File: LoopVersioning.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (328 lines) | stat: -rw-r--r-- 13,239 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//===- LoopVersioning.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for loops iterating over assumed-shape arrays, that can
/// be optimized by "guessing" that the stride is element-sized.
///
/// This is done by createing two versions of the same loop: one which assumes
/// that the elements are contiguous (stride == size of element), and one that
/// is the original generic loop.
///
/// As a side-effect of the assumed element size stride, the array is also
/// flattened to make it a 1D array - this is because the internal array
/// structure must be either 1D or have known sizes in all dimensions - and at
/// least one of the dimensions here is already unknown.
///
/// There are two distinct benefits here:
/// 1. The loop that iterates over the elements is somewhat simplified by the
///    constant stride calculation.
/// 2. Since the compiler can understand the size of the stride, it can use
///    vector instructions, where an unknown (at compile time) stride does often
///    prevent vector operations from being used.
///
/// A known drawback is that the code-size is increased, in some cases that can
/// be quite substantial - 3-4x is quite plausible (this includes that the loop
/// gets vectorized, which in itself often more than doubles the size of the
/// code, because unless the loop size is known, there will be a modulo
/// vector-size remainder to deal with.
///
/// TODO: Do we need some size limit where loops no longer get duplicated?
//        Maybe some sort of cost analysis.
/// TODO: Should some loop content - for example calls to functions and
///       subroutines inhibit the versioning of the loops. Plausibly, this
///       could be part of the cost analysis above.
//===----------------------------------------------------------------------===//

#include "flang/ISO_Fortran_binding.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Inquiry.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#include <algorithm>

namespace fir {
#define GEN_PASS_DEF_LOOPVERSIONING
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir

#define DEBUG_TYPE "flang-loop-versioning"

namespace {

class LoopVersioningPass
    : public fir::impl::LoopVersioningBase<LoopVersioningPass> {
public:
  void runOnOperation() override;
};

} // namespace

/// @c replaceOuterUses - replace uses outside of @c op with result of @c
/// outerOp
static void replaceOuterUses(mlir::Operation *op, mlir::Operation *outerOp) {
  const mlir::Operation *outerParent = outerOp->getParentOp();
  op->replaceUsesWithIf(outerOp, [&](mlir::OpOperand &operand) {
    mlir::Operation *owner = operand.getOwner();
    return outerParent == owner->getParentOp();
  });
}

static fir::SequenceType getAsSequenceType(mlir::Value *v) {
  mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(v->getType()));
  return argTy.dyn_cast<fir::SequenceType>();
}

void LoopVersioningPass::runOnOperation() {
  LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
  mlir::func::FuncOp func = getOperation();

  /// @c ArgInfo
  /// A structure to hold an argument, the size of the argument and dimension
  /// information.
  struct ArgInfo {
    mlir::Value *arg;
    size_t size;
    unsigned rank;
    fir::BoxDimsOp dims[CFI_MAX_RANK];
  };

  // First look for arguments with assumed shape = unknown extent in the lowest
  // dimension.
  LLVM_DEBUG(llvm::dbgs() << "Func-name:" << func.getSymName() << "\n");
  mlir::Block::BlockArgListType args = func.getArguments();
  mlir::ModuleOp module = func->getParentOfType<mlir::ModuleOp>();
  fir::KindMapping kindMap = fir::getKindMapping(module);
  mlir::SmallVector<ArgInfo, 4> argsOfInterest;
  for (auto &arg : args) {
    if (auto seqTy = getAsSequenceType(&arg)) {
      unsigned rank = seqTy.getDimension();
      if (rank > 0 &&
          seqTy.getShape()[0] == fir::SequenceType::getUnknownExtent()) {
        size_t typeSize = 0;
        mlir::Type elementType = fir::unwrapSeqOrBoxedSeqType(arg.getType());
        if (elementType.isa<mlir::FloatType>() ||
            elementType.isa<mlir::IntegerType>())
          typeSize = elementType.getIntOrFloatBitWidth() / 8;
        else if (auto cty = elementType.dyn_cast<fir::ComplexType>())
          typeSize = 2 * cty.getEleType(kindMap).getIntOrFloatBitWidth() / 8;
        if (typeSize)
          argsOfInterest.push_back({&arg, typeSize, rank, {}});
        else
          LLVM_DEBUG(llvm::dbgs() << "Type not supported\n");
      }
    }
  }

  if (argsOfInterest.empty())
    return;

  struct OpsWithArgs {
    mlir::Operation *op;
    mlir::SmallVector<ArgInfo, 4> argsAndDims;
  };
  // Now see if those arguments are used inside any loop.
  mlir::SmallVector<OpsWithArgs, 4> loopsOfInterest;

  func.walk([&](fir::DoLoopOp loop) {
    mlir::Block &body = *loop.getBody();
    mlir::SmallVector<ArgInfo, 4> argsInLoop;
    body.walk([&](fir::CoordinateOp op) {
      // The current operation could be inside another loop than
      // the one we're currently processing. Skip it, we'll get
      // to it later.
      if (op->getParentOfType<fir::DoLoopOp>() != loop)
        return;
      const mlir::Value &operand = op->getOperand(0);
      for (auto a : argsOfInterest) {
        if (*a.arg == operand) {
          // Only add if it's not already in the list.
          if (std::find_if(argsInLoop.begin(), argsInLoop.end(), [&](auto it) {
                return it.arg == a.arg;
              }) == argsInLoop.end()) {

            argsInLoop.push_back(a);
            break;
          }
        }
      }
    });

    if (!argsInLoop.empty()) {
      OpsWithArgs ops = {loop, argsInLoop};
      loopsOfInterest.push_back(ops);
    }
  });
  if (loopsOfInterest.empty())
    return;

  // If we get here, there are loops to process.
  fir::FirOpBuilder builder{module, std::move(kindMap)};
  mlir::Location loc = builder.getUnknownLoc();
  mlir::IndexType idxTy = builder.getIndexType();

  LLVM_DEBUG(llvm::dbgs() << "Module Before transformation:");
  LLVM_DEBUG(module->dump());

  LLVM_DEBUG(llvm::dbgs() << "loopsOfInterest: " << loopsOfInterest.size()
                          << "\n");
  for (auto op : loopsOfInterest) {
    LLVM_DEBUG(op.op->dump());
    builder.setInsertionPoint(op.op);

    mlir::Value allCompares = nullptr;
    // Ensure all of the arrays are unit-stride.
    for (auto &arg : op.argsAndDims) {
      // Fetch all the dimensions of the array, except the last dimension.
      // Always fetch the first dimension, however, so set ndims = 1 if
      // we have one dim
      unsigned ndims = arg.rank;
      for (unsigned i = 0; i < ndims; i++) {
        mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
        arg.dims[i] = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
                                                     *arg.arg, dimIdx);
      }
      // We only care about lowest order dimension, here.
      mlir::Value elemSize =
          builder.createIntegerConstant(loc, idxTy, arg.size);
      mlir::Value cmp = builder.create<mlir::arith::CmpIOp>(
          loc, mlir::arith::CmpIPredicate::eq, arg.dims[0].getResult(2),
          elemSize);
      if (!allCompares) {
        allCompares = cmp;
      } else {
        allCompares =
            builder.create<mlir::arith::AndIOp>(loc, cmp, allCompares);
      }
    }

    auto ifOp =
        builder.create<fir::IfOp>(loc, op.op->getResultTypes(), allCompares,
                                  /*withElse=*/true);
    builder.setInsertionPointToStart(&ifOp.getThenRegion().front());

    LLVM_DEBUG(llvm::dbgs() << "Creating cloned loop\n");
    mlir::Operation *clonedLoop = op.op->clone();
    bool changed = false;
    for (auto &arg : op.argsAndDims) {
      fir::SequenceType::Shape newShape;
      newShape.push_back(fir::SequenceType::getUnknownExtent());
      auto elementType = fir::unwrapSeqOrBoxedSeqType(arg.arg->getType());
      mlir::Type arrTy = fir::SequenceType::get(newShape, elementType);
      mlir::Type boxArrTy = fir::BoxType::get(arrTy);
      mlir::Type refArrTy = builder.getRefType(arrTy);
      auto carg = builder.create<fir::ConvertOp>(loc, boxArrTy, *arg.arg);
      auto caddr = builder.create<fir::BoxAddrOp>(loc, refArrTy, carg);
      auto insPt = builder.saveInsertionPoint();
      // Use caddr instead of arg.
      clonedLoop->walk([&](fir::CoordinateOp coop) {
        // Reduce the multi-dimensioned index to a single index.
        // This is required becase fir arrays do not support multiple dimensions
        // with unknown dimensions at compile time.
        // We then calculate the multidimensional array like this:
        // arr(x, y, z) bedcomes arr(z * stride(2) + y * stride(1) + x)
        // where stride is the distance between elements in the dimensions
        // 0, 1 and 2 or x, y and z.
        if (coop->getOperand(0) == *arg.arg &&
            coop->getOperands().size() >= 2) {
          builder.setInsertionPoint(coop);
          mlir::Value totalIndex;
          for (unsigned i = arg.rank - 1; i > 0; i--) {
            // Operand(1) = array; Operand(2) = index1; Operand(3) = index2
            mlir::Value curIndex =
                builder.createConvert(loc, idxTy, coop->getOperand(i + 1));
            // Multiply by the stride of this array. Later we'll divide by the
            // element size.
            mlir::Value scale =
                builder.createConvert(loc, idxTy, arg.dims[i].getResult(2));
            curIndex =
                builder.create<mlir::arith::MulIOp>(loc, scale, curIndex);
            totalIndex = (totalIndex) ? builder.create<mlir::arith::AddIOp>(
                                            loc, curIndex, totalIndex)
                                      : curIndex;
          }
          // This is the lowest dimension - which doesn't need scaling
          mlir::Value finalIndex =
              builder.createConvert(loc, idxTy, coop->getOperand(1));
          if (totalIndex) {
            assert(llvm::isPowerOf2_32(arg.size) &&
                   "Expected power of two here");
            unsigned bits = llvm::Log2_32(arg.size);
            mlir::Value elemShift =
                builder.createIntegerConstant(loc, idxTy, bits);
            totalIndex = builder.create<mlir::arith::AddIOp>(
                loc,
                builder.create<mlir::arith::ShRSIOp>(loc, totalIndex,
                                                     elemShift),
                finalIndex);
          } else {
            totalIndex = finalIndex;
          }
          auto newOp = builder.create<fir::CoordinateOp>(
              loc, builder.getRefType(elementType), caddr,
              mlir::ValueRange{totalIndex});
          LLVM_DEBUG(newOp->dump());
          coop->getResult(0).replaceAllUsesWith(newOp->getResult(0));
          coop->erase();
          changed = true;
        }
      });

      builder.restoreInsertionPoint(insPt);
    }
    assert(changed && "Expected operations to have changed");

    builder.insert(clonedLoop);
    // Forward the result(s), if any, from the loop operation to the
    //
    mlir::ResultRange results = clonedLoop->getResults();
    bool hasResults = (results.size() > 0);
    if (hasResults)
      builder.create<fir::ResultOp>(loc, results);

    // Add the original loop in the else-side of the if operation.
    builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
    replaceOuterUses(op.op, ifOp);
    op.op->remove();
    builder.insert(op.op);
    // Rely on "cloned loop has results, so original loop also has results".
    if (hasResults) {
      builder.create<fir::ResultOp>(loc, op.op->getResults());
    } else {
      // Use an assert to check this.
      assert(op.op->getResults().size() == 0 &&
             "Weird, the cloned loop doesn't have results, but the original "
             "does?");
    }
  }

  LLVM_DEBUG(llvm::dbgs() << "After transform:\n");
  LLVM_DEBUG(module->dump());

  LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}

std::unique_ptr<mlir::Pass> fir::createLoopVersioningPass() {
  return std::make_unique<LoopVersioningPass>();
}