File: MemRefDataFlowOpt.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (136 lines) | stat: -rw-r--r-- 4,538 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//===- MemRefDataFlowOpt.cpp - Memory DataFlow Optimization pass ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Operation.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include <optional>

namespace fir {
#define GEN_PASS_DEF_MEMREFDATAFLOWOPT
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir

#define DEBUG_TYPE "fir-memref-dataflow-opt"

using namespace mlir;

namespace {

template <typename OpT>
static std::vector<OpT> getSpecificUsers(mlir::Value v) {
  std::vector<OpT> ops;
  for (mlir::Operation *user : v.getUsers())
    if (auto op = dyn_cast<OpT>(user))
      ops.push_back(op);
  return ops;
}

/// This is based on MLIR's MemRefDataFlowOpt which is specialized on AffineRead
/// and AffineWrite interface
template <typename ReadOp, typename WriteOp>
class LoadStoreForwarding {
public:
  LoadStoreForwarding(mlir::DominanceInfo *di) : domInfo(di) {}

  // FIXME: This algorithm has a bug. It ignores escaping references between a
  // store and a load.
  std::optional<WriteOp> findStoreToForward(ReadOp loadOp,
                                            std::vector<WriteOp> &&storeOps) {
    llvm::SmallVector<WriteOp> candidateSet;

    for (auto storeOp : storeOps)
      if (domInfo->dominates(storeOp, loadOp))
        candidateSet.push_back(storeOp);

    if (candidateSet.empty())
      return {};

    std::optional<WriteOp> nearestStore;
    for (auto candidate : candidateSet) {
      auto nearerThan = [&](WriteOp otherStore) {
        if (candidate == otherStore)
          return false;
        bool rv = domInfo->properlyDominates(candidate, otherStore);
        if (rv) {
          LLVM_DEBUG(llvm::dbgs()
                     << "candidate " << candidate << " is not the nearest to "
                     << loadOp << " because " << otherStore << " is closer\n");
        }
        return rv;
      };
      if (!llvm::any_of(candidateSet, nearerThan)) {
        nearestStore = mlir::cast<WriteOp>(candidate);
        break;
      }
    }
    if (!nearestStore) {
      LLVM_DEBUG(
          llvm::dbgs()
          << "load " << loadOp << " has " << candidateSet.size()
          << " store candidates, but this algorithm can't find a best.\n");
    }
    return nearestStore;
  }

  std::optional<ReadOp> findReadForWrite(WriteOp storeOp,
                                         std::vector<ReadOp> &&loadOps) {
    for (auto &loadOp : loadOps) {
      if (domInfo->dominates(storeOp, loadOp))
        return loadOp;
    }
    return {};
  }

private:
  mlir::DominanceInfo *domInfo;
};

class MemDataFlowOpt : public fir::impl::MemRefDataFlowOptBase<MemDataFlowOpt> {
public:
  void runOnOperation() override {
    mlir::func::FuncOp f = getOperation();

    auto *domInfo = &getAnalysis<mlir::DominanceInfo>();
    LoadStoreForwarding<fir::LoadOp, fir::StoreOp> lsf(domInfo);
    f.walk([&](fir::LoadOp loadOp) {
      auto maybeStore = lsf.findStoreToForward(
          loadOp, getSpecificUsers<fir::StoreOp>(loadOp.getMemref()));
      if (maybeStore) {
        auto storeOp = *maybeStore;
        LLVM_DEBUG(llvm::dbgs() << "FlangMemDataFlowOpt: In " << f.getName()
                                << " erasing load " << loadOp
                                << " with value from " << storeOp << '\n');
        loadOp.getResult().replaceAllUsesWith(storeOp.getValue());
        loadOp.erase();
      }
    });
    f.walk([&](fir::AllocaOp alloca) {
      for (auto &storeOp : getSpecificUsers<fir::StoreOp>(alloca.getResult())) {
        if (!lsf.findReadForWrite(
                storeOp, getSpecificUsers<fir::LoadOp>(storeOp.getMemref()))) {
          LLVM_DEBUG(llvm::dbgs() << "FlangMemDataFlowOpt: In " << f.getName()
                                  << " erasing store " << storeOp << '\n');
          storeOp.erase();
        }
      }
    });
  }
};
} // namespace

std::unique_ptr<mlir::Pass> fir::createMemDataFlowOptPass() {
  return std::make_unique<MemDataFlowOpt>();
}