp(access, coor);
return mlir::success();
}
};
/// An array_amend op is a marker to record which array access is being used to
/// update an array value. After this pass runs, an array_amend has no
/// semantics. We rewrite these to undefined values here to remove them while
/// preserving SSA form.
class ArrayAmendConversion : public mlir::OpRewritePattern<ArrayAmendOp> {
public:
explicit ArrayAmendConversion(mlir::MLIRContext *ctx)
: OpRewritePattern{ctx} {}
mlir::LogicalResult
matchAndRewrite(ArrayAmendOp amend,
mlir::PatternRewriter &rewriter) const override {
auto *op = amend.getOperation();
rewriter.setInsertionPoint(op);
auto loc = amend.getLoc();
auto undef = rewriter.create<UndefOp>(loc, amend.getType());
rewriter.replaceOp(amend, undef.getResult());
return mlir::success();
}
};
class ArrayValueCopyConverter
: public fir::impl::ArrayValueCopyBase<ArrayValueCopyConverter> {
public:
ArrayValueCopyConverter() = default;
ArrayValueCopyConverter(const fir::ArrayValueCopyOptions &options)
: Base(options) {}
void runOnOperation() override {
auto func = getOperation();
LLVM_DEBUG(llvm::dbgs() << "\n\narray-value-copy pass on function '"
<< func.getName() << "'\n");
auto *context = &getContext();
// Perform the conflict analysis.
const ArrayCopyAnalysisBase *analysis;
if (optimizeConflicts)
analysis = &getAnalysis<ArrayCopyAnalysisOptimized>();
else
analysis = &getAnalysis<ArrayCopyAnalysis>();
const auto &useMap = analysis->getUseMap();
mlir::RewritePatternSet patterns1(context);
patterns1.insert<ArrayFetchConversion>(context, useMap);
patterns1.insert<ArrayUpdateConversion>(context, *analysis, useMap);
patterns1.insert<ArrayModifyConversion>(context, *analysis, useMap);
patterns1.insert<ArrayAccessConversion>(context, *analysis, useMap);
patterns1.insert<ArrayAmendConversion>(context);
mlir::ConversionTarget target(*context);
target
.addLegalDialect<FIROpsDialect, mlir::scf::SCFDialect,
mlir::arith::ArithDialect, mlir::func::FuncDialect>();
target.addIllegalOp<ArrayAccessOp, ArrayAmendOp, ArrayFetchOp,
ArrayUpdateOp, ArrayModifyOp>();
// Rewrite the array fetch and array update ops.
if (mlir::failed(
mlir::applyPartialConversion(func, target, std::move(patterns1)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in array-value-copy pass, phase 1");
signalPassFailure();
}
mlir::RewritePatternSet patterns2(context);
patterns2.insert<ArrayLoadConversion>(context);
patterns2.insert<ArrayMergeStoreConversion>(context);
target.addIllegalOp<ArrayLoadOp, ArrayMergeStoreOp>();
if (mlir::failed(
mlir::applyPartialConversion(func, target, std::move(patterns2)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in array-value-copy pass, phase 2");
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass>
fir::createArrayValueCopyPass(fir::ArrayValueCopyOptions options) {
return std::make_unique<ArrayValueCopyConverter>(options);
}
|